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Abstract. The discovery of relationships between concepts is a crucial
point in ontology learning (OL). In most cases, OL is achieved from a
collection of domain-specific texts, describing the concepts of the domain
and their relationships. A natural way to represent the description as-
sociated to a particular text is to use a structured term (or tree). We
present a method for learning transformation rules, rewriting natural
language texts into trees, where the input examples are couples (text,
tree). The learning process produces an ordered set of rules such that,
applying these rules to a text gives the corresponding tree.

1 Introduction

The work presented in this paper has been motivated by a French project (ACI
Biotim http://www-rocq.inria.fr/imedia/biotim/) in the field of Biodiversity.
The task we address aims at semi-automatically building an ontology of the
domain from corpora describing flora.

The term ontology has various definitions in various domains. From a practi-
cal point of view, an ontology can be defined as a quadruple O = (C, R, A, T op)
where C is a set of concepts, R is a set of relations, A is a set of axioms and Top is
the highest-level concept [SB03]. The set R contains relations between concepts,
as for example, the binary relation partof relating the concepts hand and hu-
man. Usually we distinguish taxonomic and non-taxonomic relations: taxonomic
relations are used to organize information with generalization/specialization (or
hyponymy) relationships in a “ISA hierarchy”; non-taxonomic relations are any
other relations such as synonymy, meronymy, antonymy, attribute-of, possession,
causality, ...

Ontology learning refers to extracting one of these elements from input data.
This task has been addressed in several research areas. Ontology learning sys-
tems extract their knowledge from different types of sources, such as structured
data (databases, existing ontologies, ...) or semi-structured data (dictionaries,
XML documents, ...). One of the problems is to learn from unstructured data
(domain-specific natural language texts). A quite natural formalism for struc-
turing texts is first-order logics (usually logic programs), thus allowing the use of
Inductive Logic Programming for different tasks, as for instance Text Categoriza-
tion, Information Extraction or Parser Acquisition [Coh95,JSR99,Moo96]. This
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usually leads to a two-step process: a syntactic analysis of the texts, followed by
the learning task. Nevertheless, in our application, the corpora is specific (long
descriptions of flore without verbs) making difficult the use of classical syntactic
parsers. For instance, the following example is the beginning of the description
of the plant called “Pulchranthus variegatus”:

“ Subshrubs or shrubs, 0.5-2 m tall. Stems terete with red, exfoliating bark.
Leaves: petioles 3-13 mm long; blades elliptic-lanceolate, 13-26 × 5-9 cm,
glabrous, the apex acuminate-cuspidate. Inflorescences terminal, racemes or
panicles, 4-15 cm long, green, the flowers 2-many per node; peduncle 10-15
mm long; bracts small, narrowly triangular, 2.5-3 x 0.5 mm; pedicels lacking
to short, 1.5 mm long; bracteoles 1.5-2 mm long. ...”

This text describes different concepts (stem, bark, leaf, ...) and various relations:
part-of relations (bark is a part of a stem, flower is a part of inflorescences, ...)
and attribute-value relations (stem is terete, bark is red, petiole is 3-13 mm
long...).

All this information can be represented into a tree (term), the leaves (con-
stants) are elements of the text. For example, the term

partOf(desc(stem, terete), desc(bark, [red, exfoliating]))

could be a representation of information associated with the sentence “Stems
terete with red, exfoliating bark”. The detailed formal language used in our work
is presented in Section 3.

Given a set of sentences and their corresponding terms (manually built), our
goal is to produce a set of rules able to rewrite a sentence into a term. The corpora
shows that in many cases, some simple regular structures can be automatically
discovered, these structures are based on the punctuation and the syntactical
categories of words. For example, when a noun is immediately followed by an
adjective, then the adjective describes the noun; when two descriptions are sep-
arated by “,” or “, with”, then the second description is about a concept which
is a part of the concept of the first description. This short example also shows
that a preprocessing step is required: the initial text is transformed into a list
of elements (words, punctuation), each element is tagged, using a part-of-speech
(POS) tagger; this preprocessing is done in most existing ontology learners.

Some works have already adressed this task: [MPS02] proposes a survey of
methods relying either on statistics or predefined patterns, [SM06] is based on
cooccurrences with verb phrases, [Yam01] uses a n-grams representation and
[Ait02] uses ILP techniques to characterize specific relations. [Bri93] proposes a
transformation-based approach for parsing text into binary trees.

Our approach can be compared with [Hea92] which proposes to use a pattern-
based approach to extract hyponymy/hyperonymy relations from texts. [Hea92]
proposes to use patterns like for instance :

NP0 such as {NP1, NP2..., (and/or)} NPn

to infer that hyponymy(NP0, NPi) for i = 1..n. In Hasti [SB04], patterns are
also used for building ontology. In these works, the user has to define the pat-
terns. The particularity of our approach is that we propose to learn such rules
automatically, from a set of examples. In [Bos00], transfer rules are learned in
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a bi-lingual translation perspective: rules are produced from pairs of structured
terms. These rules are mainly based on the structure of both terms, i.e. on the
non-terminal symbols occurring in each term. In our approach, rules are learned
from pairs (sentence, term) where the sentence is a list of (tagged) words, i.e. a
term which is not sufficiently structured to apply the approach of [Bos00].

For this reason, our method can be applied to any type of relation. The learn-
ing process presented in this paper is simple: it is an iterative method, from the
inner structure to the outer structure, building new examples for each iteration.
We propose a divide and conquer approach guided by the structure and based on
a least general generalization principle, applied independently on different parts
of couples (sentence, term). In that sense, this work is a preliminary one, and
we plane to explore deeply the search space, taking into account the sequential
aspect of the data. From an ILP perspective, this point is a challenging problem.

2 Introductive example

To introduce the learning problem, let us consider the three following sentences:
s1: “Stems terete to quadrangular, with swollen nodes”
s2: “Bracts imbricate, the margins toothed”
s3: “Corolla curved, the lobes subequal to dimorphic”

We propose to associate to each sentence a term (or tree), representing in-
formation which can help to build an ontology. For example, the first sentence
presents two concepts (stem and node), where node is a part of stem; these
concepts are described by:

- stems are terete to quadrangular,thus introducing a range of values
- nodes are swollen

In order to represent this information, we can associate to the sentence s1 the
following term:

term1: partOf(desc(stem, range(terete, quadrangular)), desc(swollen, node))

In the same way, we can produce term2 and term3 from sentences s2 and
s3. We have chosen here very similar examples to introduce the learning process
and so the corresponding terms are very similar. These terms are represented by
the following trees:

desc

stem range swollen node bract imbricate margin toothed corolla curved lobe range

desc desc desc

partOfpartOf

terete quadrangular subequal dimorphic

descdesc

partOf

term2 term3term1
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Our goal is to build rules such that, applying them on a sentence builds the
corresponding term. The rewriting process is based on the grammatical cate-
gories of elements in sentences, so we need a mapping from the set of elements
in a sentence to a set of possible tags. We use TreeTagger [Tre] to perform this
mapping and the possible tags are those proposed by TreeTagger : nn (noun,
common singular), jj (adjective, general), vvn (verb, past participle), ..., a de-
tailed list is proposed in [Tre]. We have added the tag pct for punctuation.

Then a sentence can be viewed as a list of terms; the previous examples s1,
s2 and s3 are respectively represented by the lists list1, list2 and list3:

list1: [ nn(stem),jj(terete),to(to),jj(quadrangular),pct(virg),in(with),
jj(swollen),nn(node)]

list2: [ nn(bract),jj(imbricate),pct(virg),dt(the),nn(margin),vvn(toothed)]
list3: [ nn(corolla),vvn(curved),pct(virg),dt(the),nn(lobe),jj(subequal),

to(to),jj(dimorphic)]

The goal is then to learn rules, rewriting such lists into the corresponding
terms. The input of the process is a set of couples (listi, termi), and we propose
to learn these rules by a generalization process. However, the terms are usu-
ally too much different to be generalized. For this reason, we consider all their
sub-terms with their corresponding subtrees in the generalization process: this
requires to be able to extract the sub-list associated to a sub-term, this point is
detailed in Section 3.2.

In our example, we can get for instance the two following couples (sub-list,
sub-term):

([jj(terete),to(to),jj(quadrangular) ], range(terete, quadrangular))
and

([jj(subequal),to(to),jj(dimorphic) ], range(subequal, dimorphic))
which can be generalized into

([jj(X),to(to),jj(Y) ], range(X, Y)) (rule 1)

The last couple can be considered as a rule, producing a term from a list of
terms (we propose in the following section a detailed definition of rewriting
rules). Then, applying such a rule to a list of terms consists in replacing a part
of the list matching the left-hand side of the rule by the corresponding right-hand
side.

Such a rule will have to be applied to lists of terms such as list1. So, it will be
necessary to decompose such a list into 3 lists l1, l

′ and l2 such that l′ matches
with the left-hand list of the rule and then, l′ is replaced by the right-hand term
of the rule. For the example list1, a possible decomposition is

l1 = [ nn(stem)],
l′ = [jj(terete),to(to),jj(quadrangular) ]
l2 = [ pct(virg),in(with), jj(swollen),nn(node)]

and applying the rule 1 to list1 gives the list:

list′1: [ nn(stem),range(terete, quadrangular),pct(virg),in(with),
jj(swollen),nn(node)]
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In the next section, we introduce special symbols 3i instead of variables
X, Y, . . .. Then, the right-hand term of the rule 1 will be written range(31, 32)
and we will have to extract the a sub-list from l′ (in our example [terete,
quadrangular]) such that symbols 31 and 32 are replaced by the terms be-
longing to this sub-list.

We can notice that, applying the previous rule to any list from the initial
lists list1, list2 or list3, produces only expected sub-terms. Conversely, the rule

([nn(X),jj(Y) ], desc(X, Y))
could also be considered but it produces some unexpected terms since it can be
applied to the sub-list [ nn(stem),jj(terete) ] of the sentence s1, producing the
term desc(stem, terete) which is not a sub-term of term1. For this reason, this
rule is not acceptable at this level (in this paper, we require that rules are 100%
correct).

Once an acceptable rule is produced, we propose to apply it to all the sub-
lists of the positive examples: if we apply the previous rule to the couple (list1,
term1), we obtain the couple

([ nn(stem),range(terete,quadrangular),pct(virg),in(with),jj(swollen),
nn(node)], term1)

Then we get a new set of positive examples and we propose to continue this
process until either all the couples have the form ([term], term) or no more rule
can be learned. In our example, we can expect that, after learning and applying
some rules, list1, list2 and list3 will be rewritten respectively into

list′1: [ desc(stem,range(terete,quadrangular)),
pct(virg),in(with), desc(swollen,node)]

list′2: [ desc(bract,imbricate),
pct(virg),dt(the), desc(margin,toothed)]

list′3: [ desc(corolla,curved),
pct(virg),dt(the), desc(lobe, range(subequal, dimorphic))]

These terms are similar in their structure but in order to generalize the examples
(list′1, term1), (list′2, term2), (list′3, term3), we have to introduce a more general
form of rewriting rules, generalizing the three previous examples allowing either
“the” or “with” between two descriptions in a rule producing a partOf term.
These problems also arise with the following example:

([ nn(bract),jj(imbricate)], desc(bract, imbricate))
and

([ nn(margin),vvn(toothed)], desc(margin, toothed))
where two different tags are possible for the second word.

This process is formally detailed in the following sections.

3 Definitions and languages specification

As mentioned in the previous section, the examples used by the learning method
are couples (list, term) where list is a list of term. In this section we introduce
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some definitions and we present the language specifications used in our applica-
tion, for both terms in the initial lists of terms and terms representing intended
information to extract.

3.1 Terms and lists

We first recall some definitions and notations for terms and lists, see [CDG+97]
for more details.

A regular tree language is defined by a ranked alphabet (F , arity) where F
is a finite set of symbols and arity a function from F to IN, which indicates the
arity of a symbol. Given a set of variables X , terms are inductively defined by:
a symbol of arity 0 is a term, a variable of X is a term, if f is a symbol of arity
n and t1, ..., tn are terms, then f(t1, ..., tn) is a term. For any i ∈ [1..n], ti is
a sub-term of f(t1, ..., tn) and any sub-term of ti is a sub-term of f(t1, ..., tn).
Given a term t = f(t1, ..., tn), we define top(t) = f .

A context is a term C[⋄] containing a special variable ⋄ which occurs just
once in that term, it marks an empty place. Throughout, the substitution of ⋄
by a term u is written C[u].

Lists are usually terms build with a 2-ary symbol (cons) and a 0-ary symbol
(ǫ). In this paper, lists of terms are written with square brackets in order to
distinguish terms from lists of terms.

Given n terms t1, ..., tn, the list containing t1, ..., tn is denoted by [t1, ..., tn],
n is the size of l. Let l be the list [t1, ..., tn], l(i) denotes the i-th term ti. The
concatenation of two lists l1 = [a1, ..., an] and l2 = [b1, ..., bp] is written l1.l2 =
[a1, ..., an, b1, ...bp].

3.2 Definitions and notations

Let l be the list [t1, ..., tn], a sub-list of l is a list [l(i1), ..., l(ik)] with i1 < i2 <
... < ik. We write Sk(l) the set of sub-lists of l with size k, and S∗(l) the set of
sub-lists of l of any size.

Given a list l = [t1, ..., tn], the list l′ is a part of the list l if l can be written
as a concatenation l = l1.l

′.l2 (l1 and l2 are lists possibly empty). In this case, l′

is a sub-list of l that can be written l′ = [l(i), l(i + 1), ..., l(i + k)].

3 Definition : k-context. A k-context is a term C[[⋄1, ..., ⋄k]] containing
k special variables ⋄1, ..., ⋄k which occur just once in that term, each one marks
an empty place. Given a list of terms l = [t1, ..., tk], the substitution of each ⋄i

by the term ti is written C[l] = C[[t1, ..., tk]]. The special variable ⋄i appears to
the right-hand side of ⋄j iff i > j

Given a couple (l, t) (l is a list of terms and t is a term), the role of a k-context
is to express that the term t can be obtained from a k-context C[[⋄1, ..., ⋄k]] and
a sub-list lk ∈ Sk(l) such that t = C[lk]. To learn rewriting rules, we have to
find k-contexts that are common to different couples.
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For instance, let us consider a couple (l, t) with l = [a, b, c, d] and t =
f(b, h(d)). If we consider the 2-context C[[⋄1, ⋄2]] = f(⋄1, h(⋄2)), we can extract
the sub-list l′ = [b, d] from l such that t = C[l′]. Let us notice that another pos-
sible context is for instance the 1-context C′[[⋄1]] = f(b, h(⋄1)) with the sub-list
l′′ = [d], such that t = C′[l′′].

Since for a couple (l, t) t is a possible 0-context, we propose a more restrictive
definition:

3 Definition : k-skeleton. A k-skeleton is a k-context skk = C[[⋄1, ..., ⋄k]]
such that there are no other 0-ary symbols in skk than the ⋄i. A term t is a skele-
ton if there exists k such that t is a k-skeleton (such a value k is unique).

For example, f(a, g(⋄1, ⋄2)) is a 2-context but is not a 2-skeleton. On the
other hand, f(⋄1, g(⋄2, ⋄3)) is a 3-skeleton

In the following, rewriting rules are obtained from skeletons. This choice has
been made in order to ensure that the information associated to term are all
contained in the initial sentence. In a more general process, we could consider
k-contexts to learn rewriting rules.

3 Definition : consistency. A couple (l, t) (l is a list of terms and t is
a term) is said to be consistent if there exists a unique couple (sk, sl) such that
sk is a skeleton C[[⋄1, ..., ⋄k]], sl ∈ Sk(l) and C[sl] = t.

The consistency condition for (l, t) ensures that the term t can be obtained
from a skeleton and a sub-list of l. It ensures also that there exists only one way
to obtain t from a skeleton and a sub-list. Then, the uniqueness of the skeleton
and the sub-list allow to denote by skel(l, t) and sub(l, t) the associated skeleton
and sub-list of a consistent couple (l, t).

The consistency condition is not necessary in a general rewriting-rule frame-
work. It is required in the method presented here in order to reduce the search
space for learning rules. In order to ensure the consistency condition:

– we can require that the order of words occurring in a term is the same that
the order of words in the associated sentence,

– we can also require that each word occurring in a term occurs exactly one
time in the associated sentence.

3.3 Rewriting rule

A rewriting rule allows to replace a part of a list of terms, by a new term,
containing some terms of the list of sub-terms. This replacement is made under
some conditions that are specified in the rule. For this reason, we propose the
following general and formal definition:

3 Definition : Rewriting rule. A rewriting rule is defined by an
integer k and a triple (Cond, Ext, T ) that expresses how to apply it on a list l
decomposed into three sub-lists l = l1.l

′.l2,

– Cond is a condition which has to be satisfied by (l1, l
′, l2),
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– Ext specifies conditions on sub-lits l′′ with size k that can be extracted
from l′. Ext(l′) denotes the set of sub-lists that can be extracted from l′ by
applying Ext

– T = C[[⋄1, ..., ⋄k]] is a k-context.

This definition is very general. It will be illustrated in Section 4, after having
defined a first order language.

Given a list of terms l, to apply a rewriting rule r = (Cond, Ext, T ), we first
need to search for a decomposition l = l1.l

′.l2 such that the condition Cond
is satisfied for (l1, l

′, l2). Then, given l′′ ∈ Ext(l′), the list l1.[C[l′′]].l2 can be
produced from l, by applying r.

In this general context, given a list of terms l and a rewriting rule r, applying
r to l may produces different results; we note the set of results r(l). In the same
way, we note r2(l) = {r(l′)|l′ ∈ r(l)}, and so on. We note r∗(l) the set rn(l) such
that the rule r cannot be applied to any element of rn(l), if it exists.

The previous definition is very general, we do not propose a precise formalism
to express conditions and extraction methods. In the next section, we detail a
specific form of rule.

3.4 Languages specification

We specify here the language used in our experiments. Examples are couples
(list, term) associated to a sentence. In such couples, list is a list of terms and
term represents information to extract from the sentence.

Initially, the list of terms is built from the elements in the sentence, associated
to their corresponding syntactical tag. As mentioned above, TreeTagger has been
used for the tagging task. The language for terms in the initial lists of terms is
then specified as follows:

– all the syntactical elements (words, punctuations) are 0-ary symbols,
– any tag is a 1-ary symbol.

We have used the tagset proposed in the original English parameter files given
with TreeTagger [Tre]. We have added a specific tag “dimension” for expression
such as “2 − 4 × 2.5 cm”.

Concerning the right-hand part of the examples, the language used has to
represent conceptual information associated to a sentence, mainly the concepts,
the attributes and values, and the “part of” relations. Moreover, some symbols
have been introduced to handle lists.

We chose to use a detailed language; the symbols are (the arity is specified
behind /) :

n/1 : the argument of this symbol is a concept,
attr/1 : the argument is an attribute,
val/1 : the argument is a value,
prec/1 : the argument is a precision (mainly expressed by adverbs),
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att/3 : this symbol allows to build an attribute/value association; the arguments
are an attribute, a value and a precision. We always put 3 arguments, even
when some information is missing in the sentence. In this case, we use the
0-ary symbol e. For example, “mostly pilose” is represented by the term
att(prec(mostly), val(pilose), attr(e)), the attribute is not indicated.

latt/2 : this symbol is used for lists of attribute/value associations, the first ar-
gument is made with the symbol att and the second is a list of attribute/value
associations or e. We have chosen to systematically use this symbol, even for
a single attribute/value association.

range/2 : allows to express range of values; this symbol may appear as an
argument of val,

disj jj/2 : express a disjunction of values (conjunction of values are expressed
with lists),

nj/2 : this symbol is used for some noun-adjective association, such as “lower
lobe” (nj(lower, n(lobe))), “posterior lip” (nj(posterior, n(lip))), ...

rj/2 : this symbol is used when a value is associated to an adverb, such as
“mostly triangular” (rj(mostly, triangular)) or “slightly emarginate” (rj(
slightly , emarginate)), ...

desc/2 : this symbol allows to express that a list of attributes/values describes
a particular part of the plant. The arguments are a concept and a list of
attributes/values,

partOf/2 : this symbol expresses a “part of” relation; it has two arguments,
one corresponding to a concept (build with symbols n or desc) and one
corresponding to a precision,

conj nn/2 : this symbol expresses conjunctions of concepts, it is used when
different part-of relations are described in a sentence.

These symbols are illustrated on the following example: the initial sentence
is :

“Corolla tubular to funnelform, +/- arcuate , 2-lipped , mostly pilose, usually
red, the posterior lip entire or slightly emarginate, the anterior lip 3-lobed”

and the associated term is:
partOf(

desc(n(corolla),
latt(att(val(range(tubular,funnelform)), attr(e), prec(e)),
latt(att(prec(+/-), val(arcuate), attr(e)),
latt(att(val(2-lipped), attr(e), prec(e)),
latt(att(prec(mostly),val(pilose), attr(e)),
latt(att(prec(usually),val(red), attr(e)), e)))))),

conj nn(
desc(nj(posterior,n(lip)),

latt(att(val(disj jj(entire,rj(slightly,emarginate))),
attr(e), prec(e)),e)),

desc(nj(anterior,n(lip)),
latt(att(val(3-lobed), attr(e), prec(e)),e))),

prec(e))
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4 Learning method

As mentioned above, we propose to learn from an initial set of couples C0 =
{(list0i , termi)}. We require that any initial couple is consistent.

Once a rule r has been learned, it is applied to any list list0i , if possible,
giving new examples C1 = {(list1i , termi)}, where list1i is obtained by applying
r to list0i as many times as possible, otherwise list1i = list0i . Then, this process
is repeated to define C2 from C1, ...

In our framework, when a learned rule r is applied to a list l, we require r∗(l)
to exist and to be a singleton. This means that if there are different ways to
apply r to a list l, the way r is applied has no importance and any way to apply
r leads to the same result. In practice, such rules, if generated, will cover negative
examples and therefore are rejected by the learning process; this is realized due
to the definition of negative examples.

Moreover, the form of the learned rules ensures that any Cm contains only
consistent examples.

For learning a rule, the idea is to use any subterm and their corresponding
list of terms as positive examples. Then, at any step, the set of examples used
in the learning process has to be defined from Cn = {(listni , termi)}.

4.1 Positive and negative examples

Given a set of couples Cn = {(listni , termi)}, we define the set of positive exam-
ples E+

n as the set of couple (lki , tki ) such that tki is a subterm of termi and lki is the
corresponding part of the list listni . In order to automatically build E+

n from Cn,
this definition requires a function that maps any subterm to the corresponding
part of the list. Given a couple (listni , termi) and a subterm tki from termi, since
the couple is consistent, there exists a unique skeleton sk = C[[⋄1, ..., ⋄k]], and a
unique sub-list sl ∈ Sk(listni ) such that C[sl] = termi. Then, there exists a sub-
term sk′ = C′[[⋄j , ..., ⋄j+p]] of sk, and the corresponding sub-list sl′ such that
tki = C′[sl′]. The sub-list sl′ can be written [listni (j1), list

n
i (j2), ..., list

n
i (js)], we

propose to choose lki = [listni (j1), list
n
i (j1 +1), ..., listni (js)], which is the shortest

part of list associated to tki .

An example (lki , tki ) is said to be covered by a rule r if r(lki ) is unique and
r(lki ) = [tki ].

From the set of positive examples, we propose to define the set of negative
examples E−

n as the set of couples (l−i , t−i ) such that l−i is a part of a list of lkj
for (lkj , tkj ) ∈ E+

n and (l−i , t−i ) 6∈ E+
n (any term t−i such that(l−i , t−i ) 6∈ E+

n can be
chosen). The set of negative examples is then infinite, and in practice it is not
generated. To ensure that no negative example is covered, it is sufficient to test
whether each time a rule r can be applied on listni , (listni , termi) ∈ Cn, the term
produced by the rule is a subterm of termi.
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4.2 Form of the learned rules

As mentioned above, a rewriting rule is a triple (Cond, Ext, T ), where T is a
k-skeleton. We propose to write a rule (associated to a k-skeleton T ) as :

r = [list0, (31, Symb1), list1, . . . (3n, Symbn), listn] → T

where: listi is a list of list of terms and Symbi is a list of symbols
We have to specify Cond and Ext from this representation. Let l1, l′ and l2,

be lists of terms, Cond is satisfied by (l1, l
′, l2) if l′ can be written

l′ = ll0.[t1].ll1.[t2].ll2. ... .[tk].llk
with lli ∈ listi and top(ti) ∈ Symbi. In this case, [t1, ..., tk] belongs to Ext(l′).

In this representation of a rule, listi corresponds to the list of possible sep-
arators between terms occurring in the list and in the term. Let us notice that
when the condition is satisfied for (l1, l

′, l2), it does not depend on l1 nor l2.
In this context, the condition does not depend on the context of the list to be
replaced.

Consider the following examples (list1, term1) and (list2, term2):

list1 = [dt(the), nn(stem), in(with), nn(anther), jj(2 − locular)]
term1 = partOf(stem, desc(anther, 2 − locular)

list2 = [nn(bract), pct(virg), dt(the), nn(margin), vvn(toothed)]

term1 = partOf(bract, desc(margin, toothed)
they are covered by the following rule:

r = [[[dt(the)], []], (31, [nn]), [[in(with)], [pct(virg), dt(the)]], (32, [nn]),

[[]], (33, [jj, vvn]), [[]]] → partOf(31, desc(32, 33))

The construction of this rule is illustrated in the following table:
lst1 lst2 → r

l0 [ dt(the) ] [] [[dt(the)], []]
t1 nn(stem) nn(bract) 31 = nn(...)
l1 [in(with)] [pct(virg),dt(the)] [[in(with)], [pct(virg),dt(the)]]
t2 nn(anther) nn(margin) 32 = nn(...)
l2 [] [] [[]]
t3 jj(2-locular) vvn(toothed) 33 = jj(...) or vvn(...)
l3 [] [] [[]]

4.3 The search space

Given a set of positive examples E+

i (and the associated set of negative examples
E−

i ), the goal is to find a rule covering some positive examples and covering
no negative ones, in a “divide-and-conquer” way. In this paper, we propose a
simplified method, based on a decomposition of the set E+

i into a partition
G1, . . . , Gn, where examples with the same skeleton are in the same group.

A rule is built by generalizing examples of a group. Given a group Gi and
the associated skeleton C[[⋄1, ..., ⋄k]], it is possible to write:

Gi = {llj0.[⋄
j
1].ll

j
1.[⋄

j
2]. ... .[⋄j

k].lljk}, j = 1..|Gi|.
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since examples are consistent (in the previous notation, we just write ⋄j
p in the

term l, where the terms of sub(l, t) occur, for an example (l, t) of the group).
Then, we propose to build the rule:

r = [list0, (31, Symb1), list1, . . . (3k, Symbk), listk] → C[[⋄1, ..., ⋄k]].

where listp = ∪j=1..|Gi|ll
j
p, p = 0..k, and Symbp = ∪j=1..|Gi|top(⋄j

p), p = 1..k
If a rule covers a negative example, it is rejected. The search starts with

groups for which the associated skeleton has the lowest depth.

4.4 Learning process

Our learning process differs from the usual divide-and-conquer methods: each
time a rule is learned, t is applied on the set of positive examples. Each rule is
then built from a particular set of positive examples. This choice is motivated by
the general process of the transformation of a text into a term: rules are applied
in the same order they are learned. When a rule is applied, some rules may have
been applied before, then, when we start learning a rule, the rules previously
learned have to be applied.

Formally, let ri be the rule learned from E+

i (starting by r0). We define
E+

i+1
= r∗i (E+

i ) = {(r∗i (list+), term+)|(list+, term+) ∈ E+

i }.
The learning process stops when each example (list+, term+) ∈ E+

n is such
that list+ = [term+], or when any new rule covers some negative examples.

5 Experiments and conclusion

This approach has been applied in the field of botany, using a corpus on vascular
plants of central French Guiana. We have used the description of 5 plants, corres-
ponding to 54 texts, and producing 1115 initial positive examples. The method
produces 49 rules covering 81,3% of the positive examples.

The preliminary results are very promising since many improvements can be
done: we have used a simplified method for learning a rule; some of the uncovered
positive examples could have been covered by splitting some of the groups Gj

or by exploring in more details the search space. It could also be interesting
to consider the context of the examples: some ambiguous cases could be solved
by including in the rule, the category of elements preceding and following the
examples. As mentioned above, we will focus in further works on the learning
task: we proposed in this paper a least general generalization approach, learning
more complex rules is an interesting ILP perspective.

Moreover, in some cases, the rules cannot be based only on categories of ele-
ments. Consider the examples “corolla glandular, mauve or white” and “corolla
blue, mauve or white”. In the first case, the disjunction concerns the words
“mauve” and “white”, in the second case it concerns the 3 colors. This situation
could be treated by using additional information or by producing rules allowing
different possible transformations from the same text.
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A An example of flore description: ANISACANTHUS

Branching herbs or subshrubs. Stems covered with brown or gray exfoliating bark.
Leaves: petioles present or absent; blades linear to lanceolate, cystoliths present.
Inflorescences spicate, racemose, or paniculate, the flowers secund or opposite,
borne singly or several at inflorescence node; bracts and bracteoles mostly trian-
gular to linear, usually caducous. Flowers: calyx 3-5-lobed, the lobes triangular
to linear; corolla tubular to funnelform, arcuate, 2-lipped, mostly pilose, usually
red, the posterior lip entire or slightly emarginate, the anterior lip 3-lobed; sta-
mens 2, the anthers 2-locular, subequal, not mucronate or appendaged. Capsules
subpyriform, slightly beaked. Seeds 2-4, homomorphic, flattened, each supported
by curved retinaculum.

B Positive examples corresponding to the firt two

sentences

ex([vvg(branching),nn(herbs),cc(or),nn(subshrubs)],
disj nn(desc(latt(att(val(branching), attr(e), prec(e)), e), n(herbs)),

n(subshrubs)) ).

ex([nn(stems),vvn(covered),in(with),jj(brown),cc(or),jj(gray),
vvg(exfoliating),nn(bark)],

partOf(n(stems),desc(latt(att(val(disj jj(brown, gray)), attr(e), prec(e)),
latt(att(val(exfoliating), attr(e), prec(e)), e)), n(bark)))).

C Examples of learned rules

rule 1 : [[[[]], (31, [nn]), [[cc(and)]], (32, [nn]), [[]]],
conj nn(31, 32)]

for example applied to “bracts and bracteoles”

rule 2 : [[[[]], w(31, [dim]), [[]], w(32, [rb, nn, jj]), [[]]],
att(val(31, 32, prec(e))]

for example applied to “6-8 cm long”, “15mm diam”, ...

rule 3 : [[[[]], (31, [vv, jj]), [[pct(virg)]], (32, [jj]), [[pct(virg), cc(or)]],
(33, [vvg, jj]), [[]]],

disj jj(31, disj jj(32, 33))]
for example applied to “spicate, racemose, or paniculate”.

rule 4 : [[[[]], (31, [range, jj]), [[pct(virg)]], (32, [att]), [[]]],
latt(att(val(31), attr(e), prec(e)), latt(32, e))]

for example applied to “triangular to linear, usually caducous”. Let us notice
that this rule is learned after some rules have been learned and applied to exam-
ples: a first rule has produced the term range(triangular, linear), a second rule
has produced the term att(prec(usually), val(caducous), attr(e)) from “usually
caducous”.


