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Abstract. In this paper, we propose a new methodology based on directed 
graphs and the TextRank algorithm to automatically induce general-specific 
noun relations from web corpora frequency counts. Different asymmetric 
association measures are implemented to build the graphs upon which the 
TextRank algorithm is applied and produces an ordered list of nouns from 
the most general to the most specific. Experiments are conducted based on 
the WordNet noun hierarchy and both quantitative and qualitative 
evaluations are proposed. 

1   Introduction 

Taxonomies are crucial for any knowledge-based system. They are in fact important 
because they allow to structure information, thus fostering their search and reuse. 
However, it is well known that any knowledge-based system suffers from the so-
called knowledge acquisition bottleneck, i.e. the difficulty to actually model the 
domain in question. As stated in [3], WordNet has been an important lexical 
knowledge base, but it is insufficient for domain specific texts. So, many attempts 
have been made to automatically produce taxonomies [5], but [3] is certainly the first 
work which proposes a complete overview of the problem by (1) automatically 
building a hierarchical structure of nouns based on bottom-up clustering methods and 
(2) labeling the internal nodes of the resulting tree with hypernyms from the nouns 
clustered underneath by using patterns such as “B is a kind of A”. 

 
In this paper, we are interested in dealing with the second problem of the construction 
of an organized lexical resource i.e. discovering general-specific noun relationships, 
so that correct nouns are chosen to label internal nodes of any hierarchical knowledge 
base, such as the one proposed in [4]. Most of the works proposed so far have (1) used 
predefined patterns or (2) automatically learned these patterns to identify 
hypernym/hyponym relationships. From the first paradigm, [6] first identifies a set of 
lexico-syntactic patterns that are easily recognizable i.e. occur frequently and across 



      

text genre boundaries. These can be called seed patterns. Based on these seeds, he 
proposes a bootstrapping algorithm to semi-automatically acquire new more specific 
patterns. Similarly, [3] uses predefined patterns such as “X is a kind of Y” or “X, Y, 
and other Zs” to identify hypernym/hyponym relationships. This approach to 
information extraction is based on a technique called selective concept extraction as 
defined by [11]. Selective concept extraction is a form of text skimming that 
selectively processes relevant text while effectively ignoring surrounding text that is 
thought to be irrelevant to the domain. 

 
A more challenging task is to automatically learn the relevant patterns for the 
hypernym/hyponym relationships. In the context of pattern extraction, there exist 
many approaches as summarized in [15]. The most well-known work in this area is 
certainly the one proposed by [13] who use machine learning techniques to 
automatically replace hand-built knowledge. Using dependency path features 
extracted from parse trees, they introduce a general-purpose formalization and 
generalization of these patterns. Given a training set of text containing known 
hypernym pairs, their algorithm automatically extracts useful dependency paths and 
applies them to new corpora to identify novel pairs. [12] use a similar way as [14] to 
derive extraction patterns for hypernym/hyponym relationships by using web search 
engine counts from pairs of words encountered in WordNet. However, the most 
interesting work is certainly proposed by [2] who extract patterns in two steps. First, 
they find lexical relationships between synonym pairs based on snippets counts and 
apply wildcards to generalize the acquired knowledge. Then, they apply a SVM 
classifier to determine whether a new pair shows a relation of synonymy or not, based 
on a feature vector of lexical relationships. This technique could be applied to 
hypernym/hyponym relationships although the authors do not mention it. 

 
On the one hand, links between words that result from manual or semi-automatic 
acquisition of relevant predicative or discursive patterns [3], [6] are fine and accurate, 
but the acquisition of these patterns is a tedious task that requires substantial manual 
work. On the other hand, works done by [2], [12], [13], [14] have proposed 
methodologies to automatically acquire these patterns mostly based on supervised 
learning to leverage manual work. However, training sets still need to be built.  

 
Unlike other approaches, we propose an unsupervised methodology which aims at 
discovering general-specific noun relationships which can be assimilated to 
hypernym/hyponym relationships detection1. The advantages of this approach are 
clear as it can be applied to any language or any domain without any previous 
knowledge, based on a simple assumption: specific words tend to attract general 
words with more strength than the opposite. As [8] state: “there is a tendency for a 
strong forward association from a specific term like adenocarcinoma to the more 
general term cancer, whereas the association from cancer to adenocarcinoma is 
weak”.  

 

                                                           
1 We must admit that other kinds of relationships may be covered. For that reason, we will 
speak about general-specific relationships instead of hypernym/hyponym relationships. 
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Based on this assumption, we propose a methodology based on directed graphs and 
the TextRank algorithm [9] to automatically induce general-specific noun 
relationships from web corpora frequency counts. Indeed, asymmetry in Natural 
Language Processing can be seen as a possible reason for the degree of generality of 
terms [8]. So, different asymmetric association measures are implemented to build the 
graphs upon which the TextRank algorithm is applied and produces an ordered list of 
nouns from the most general to the most specific. Experiments have been conducted 
based on the WordNet noun hierarchy and both quantitative and qualitative 
evaluations proposed using the statistical language identification model [1]. 

2   Asymmetric Association Measures 

In [8], the authors clearly point at the importance of asymmetry in Natural Language 
Processing. In particular, we deeply believe that asymmetry is a key factor for 
discovering the degree of generality of terms. It is cognitively sensible to state that 
when someone hears about mango, he may induce the properties of a fruit. But, when 
hearing fruit, more common fruits will be likely to come into mind such as apple or 
banana. In this case, there exists an oriented association between fruit and mango 
(mango → fruit) which indicates that mango attracts more fruit than fruit attracts 
mango. As a consequence, fruit is more likely to be a more general term than mango. 

 
Based on this assumption, asymmetric association measures are necessary to induce 
these associations. [10] and [16] propose exhaustive lists of association measures 
from which we present the asymmetric ones that will be used to measure the degree of 
attractiveness between two nouns, x and y, where f(.,.), P(.), P(.,.) and N are 
respectively the frequency function, the marginal probability function, the joint 
probability function, the total of digrams. 
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All nine definitions, except the Collective Strength, show their asymmetry by 
evaluating the maximum value between two hypotheses i.e. by evaluating the 
attraction of x upon y but also the attraction of y upon x. As a consequence, the 
maximum value will decide upon the direction of the general-specific association i.e. 
(x → y) or (y → x). For the specific case of the Collective Strength both attractions 
must be evaluated so that the highest value will decide upon the direction of the 
association. 

3   TextRank Algorithm 

Graph-based ranking algorithms are essentially a way of deciding the importance of a 
vertex within a graph, based on global information recursively drawn from the entire 
graph. Our intuition of using graph-based ranking algorithms is that more general 
words will be more likely to have incoming associations as they will be associated to 
many specific words. On the opposite, specific words will have few incoming 
associations as they will not attract general words (See Figure 1). As a consequence, 
the voting paradigm of graph-based ranking algorithms should give more strength to 
general words than specific ones, thus ranking words from general to specific. 

 
For that purpose, we first need to build a directed graph. Informally, if x attracts more 
y than y attracts x, we will draw an edge between x and y as follows (x → y) as we 
want to give more credits to general words. Formally, we can define a directed graph 
G = (V, E) with the set of vertices V (in our case, a set of words) and a set of edges E 
where E is a subset of V×V (in our case, defined by the asymmetric association 
measure value between two words). In Figure 1, we show the directed graph obtained 
by using the set of words V = { isometry, rate of growth, growth rate, rate} randomly 
extracted from WordNet where rate of growth and growth rate are synonyms, 
isometry an hyponynym of the previous set and rate an hypernym of the same set. 
The weights associated to the edges have been evaluated by the confidence 
association measure (Equation 3) based on web search engine counts2. In particular, 

                                                           
2 We used counts returned by http://www.yahoo.com. 
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the joint probability between two words, P(x,y), is evaluated by the number of 
documents retrieved by the Yahoo! search engine for the following query, “x” + “y”, 
divided by the total number of documents indexed. The same process is applied to 
evaluate the marginal probabilities P(x) and P(y).  
  

 
 

Fig. 1. Directed Graph based on the Confidence measure. 

Figure 1 clearly shows our assumption of generality of terms as the hypernym rate 
only has incoming edges whereas the hyponym isometry only has outgoing edges. 
Most complicated graphs can be obtained which also confirm our assumption as 
shown in section 4. As a consequence, by applying a graph-based ranking algorithm, 
we aim at producing an ordered list of words from the most general (with the highest 
value) to the most specific (with the lowest value). For that purpose, we present the 
TextRank algorithm proposed by [9] both for unweighted and weighted directed 
graphs. 

3.1   Unweighted Directed Graph 

For a given vertex Vi let In(Vi) be the set of vertices that point to it, and let Out(Vi) be 
the set of vertices that vertex Vi points to. The score of a vertex Vi is defined in 
Equation 10 where d is a damping factor that can be set between 0 and 1, which has 
the role of integrating into the model the probability of jumping from a given vertex 
to another random vertex in the graph3. 

 
 

(10)

                                                           
3 d is usually set to 0.85.  
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3.2   Weighted Directed Graph 

In order to take into account the weights of the edges, a new formula is introduced in 
Equation 11. 

 

(11)

 
After running the algorithm in both cases, a score is associated to each vertex, which 
represents the “importance” of the vertex within the graph. In table 1, we show both 
the lists with the weighted and unweighted versions of the TextRank based on the 
directed graph shown in Figure 1. 

Table 1. TextRank ordered lists. 

Unweighted Weighted WordNet 
S(Vi) Word WS(Vi) Word Categ. Word 
0.50 rate 0.81 rate Hyperonym rate 
0.27 growth rate 0.44 growth rate Synset growth rate 
0.19 rate of growth 0.26 rate of growth Synset rate of growth 
0.15 isometry 0.15 isometry Hyponym isometry 

4   Experiments and Results 

Evaluation is classically a difficult task in Natural Language Processing. In fact, as 
human evaluation is time-consuming and generally subjective even when strict 
guidelines are provided, measures to automatically evaluate experiments must be 
proposed. In this section, we propose to evaluate the capacity of our approach to map 
WordNet hypernym/hyponym relations. For that purpose, we introduce two different 
evaluation schemes. 

4.1   Correctness 

WordNet can be defined as applying a set of constraints to words. Indeed, if word w is 
the hypernym of word x, we may represent this relation by the following constraint y › 
x, where › is the order operator stating that y is more general than x. As a 
consequence, for each set of three synsets (the hypernym synset, the seed synset and 
the hyponym synset), a list of constraints can be established i.e. all words of the 
hypernym synset must be more general than all the words of the seed synset and the 
hyponym synset, and all the words of the seed synset must be more general than all 
the words in the hyponym synset. So, if we take the synsets presented in Table 1, we 
can define the following set of constraints: {rate › growth rate, rate › rate of growth, 
growth rate › isometry, rate of growth › isometry}. In order to evaluate our list of 
words ranked by the level of generality against the WordNet categorization, we just 
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need to measure the proportion of constraints which are respected as shown in 
Equation (12). We call, correctness this measure. 
 

(12) 

 
For example, in Table 1, all the constraints are respected for both weighted and 
unweighted graphs, giving 100% correctness for the ordered lists compared to 
WordNet categorization. 

4.2   Clustering 
 
Another way to evaluate the quality of the ordering of words is to apply hard 
clustering to the words weighted by their level of generality. By evidencing the 
quality of the mapping between three hard clusters generated automatically and the 
hypernym synset, the seed synset and the hyponym synset, we are able to measure the 
quality of our ranking. As a consequence, we propose to (1) perform 3-means 
clustering over the list of ranked words, (2) classify the clusters by level of generality 
and (3) measure the precision, recall and f-measure of each cluster sorted by level of 
generality with the hypernym synset, the seed synset and the hyponym synset.  
 
For the first task, we use the implementation of the k-means algorithm of the NLTK 
toolkit4. In particular, we bootstrap the k-means by choosing the initial means as 
follows. For the first mean, we choose the weight (the score) of the first word in the 
TextRank generated list of words. For the second mean, we take the weight of the 
middle word in the list and for the third mean, the weight of the last word in the list. 
For the second task the level of generality of each cluster is evaluated by the average 
level of generality of words inside the cluster (or said with other words by its mean). 
For the third task, the most general cluster and the hypernym synset are compared in 
terms of precision, recall and f-measure as shown in Equation (13), (14) and (15)5. 
The same process is applied to the second most general cluster and the seed synset, 
and the third cluster and the hyponym synset. 

 
 

(13) 

 
(14) 

 
(15) 

                                                           
4 http://nltk.sourceforge.net/ 
5 Cluster ∩ Synset means the number of words common to both Synset and Cluster, and 

|Synset| and |Cluster| respectively measure the number of words in the Synset and the 
Cluster. 
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4.2   Quantitative Evaluation 

In order to evaluate our methodology, we randomly6 extracted 800 seed synsets for 
which we retrieved their hypernym and hyponym synsets. For each seed synset, we 
then built the associated directed weighted and unweighted graphs based on the 
asymmetric association measures referred to in section 27 and ran the TextRank. 

Results by Constraints 
 

In Table 2, we present the results of the correctness for all nine asymmetric measures, 
both for the unweighted and weighted graphs. 

Table 2. Results for the Evaluation by Constraints. 

Equation Type of Graph Correctness 

Braun-Blanquet 
Unweighted 65.68% 
Weighted 65.52% 

J measure 
Unweighted 60.00% 
Weighted 60.34% 

Confidence 
Unweighted 65.69% 
Weighted 65.40% 

Laplace 
Unweighted 65.69% 
Weighted 65.69% 

Conviction 
Unweighted 61.81% 
Weighted 63.39% 

Certainty Factor 
Unweighted 65.59% 
Weighted 63.76% 

Added Value 
Unweighted 65.61% 
Weighted 64.90% 

Gini Index 
Unweighted 65.54% 
Weighted 65.54% 

Collective Strength 
Unweighted 65.57% 
Weighted 65.57% 

Baseline8 None 55.68% 

Results by Clustering 
 

In Table 3, we present the results of precision, recall and f-measure for both weighted 
and unweighted graphs for all the nine asymmetric measures. The best precision is 
obtained for the weighted graph with the Confidence measure evidencing 47.62% and 
the best recall is also obtained by the Confidence measure also for the weighted graph 
reaching 47.68%. In particular, the J measure and the Conviction metric perform 
worst showing worst f-measures.  

                                                           
6 We guarantee 98% significance level for an error of 0.05 following the normal distribution. 
7 The probability functions are estimated by the Maximum Likelihood Estimation (MLE). 
8 The baseline is the list of words ordered by web hits frequency (without TextRank). 
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These results also show that the weighting of the graph plays an important issue in our 
methodology. Indeed, most metrics perform better with weighted graphs in terms of f-
measure. 

Table 3. Results for the Evaluation by Clustering. 

Equation Graph Precision Recall F-measure 

Braun-Blanquet 
Unweighted 46.61 46.06 46.33 
Weighted 47.60 47.67 47.64 

J measure 
Unweighted 40.92 40.86 40.89 
Weighted 42.62 43.71 43.15 

Confidence 
Unweighted 46.54 46.02 46.28 
Weighted 47.62 47.68 47.65 

Laplace 
Unweighted 46.67 46.11 46.39 
Weighted 46.67 46.11 46.39 

Conviction 
Unweighted 42.14 41.67 41.90 
Weighted 43.62 43.99 43.80 

Certainty Factor 
Unweighted 46.48 46.52 46.50 
Weighted 44.84 45.85 45.34 

Added Value 
Unweighted 46.61 46.59 46.60 
Weighted 47.12 47.27 47.19 

Gini Index 
Unweighted 46.67 46.11 46.39 
Weighted 46.51 46.02 46.26 

Collective 
Strength 

Unweighted 46.67 46.11 46.39 
Weighted 46.67 46.11 46.39 

 
In Table 4, 5 and 6, we present the same results as in Table 3 but at different levels of 
analysis i.e. precision, recall and f-measure at hypernym, seed and hyponym levels. 
Indeed, it is important to understand how the methodology performs at different levels 
of generality as we verified that our approach performs better at higher levels of 
generality. 

 
Indeed, the precision scores go down from 59.50% at the hypernym level to 39.36% 
at the hyponym level with 46.38% at the seed level. The same phenomenon is 
inversely true for the recall with 42.93% at the hypernym level, 43.72% at the seed 
level and 70.80% at the hyponym level. This situation can easily be understood as 
most of the clusters created by the k-means present the same characteristics i.e. the 
upper level cluster usually has fewer words than the middle level cluster which in turn 
has fewer words than the last level cluster. As a consequence, the recall is artificially 
high for the hyponym level. But on the opposite, the precision is high for higher levels 
of generality which is promising for the automatic construction of hierarchical 
thesauri. Indeed, our approach can be computed recursively so that each level of 
analysis is evaluated as if it was at the hypernym level, thus taking advantage of the 
good performance of our approach at upper levels of generality9. 

 

                                                           
9 This will be studied as future work. 



      

Table 4. Results at the hypernym level. 

Equation Graph Precision Recall F-measure 

Braun-Blanquet 
Unweighted 59.38 37.38 45.88 
Weighted 58.75 39.35 47.14 

J measure 
Unweighted 46.49 37.00 41.20 
Weighted 47.19 41.90 44.38 

Confidence 
Unweighted 59.20 37.30 45.77 
Weighted 58.71 39.22 47.03 

Laplace 
Unweighted 59.50 37.78 45.96 
Weighted 59.50 37.78 45.96 

Conviction 
Unweighted 50.07 35.88 41.80 
Weighted 52.72 40.74 45.96 

Certainty Factor 
Unweighted 55.90 38.29 45.45 
Weighted 51.64 42.93 46.88 

Added Value 
Unweighted 56.26 37.90 45.29 
Weighted 58.21 40.09 47.48 

Gini Index 
Unweighted 59.50 37.44 45.96 
Weighted 59.50 37.44 45.96 

Collective 
Strength 

Unweighted 59.50 37.44 45.96 
Weighted 59.50 37.44 45.96 

 

Table 5. Results at the seed level. 

Equation Graph Precision Recall F-measure 

Braun-Blanquet 
Unweighted 43.05 37.86 40.29 
Weighted 46.38 33.14 38.66 

J measure 
Unweighted 40.82 43.72 42.22 
Weighted 43.98 33.89 38.28 

Confidence 
Unweighted 43.03 37.67 40.17 
Weighted 46.36 33.02 38.57 

Laplace 
Unweighted 43.10 37.78 40.27 
Weighted 43.10 37.78 40.27 

Conviction 
Unweighted 40.36 38.02 39.25 
Weighted 42.60 26.39 32.59 

Certainty Factor 
Unweighted 44.28 40.87 42.51 
Weighted 44.14 40.70 42.35 

Added Value 
Unweighted 44.21 40.74 42.40 
Weighted 45.78 32.90 38.28 

Gini Index 
Unweighted 43.10 37.79 40.27 
Weighted 42.77 37.25 39.82 

Collective 
strength 

Unweighted 43.10 37.78 40.27 
Weighted 43.10 37.78 40.27 
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Table 6. Results at the hyponym level. 

Equation Graph Precision Recall F-measure 

Braun-Blanquet 
Unweighted 37.39 62.96 46.92 
Weighted 37.68 70.50 49.12 

J measure 
Unweighted 35.43 41.87 38.38 
Weighted 36.69 55.33 44.12 

Confidence 
Unweighted 37.38 63.09 46.95 
Weighted 37.79 70.80 49.27 

Laplace 
Unweighted 37.40 63.11 46.97 
Weighted 37.40 63.11 46.97 

Conviction 
Unweighted 35.97 50.94 42.16 
Weighted 35.54 64.85 45.92 

Certainty Factor 
Unweighted 39.28 60.40 47.60 
Weighted 38.74 53.92 45.09 

Added Value 
Unweighted 39.36 61.15 47.89 
Weighted 37.39 68.81 48.45 

Gini Index 
Unweighted 37.40 63.11 46.97 
Weighted 37.25 63.36 46.92 

Collective 
Strength 

Unweighted 37.40 63.11 46.97 

Weighted 37.40 63.11 46.97 

 
In order to better understand our approach, we present in the next section a qualitative 
evaluation. 

4.3   Qualitative Evaluation 

In this section, we intend to illustrate the different situations encountered during our 
evaluation. We start by showing successful cases. Most of the successful cases were 
obtained when there are few words to order. In the Example 1 (see also Figure 2), the 
correct order and clustering was found by our approach i.e. filter is the hypernym, air 
filter and air cleaner are in the seed synset and filter tip is the hyponym. The means 
are the average levels of generality of the clusters and TextRank shows the values of 
the ordering of words. 

Example 1. 

Means: [0.50747799999999, 0.23340649999999, 0.14999999999999] 
TextRank: [0.50747799999999, 0.27431299999999, 0.1925, 0.14999999999999] 
TextRank sample: ['filter', 'air filter', 'air cleaner', 'filter tip'] 
Word Clusters: [['filter'], ['air filter', 'air cleaner'], ['fil ter tip']] 
WordNet blueprint synsets: [['filter'], ['air filter', 'air cleaner'], ['fil ter tip']]  
 
Some other cases were less successful, even when a few words were involved in the 
evaluation as in Example 2 and Figure 3. In this case, the system successfully 
categorizes the word board but fails to classify cabinet and planning board. One of 



      

the main reasons for this to appear is the fact that cabinet is too frequent as it can 
appear also in French documents and as consequence is incorrectly overestimated. On 
the other hand, planning board is badly classified due to the restriction of the 3-means 
algorithm. Indeed, in terms of TextRank score it is almost the same as cabinet and 
advisory board. But the fact that it is last scored and that the algorithm must choose 3 
clusters, artificially misclassifies planning board. By looking at the TextRank score, it 
is even unclear whether cabinet, advisory board and planning board should be 
separated. 
 

 

Fig. 2. Directed Graph from Example 1. 

Example 2. 

Means: [0.53026700000000, 0.15744200000000, 0.14999999999999] 
TextRank: [0.530267000000, 0.157872000000, 0.157012000000, 0.149999999999] 
TextRank sample: ['board', 'advisory board', 'cabinet', 'planning board'] 
Word Clusters: [['board'], ['advisory board', 'cabinet'], ['planning board']] 
WordNet blueprint synsets: [['board'], ['advisory board', 'planning board'], ['cabinet']] 
 

 

Fig. 3. Directed Graph from Example 2. 
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In Example 3, we show that in most of the cases, the hypernym cluster is only 
composed of one word, which in turn is usually correctly classified. Then, the 
precision of the synset degrades, although it reaches good results if words are not 
ambiguous like in this example. In Figure 4, we illustrate the corresponding graph. 

Example 3. 

Means: [1.115945, 0.45212399999999997, 0.20066549999999997] 
TextRank: [1.115945, 0.6032140000000, 0.4233080000000, 0.32984999999999998, 
0.27204099999999998, 0.232514, 0.20366200000000001, 0.18160899999999999, 
0.16416700000000001, 0.14999999999999999] 
TextRank sample: ['Judaism', 'Jewish religion', 'Orthodox Judaism', 'Hasidim', 'Hasidism', 
'Chassidim', 'Hassidim', 'Hebraism', 'Chasidim', 'Jewish Orthodoxy'] 
Word Clusters: [['Judaism'], ['Jewish religion', 'Orthodox Judaism', 'Hasidim'], ['Hasidism', 
'Chassidim', 'Hassidim', 'Hebraism', 'Chasidim', 'Jewish Orthodoxy']] 
WordNet blueprint synsets: [['Judaism', 'Hebraism', 'Jewish religion'], ['Orthodox Judaism', 
'Jewish Orthodoxy'], ['Hasidim', 'Hassidim', 'Hasidism', 'Chasidim', 'Chassidim']] 
 
 

 

Fig. 4. Directed Graph from Example 3. 

In Example 4, we show that when the concepts are at a high level of abstraction, the 
capability of the approach to classify correctly is weak. In fact, in this case, instability 
is in the hypernym cluster whereas it should be in the hyponym cluster. This shows 
that instability is more frequent than the other words and usually co-occurs with them 
and not the contrary. In fact, the WordNet classification would be very difficult, even 
for a human, to be restored. 



      

Example 4. 

Means: [0.82191000000000003, 0.37802400000000003, 0.19113825000000001] 
TextRank: [0.82191000000000003, 0.444276, 0.31177199999999999, 0.24293999999999999, 
0.20036300000000001, 0.17125000000000001, 0.14999999999999999] 
TextRank sample: ['instability', 'irresponsibility', 'unreliability', 'undependability', 
'irresponsibleness', 'unreliableness', 'undependableness'] 
Word Clusters: [['instability'], ['irresponsibility', 'unreliability'], ['undependability', 
'irresponsibleness', 'unreliableness', 'undependableness']] 
WordNet blueprint synsets: [['irresponsibility', 'irresponsibleness'], ['undependability', 
'undependableness', 'unreliability', 'unreliableness'], ['instability']] 
 

 

Fig. 5. Directed Graph from Example 4. 

4.4   Discussion 

An important remark needs to be made at this point of our explanation. There is a 
large ambiguity introduced in the methodology by just looking at web counts. Indeed, 
when counting the occurrences of a word like answer, we count all its occurrences for 
all its meanings and forms. For example, based on WordNet, the word answer can be 
a verb with ten meanings and a noun with five meanings. Moreover, words are more 
frequent than others although they are not so general, unconfirming our original 
hypothesis. As we are not dealing with a single domain within which one can expect 
to see the “one sense per discourse” paradigm, it is clear that the results may be biased 
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by “incorrect” counts. One direct implication of this comment is the use of web 
estimated lists to evaluate the methodology. 

 
Also, there has been a great discussion over the last few months in the corpora list10 
whether one should use web counts instead of corpus counts to estimate word 
frequencies. In our study, we clearly see that web counts show evident problems, like 
the ones mentioned by [7]. However, they cannot be discarded so easily. In particular, 
we aim at looking at web counts in web directories that would act as specific domains 
and would reduce the space for ambiguity. Of course, experiments with well-known 
corpora will also have to be made to understand better this phenomenon. 

Conclusion and Future Work 

In this paper, we proposed a new methodology based on directed 
weighted/unweighted graphs and the TextRank algorithm to automatically induce 
general-specific noun relationships from web corpora frequency counts. To our 
knowledge, such an unsupervised experiment has never been attempted so far. In 
order to evaluate our results, we proposed three different evaluation metrics. The 
results obtained by using nine asymmetric association measures based on web 
frequency counts showed promising results reaching levels of (1) constraint 
coherence of 65.69% and (2) clustering mapping of 59.50% in terms of precision for 
the hypernym level and 42.72% on average in terms of f-measure. 

 
As future work, we intend to take advantage of the good performance of our approach 
at the hypernym level to propose a recursive process to improve precision results over 
all levels of generality.  

 
Finally, it is important to notice that the evaluation by clustering evidences more than 
a simple evaluation of the word order, but shows how this approach is capable to 
automatically map clusters to WordNet classification. 
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