Abstract

This work is devoted to constraint solving motivated by the debugging of constraint logic programs a la GNU-Prolog. The paper focuses only on the constraints. In this framework, constraint solving amounts to domain reduction. A computation is formalized by a chaotic iteration. The computed result is described as a closure. This model is well suited to the design of debugging notions and tools, for example failure explanations or error diagnosis. In this paper we detail an application of the model to an explanation of a value withdrawal in a domain. Some other works have already shown the interest of such a notion of explanation not only for failure analysis.

1 Introduction

Constraint Logic Programming (CLP) [12] can be viewed as the reunion of two programming paradigms: logic programming and constraint programming. Declarative debugging of constraints logic programs has been treated in previous works [8] and tools have been produced for this aim [16] during the DiSCIPl (Debugging Systems for Constraint Programming) ESPRIT Project. But these works deal with the clausal aspects of CLP. This paper focuses on the constraint level alone. The tools used at this level strongly

depend on the constraint domain and the way to solve constraints. Here we are interested in a wide field of applications of constraint programming: *finite domains* and *propagation*.

The aim of constraint programming is to solve Constraint Satisfaction Problems (CSP) [17], that is to provide an instantiation of the variables which is correct with respect to the constraints.

The solver goes towards the solutions combining two different methods. The first one (labeling) consists in partitioning the domains until to obtain singletons and, testing them. The second one (domain reduction) reduces the domains eliminating some values which cannot be correct according to the constraints. Labeling provides exact solutions whereas domain reduction simply approximates them. In general, the labeling alone is very expensive and a good combination of the two methods is more efficient. In this paper labeling is not really treated. We consider only one branch of the search tree: the labeling part is seen as additional constraint to the CSP. In future work, we plan to extend our framework in order to fully take into account labeling and the whole search tree (instead of a single branch).

This kind of computation is not easy to debug because CSP are not algorithmic programs [13]. The constraints are reinvoked according to the domain reductions until a fix-point is reached. But the order of invocation is not known a priori.

The main contribution of this paper is to formalize the domain reduction in order to provide a notion of explanation for the basic event which is “the withdrawal of a value from a domain”. This notion of explanation is essential for the debugging of CSP programs. Indeed, the disappearance of a value from a domain may be a symptom of an error in the program. But the error is not always where the value has disappeared and an analysis of the explanation of the value withdrawal is necessary to locate the error. [9] provides a tool to find symptoms, this paper provides a tool which could be used to find errors from symptoms. Explanations are a tool to help debugging: we extract from a (wide) computation a structured part (the explanation) which will be analyzed more efficiently.

We are inspired by a constraint programming language over finite domains, GNU-Prolog [5], because its glass-box approach allows a good understanding of the links between the constraints and the rules.

To be easily understandable, the notion of explanation will be first defined in a framework which includes arc consistency and next in a more general framework which includes hyper-arc consistency and also some weaker con-
sistencies usually used in the implemented constraint solvers.

An explanation is a subset of rules used during the computation and which are responsible for the removal of a value from a domain. Several works shown that detailed analysis of explanations have a lot of applications [10, 11]. In dynamic problems, the explanations allow to retract constraints without beginning the computation again. In backtracking algorithms, the explanations avoid to repeatedly perform the same search work. This intelligent backtracking can be applied to scheduling problems. It has been proved efficient for Open-shop applications. They are useful for over-constrained problems too. Explanations provide a set of constraints which can be relaxed in order to obtain a solution. But these applications of explanations are outside the scope of this paper (see [11]). Here, our definitions of explanations are motivated by applications to debugging, in particular to error diagnosis.

An aspect of the debugging of constraint programs is to understand why we have a failure (i.e. we do not obtain any solution) [2]. This case appears when a domain becomes empty, that is no value of the domain belongs to a solution. So, an explanation of why these values have disappeared provides an explanation of the failure.

Another aspect is error diagnosis. Let us assume an expected semantics for the CSP. Consider we are waiting for a solution containing a certain value for a variable, but this value does not appear in the final domain. An explanation of the value withdrawal help us to find what is wrong in our program. It is important to note that the error is not always the constraint responsible of the value withdrawal. Another constraint may have made a wrong reduction of another domain which has finally produced the withdrawal of the value. The explanation is a structured object in which this information may be founded.

The paper is organized as follows. Section 2 gives some notations and basic definitions for Constraint Satisfaction Problems. Section 3 describes a model for domain reduction. Section 4 applies the model to explanations. Next section is a conclusion.

2 Preliminaries

We use the following notations: If \(F = (F_i)_{i \in I} \) is a family indexed by \(I \), and \(J \subseteq I \), we denote by \(F|_J \) the family \((F_j)_{j \in J} \) indexed by \(J \). If \(F = (F_i)_{i \in I} \)
is a family of sets indexed by I, we denote by $\prod F$ the product $\prod_{i \in I} F_i = \{(e_i)_{i \in I} | \text{for each } i \in I, e_i \in F_i\}$.

Notations in terms of families and tuples as in [17] are convenient notations in our framework. They are more readable than notations in terms of cartesian products as in [3] for example.

Here we only consider the framework of domain reduction as in [19, 5, 4, 18]. More general framework is described in [14].

A Constraint Satisfaction Problem (CSP) is made of two parts, the syntactic part:

- a finite set of variable symbols (variables in short) V;
- a finite set of constraint symbols (constraints in short) C;
- a function $\var : C \rightarrow \mathcal{P}(V)$, which associates with each constraint symbol the set of variables of the constraint;

and the semantic part:

- a family of non empty domains indexed by the set of variables $D = (D_x)_{x \in V}$, each D_x is the domain of the variable denoted by x ($D_x \neq \emptyset$);
- a family of relations (sets of tuples) $T = (T_c)_{c \in C}$ indexed by the set of constraints C, where for each $c \in C$, $T_c \subseteq \prod D_{\var(c)}$, the members of T_c are called the solutions of c.

A tuple $t \in \prod D$ is a solution of the CSP (V, C, \var, D, T) if for each $c \in C$, $t|_{\var(c)} \in T_c$.

We introduce some useful notations: $D = \prod_{x \in V} \mathcal{P}(D_x)$ (the search space) and $D(W) = \prod_{x \in W} \mathcal{P}(D_x)$.

For a given CSP, one is interested in the computation of the solutions. The simplest method consists in generating all the tuples from the initial domains, then testing them. This generate and test method is clearly expensive for wide domains. So, one prefers to reduce the domains first (“test” and generate).

Here, we focus on the reduction stage. The computing domains must contain all the solutions and must be as small as possible. So, these domains are “approximations” of the set of solutions. We describe now, a model for the computation of such approximations.
3 A Model of the Operational Semantics

We consider a fixed CSP \((V, C, \text{var}, D, T)\).

We propose here a model of the operational semantics of the computation of approximations which will be well suited to define explanations of basic events useful for debugging. Moreover main classical results [3, 14] are proved again in this model.

The goal is to compute an approximation of the solutions. A way to achieve this goal is to associate with the constraints some reduction rules. A rule works on a subset of the variables of the CSP. It eliminates from one domain (and only one in our framework based on hyper-arc consistency) some values which are inconsistent with respect to the other domains.

Definition 1 A reduction rule \(r\) of type \((W, y)\), where \(W \subseteq V\) and \(y \in W\), is a function \(r : \mathcal{D}(W) \rightarrow \mathcal{P}(\mathcal{D}_y)\) such that: for each \(d, d' \in \mathcal{D}(W)\),

- (monotonicity) \((\text{for each } x \in W, d_x \subseteq d'_x) \Rightarrow r(d) \subseteq r(d')\);
- (contractance) \(r(d) \subseteq d_y\).

The solver is described by a set of rules associated with the constraints of the CSP. We can choose more or less accurate rules for each constraint (in general, the more accurate are the rules, the more expensive is the computation).

Other works consider more general kinds of rules [4, 3], their types have the form \((W, Z)\) with \(Z \subseteq W \subseteq V\).

Example 1 Hyper-arc consistency
Let \(W \subseteq V, y \in W, T \subseteq \prod D|_W\) and \(d \in \mathcal{D}(W)\). The reduction rule \(r\) of type \((W, y)\) defined by \(r(d) = \{t_y | t \in (\prod d) \cap T\}\) is an hyper-arc consistency rule. \(r\) removes inconsistent values with respect to the variable domains.

When \(W\) is \(\{x, y\}\) it is the well known arc consistency framework.

Example 2 GNU-Prolog
In GNU-Prolog, such rules are written \(x \text{ in } r\) [5], where \(r\) is a range dependent on domains of a set of variables. The rule \(x \text{ in } 0..\text{max}(y)\) of type \((\{x, y\}, x)\) is the function which computes the intersection between the current domain of \(x\) and the domain \(\{0, 1, \ldots, \text{max}(y)\}\) where \(\text{max}(y)\) is the greatest value in the domain of \(y\).
For the sake of simplicity, for each rule, we define its associated reduction operator. This operator applies to the whole family of domains. A single domain is modified: the domain reduced by the reduction rule.

The reduction operator associated with the rule r of type (W, y) is $\text{reduc}_r : D \rightarrow D$ defined by: for each $d \in D$,

- $\text{reduc}_r(d)|_{V\setminus\{y\}} = d|_{V\setminus\{y\}}$;
- $\text{reduc}_r(d)_y = r(d|_W)$.

Note that reduction operators are monotonic and contractant (but they are not necessarily idempotent).

A reduction rule r is correct if, for each $d \in D$, for each solution $t \in \prod D$, $t \in \prod d \Rightarrow t \in \prod \text{reduc}_r(d)$.

Lemma 1 A reduction rule r of type (W, y) is correct if and only if, for each solution t, $r((\{t_x\})_{x \in W}) = \{t_y\}$.

Proof. \Rightarrow: apply the definition with d “reduced” to a solution.

\Leftarrow: because reduction operators are monotonic. \square

In practice, each constraint of the CSP is implemented by a set of reduction rules.

Let $c \in C$. A reduction rule r of type (W, y) with $W \subseteq \text{var}(c)$ is correct with respect to c if, for each $d \in D$, for each $t \in T_c$, $t \in \prod d|_{\text{var}(c)} \Rightarrow t \in \prod \text{reduc}_r(d)|_{\text{var}(c)}$.

Lemma 2 A reduction rule r of type (W, y) is correct w.r.t. a constraint c if and only if, for each $t \in T_c$, $r((\{t_x\})_{x \in W}) = \{t_y\}$.

Proof. \Rightarrow: apply the definition with $d = (\{t_x\})_{x \in V}$ such that $(t_x)_{x \in \text{var}(c)} \in T_c$.

\Leftarrow: because reduction operators are monotonic. \square

Note that if a reduction rule r is correct w.r.t. a constraint c of the CSP then r is correct. But the converse does not hold.

Example 3 GNU-Prolog

The rule $r : x \text{ in } 0..\max(y)$ is correct with respect to the constraint c defined by $\text{var}(c) = \{x, y\}$ and $T_c = \{(x \mapsto 0, y \mapsto 0), (x \mapsto 0, y \mapsto 1), (x \mapsto 1, y \mapsto 1)\}$ ($D_x = D_y = \{0, 1\}$ and c is the constraint $x \leq y$). Indeed,
• $r(x \mapsto \{0\}, y \mapsto \{0\}) = \{0\} \cap \{0\} = \{0\};$
• $r(x \mapsto \{0\}, y \mapsto \{1\}) = \{0\} \cap \{0, 1\} = \{0\};$
• $r(x \mapsto \{1\}, y \mapsto \{1\}) = \{1\} \cap \{0, 1\} = \{1\}.$

Let R be a set of reduction rules.

Intuitively, the solver applies the rules one by one replacing the domains of the variables with those it computes. The computation stops when one domain becomes empty (in this case, there is no solution), or when the rules cannot reduce domains anymore (a common fix-point is reached).

We will show that if no reduction rule is “forgotten”, the resulting domains are the same whatever the order the rules are used.

The computation starts from D and tries to reduce as much as possible the domain of each variable using the reduction rules.

The downward closure of D by the set of reduction rules R is the greatest common fix-point of the reduction operators associated with the reduction rules of R.

The downward closure is the most accurate family of domains which can be computed using a set of correct rules. Obviously, each solution belongs to this family.

Now, for each $x \in V$, the inclusion over $\mathcal{P}(D_x)$ is assumed to be a well-founded ordering (i.e. each D_x is finite).

There exists at least two ways to compute the downward closure of D by a set of reduction rules R:

1. the first one is to iterate the operator $D \rightarrow D$ defined by $d \mapsto (\bigcap_{r \in R} \text{reduc}_r(d))_{x \in V}$ from D until to reach a fix-point;

2. the second one is the chaotic iteration that we are going to recall.

The following definition is inspired from Apt [3].

A run is an infinite sequence of operators of R. A run is fair if each $r \in R$ appears in it infinitely often. Let us define an iteration of a set of rules w.r.t. a run.

Definition 2 The iteration of the set of reduction rules R from the domain $d \in \mathcal{D}$ with respect to the run r_1, r_2, \ldots is the infinite sequence d^0, d^1, d^2, \ldots defined inductively by:
1. \(d^0 = d\);

2. for each \(j \in \mathbb{N}\), \(d^{j+1} = \text{reduc}_{r_{j+1}}(d^j)\).

A chaotic iteration is an iteration w.r.t. a fair run.

The operator \(d \mapsto (\bigcap_{r \in R} \text{reduc}_r(d)x \in V)\) may reduce several domains at each step. But the computations are more intricate and some can be useless. In practice chaotic iterations are preferred, they proceed by elementary steps, reducing only one domain at each step. The next result of confluence [6] ensure that any chaotic iteration reaches the closure. Note that, because \(D\) is a family of finite domains, every iteration from \(D\) is stationary.

Lemma 3 The limit of every chaotic iteration of the reduction rules \(R\) from \(D\) is the downward closure of \(D\) by \(R\).

Proof. Let \(\Theta\) be the downward closure of \(D\) by \(R\). Let \(d^0, d^1, \ldots\) be a chaotic iteration of \(R\) from \(D\) with respect to \(r_1, r_2, \ldots\). Let \(d^\omega\) be the limit of the chaotic iteration. Let \((A_i)_{i \in I} \subseteq (B_i)_{i \in I}\) denotes: for each \(i \in I\), \(A_i \subseteq B_i\).

For each \(i\), \(\Theta \subseteq d^i\), by induction: \(\Theta \subseteq d^0 = D\). Assume \(\Theta \subseteq d^i\), by monotonicity, \(\text{reduc}_{r_{i+1}}(\Theta) = \Theta \subseteq \text{reduc}_{r_{i+1}}(d^i) = d^{i+1}\).

\(d^\omega \subseteq \Theta\): There exists \(k \in \mathbb{N}\) such that \(d^\omega = d^k\) because \(\subseteq\) is a well-founded ordering. The run is fair, hence \(d^k\) is a common fix-point of the reduction operators, thus \(d^k \subseteq \Theta\) (the greatest common fix-point). \(\square\)

The fairness of runs is a convenient theoretical notion to state the previous lemma. Every chaotic iteration stabilizes, so in practice the computation ends when a common fix-point is reached. Moreover, implementations of solvers use various strategies in order to determinate the order of invocation of the rules.

In practice, when a domain becomes empty, we know that there is no solution, so an optimization consists in stopping the computation before the closure is reached. In that case, we say that we have a failure iteration.
4 Application to Event Explanations

Sometimes, when a domain becomes empty or just when a value is removed from a domain, the user wants an explanation of this phenomenon [11, 2]. The case of failure is the particular case where all the values are removed. It is the reason why the basic event here will be a value withdrawal. Let us consider an iteration, and let us assume that at a step a value is removed from the domain of a variable. In general, all the rules used from the beginning of the iteration are not necessary to explain the value withdrawal. It is possible to explain the value withdrawal by a subset of these rules such that every iteration using this subset of rules removes the considered value. This subset of rules is an explanation of the value withdrawal. This notion of explanation is declarative (does not depend on the computation). We are going to define a more precise notion of explanation: this subset will be structured as a tree.

For the sake of clarity, it will be achieved first in a basic but significant full arc consistency like framework. Next, we extend it to weaker arc consistencies (partial arc consistency), and finally to a framework including hyper-arc consistency as a special case. The full and the partial hyper-arc consistency of GNU-Prolog are instances of this framework.

First, we consider special reduction rules called rules of “abstract arc consistency”. Such a rule is binary and its type has the form $\{x, y\}, y$, that is it reduces the domain of y using the domain of x.

An abstract arc consistency reduction rule r is defined by two variables in_r and out_r and a function $arc_r : D_{out_r} \rightarrow \mathcal{P}(D_{in_r})$.

Intuitively, out_r is the variable whose domain is modified according to the domain of the other variable in_r, and, for $e \in D_{out_r}$, $arc_r(e)$ is a superset of the values connected to e by the constraint associated with r (see for example figure 1).

Formally, the type of r is $\{(in_r, out_r), out_r\}$ and $r(d) = \{e \in d_{out_r} \mid arc_r(e) \cap d_{in_r} \neq \emptyset\}$ for each $d \in \mathcal{D}(\{in_r, out_r\})$.

So we have the obvious lemma:

Lemma 4 For each abstract arc consistency reduction rule r and $e \in D_{out_r}$, and for each $d \in \mathcal{D}(\{in_r, out_r\})$

\[
\left(\bigwedge_{f \in arc_r(e)} f \notin d_{in_r} \right) \Rightarrow e \notin r(d)
\]
Figure 1: The particular case of arc consistency

In particular, if \(\text{arc}_r(e) = \emptyset \) then we have \(e \notin r(d) \).

Example 4 **Arc consistency**

In the framework of arc consistency, each constraint \(c \) is binary, that is \(\text{var}(c) = \{x, y\} \), and it provides two rules: \(r_1 \) of type \((\{x, y\}, x) \), \(r_1(d) = \{e \in d_x \mid \exists f \in d_y, (x \mapsto e, y \mapsto f) \in T_c\} \), that is, for each \(e \in D_x \), \(\text{arc}_{r_1}(e) = \{f \in D_y \mid (x \mapsto e, y \mapsto f) \in T_c\} \), and the other rule \(r_2 \) of type \((\{x, y\}, y) \) defined similarly.

Note that it is possible to define weaker notions of arc consistency, such that \(\text{arc}_{r_1}(e) \supseteq \{f \in D_y \mid (x \mapsto e, y \mapsto f) \in T_c\} \). But, it will be dealt later in a more general framework.

Example 5 **GNU-Prolog**

Let us consider the constraint “\(x \#< y \)” in GNU-Prolog. This constraint is implemented by two reduction rules, it is the glass-box paradigm [5, 20]:

1. \(r_1 \) of type \((\{x, y\}, x) \) (i.e. \(\text{in}_{r_1} = y, \text{out}_{r_1} = x \)), with, for each \(e \in D_x \),
 \[\text{arc}_{r_1}(e) = \{f \in D_y \mid e < f\}; \]

2. \(r_2 \) of type \((\{x, y\}, y) \) (i.e. \(\text{in}_{r_2} = x, \text{out}_{r_2} = y \)), with, for each \(e \in D_y \),
 \[\text{arc}_{r_2}(e) = \{f \in D_x \mid f < e\}. \]
Let us suppose that each \(r \in R \) is such an abstract arc consistency reduction rule.

Let us consider an iteration \(d^0, d^1, \ldots \) of \(R \) with respect to the run \(r_1, r_2, \ldots \). Let us assume that the value \(e \) has disappeared from the domain of the variable \(out_{r_i} \) at the \(i \)-th step, that is \(e \in d^{i-1}_{\text{out}_{r_i}} \) but \(e \not\in d^i_{\text{out}_{r_i}} \). Note that \(d^i_{\text{out}_{r_i}} = r_i(d^{i-1}_{\text{in}_{r_i} \cup \text{out}_{r_i}}) = \{ e \in d^{i-1}_{\text{out}_{r_i}} \mid \text{arc}_r(e) \cap d^{i-1}_{\text{in}_{r_i}} \neq \emptyset \} \). So \(\text{arc}_r(e) \cap d^{i-1}_{\text{in}_{r_i}} = \emptyset \), i.e. for each \(f \in \text{arc}_r(e) \), \(f \not\in d^{i-1}_{\text{in}_{r_i}} \).

According to the previous lemma \(e \not\in d^i_{\text{out}_{r_i}} \) because \(\bigwedge_{f \in \text{arc}_r(e)} f \not\in d^{i-1}_{\text{in}_{r_i}} \). But if \(f \not\in d^{i-1}_{\text{in}_{r_i}} \) it is because there exists \(j_f < i \) such that \(f \) has disappeared at the \(j_f \)-th step that is \(f \in d^{j_f-1}_{\text{in}_{r_i}} \) but \(f \not\in d^{j_f}_{\text{in}_{r_i}} \) (note that \(\text{in}_{r_i} = \text{out}_{r_{j_f}} \)).

Let us define \(p(e,i) = \{(f,j) \mid f \in \text{arc}_r(e), f \not\in d^j_{\text{out}_{r_j}}, f \in d^{j-1}_{\text{out}_{r_j}} \} \).

So \(e \not\in d^i_{\text{out}_{r_i}} \) because \(\bigwedge_{(f,j) \in p(e,i)} f \not\in d^j_{\text{out}_{r_j}} \).

We are going to define the notion of explanation by abstracting \(d \):

Definition 3 (compare with the previous lemma) For each reduction rule \(r \), for each \(e \in D_{\text{out}_{r_i}} \), we define the deduction rule named \((e,r)\):

\[
(e,r) : (e, \text{out}_{r_i}) \leftarrow \{ (f, \text{in}_{r_i}) \mid f \in \text{arc}_r(e) \}
\]

\((e, \text{out}_{r_i})\) is the head of the rule and \(\{ (f, \text{in}_{r_i}) \mid f \in \text{arc}_r(e) \} \) is its body.

In particular, when \(\text{arc}_r(e) = \emptyset \) the body is empty and the deduction rule is reduced to “the fact” \((e,r) : (e, \text{out}(r)) \leftarrow \emptyset\).

Intuitively, a deduction rule \((e,r) : (e, \text{out}(r)) \leftarrow \{ (f, \text{in}_{r_i}) \mid f \in \text{arc}_r(e) \} \) should be understood as follow: if all the \(f \in \text{arc}_r(e) \) are removed from the domain of \(\text{in}_{r_i} \) then \(e \) is removed from the domain of \(\text{out}(r) \).

The set of deduction rules \((e,r)\) where \(r \in R \) and \(e \in D_{\text{out}_{r_i}} \) is exactly an inductive definition according to [1], and a proof tree rooted by \((e,y)\) where \(y = \text{out}_{r_i} \in V \) and \(e \in D_y \) will be called an explanation for \((e,y)\). Note that a leaf of an explanation corresponds to a fact \((e,r)\) that is the case where \(\text{arc}_r(e) = \emptyset \).

Intuitively, the proof tree provides an explanation of the reason why \(e \) may be removed from the domain of \(y \).

It is important to note that an explanation is merely a tree made of deduction rules, i.e. the \(d^i \) of an iteration are not part of the explanation.

Example 6 GNU-Prolog

Let us consider the 3 constraints \(x \#< y \), \(y \#< z \), \(z \#< x \) with \(D_x = D_y = D_z = \{0,1,2\} \). The reduction rules are:
Figure 2: Value Withdrawal Explanations

- r_1 of type $(\{x, y\}, x)$, defined by $r_1(d) = \{ e \in d_x \mid \text{arc}_r_1(e) \cap d_y \neq \emptyset \}$ where $\text{arc}_r_1(e) = \{ f \in D_y \mid e < f \}$;

- r_2 of type $(\{x, y\}, y)$, defined by $r_2(d) = \{ e \in d_y \mid \text{arc}_r_2(e) \cap d_x \neq \emptyset \}$ where $\text{arc}_r_2(e) = \{ f \in D_x \mid f < e \}$;

- r_3 of type $(\{y, z\}, y)$, defined by $r_3(d) = \{ e \in d_y \mid \text{arc}_r_3(e) \cap d_z \neq \emptyset \}$ where $\text{arc}_r_3(e) = \{ f \in D_z \mid e < f \}$;

- r_4, r_5, r_6 are defined in the same way.

Figure 2 shows three different explanations for $(0, x)$. For example, the first explanation says: 0 is removed from the domain of x by the reduction rule r_1 because 1 is removed from the domain of y and 2 is removed from the domain of y. 1 is removed from the domain of y by the reduction rule r_3 because 2 is removed from the domain of z, and so on...

The first and third explanations correspond to some iterations (see example 7). But the second one does not correspond to an iteration. This introduces some questions (which are going to be answered by theorem 1).

Explanations are very declarative but they can be extracted from iterations.

We are going to define an explanation associated with the event “withdrawal of a value from a domain in an iteration”. It is introduced by the following theorem.
Theorem 1 (There exists an explanation for \((e, y)\)) if and only if (there exists a chaotic iteration with limit \(d^*\) such that \(e \not\in d_y^*\)) if and only if \((e \not\in \Theta_y\), where \(\Theta\) is the downward closure).

Proof. The last equivalence is proved by lemma 3. About the first one:
\(\Leftarrow\): Let \(d_0, d_1, \ldots\) be the chaotic iteration (with respect to the run \(r_1, r_2, \ldots\)). There exists \(i\) such that \(e \in d_{\text{out}, r_i}^{i-1}\) but \(e \not\in d_{\text{out}, r_i}^i\). We define a tree \(\text{expl}(e, y, i)\) which is an explanation for \((e, y)\). \(\text{expl}(e, y, i)\) is inductively defined as follows:
- \(y = \text{out}_{r_i}\);
- the root of the tree \(\text{expl}(e, y, i)\) is labeled by \((e, y)\);
- (we have previously observed that \(e \not\in d_{\text{out}, r_i}^i = d_y^i\) because \(\bigwedge_{(f, j) \in p(e, i)} f \not\in d_{\text{out}, r_j}^j\) and, for each \((f, j) \in p(e, i), \text{out}_{r_j} = \text{in}_{r_i}\)) the deduction rule used to connect the root to its children, which are labeled by the \((f, \text{out}_{r_j}),\) is \((e, r_i) : (e, \text{out}_{r_i}) \leftarrow \{(f, \text{in}_{r_i}) \mid f \in \text{arc}_{r_i}(e)\}\);
- the immediate subtrees of \(\text{expl}(e, y, i)\) are the \(\text{expl}(f, \text{in}_{r_i}, j)\) for \((f, j) \in p(e, i)\).

\(\Rightarrow\): let us consider a numbering \(1, \ldots, n\) of the nodes of the explanation such that the traversal according to the numbering from \(n\) to \(1\) corresponds to a breadth first search algorithm. For each \(i \in \{1, \ldots, n\}\), let \((e_i, r_i)\) be the name of the rule which links the node \(i\) to its children, and let \(d_0, \ldots, d^n\) be the prefix of every iteration w.r.t. a run which starts by \(r_1, \ldots, r_n\). By induction we show that \(e_i \not\in d_{\text{out}, (r_i)}^i\) so \(e \not\in d_y^*\) for every iteration whose run starts by \(r_1, \ldots, r_n\).

It is important to note that the previous proof is constructive. The definition of \(\text{expl}(e, y, i)\) gives an incremental algorithm to compute explanations.

Example 7 GNU-Prolog
(Continuation of example 6)
Let us consider the iteration \(r_5, r_3, r_1\). The first explanation of figure 2 says:
At the beginning, \(d_x^0 = \{0, 1, 2\}\). \(\text{arc}_{r_5}(2) = \emptyset\) so \(2 \not\in d_x^1\).
Then, \(d_x^1 = \{0, 1\}\). \(\text{arc}_{r_3}(1) = \{2\}\) so \(2 \not\in d_x^2\) \(\Rightarrow\) \(1 \not\in d_y^1\). \(\text{arc}_{r_3}(2) = \emptyset\) so \(2 \not\in d_y^2\).
Then, \(d_y^2 = \{0\}\). \(\text{arc}_{r_1}(0) = \{1, 2\}\) so \((1 \not\in d_y^2 \land 2 \not\in d_y^2) \Rightarrow 0 \not\in d_y^3\).
We extend our formalization in order to include weaker arc consistency rules. In GNU-Prolog, a full arc consistency rule uses the whole domain of the input variable, whereas, a partial arc consistency rule only uses its lower and upper bounds. In that case we need two functions \(arc \), one for each bound.

An abstract arc consistency reduction rule \(r \) is now defined by two variables \(\text{in}_r \) and \(\text{out}_r \) and a set \(\text{Arc}_r \) of functions \(D_{\text{out}_r} \rightarrow \mathcal{P}(D_{\text{in}_r}) \).

The type of \(r \) is \((\{\text{in}_r, \text{out}_r\}, \text{out}_r) \) and \(r(d) = \{ e \in d_{\text{out}_r} \mid \bigwedge_{\text{arc} \in \text{Arc}_r} (\text{arc}(e) \cap d_{\text{in}_r} \neq \emptyset) \} \) for each \(d \in \mathcal{D}(\{\text{in}_r, \text{out}_r\}) \).

Note that for arc consistency, \(\text{Arc}_r \) contains only one function (it is the previous framework).

Obviously, for each \(\text{arc} \in \text{Arc}_r \) we have:

\[
\left(\bigwedge_{f \in \text{arc}(e)} f \not\in d_{\text{in}_r} \right) \Rightarrow e \not\in r(d)
\]

Example 8 GNU-Prolog

Let us consider the constraint “\(x \not= y+c \)” in GNU-Prolog where \(x, y \) are variables and \(c \) a constant. This constraint is implemented by two reduction rules: \(r_1 \) of type \((\{x, y\}, x) \) (i.e. \(\text{in}_{r_1} = y, \text{out}_{r_1} = x \)) and \(r_2 \) of type \((\{x, y\}, y) \). In GNU-Prolog, \(r_1 \) is defined by the partial arc consistency rule \(x \text{ in min}(y)+c..\text{max}(y)+c \).

\[
r_1(d) = \{ e \in d_x \mid \text{arc}^1_{r_1}(e) \cap d_y \neq \emptyset \land \text{arc}^2_{r_1}(e) \cap d_y \neq \emptyset \} \] where \(\text{arc}^1_{r_1}(e) = \{ f \in D_y \mid f + c \leq e \} \) and \(\text{arc}^2_{r_1}(e) = \{ f \in D_y \mid e \leq f + c \} \).

\(r_2 \) of type \((\{x, y\}, y) \) is defined in the same way by the rule \(y \text{ in min}(x)-c..\text{max}(x)-c \).

Let us suppose that each \(r \in R \) is such an abstract arc consistency reduction rule.

Definition 4 For each reduction rule \(r \), for each \(e \in D_{\text{out}_r} \), for each \(\text{arc} \in \text{Arc}_r \), we define the deduction rule named \((e, r, \text{arc}) \):

\[
(e, r, \text{arc}) : (e, \text{out}_r) \leftarrow \{(f, \text{in}_r) \mid f \in \text{arc}(e)\}
\]

Again the set of deduction rules \((e, r, \text{arc}) \) is an inductive definition and this defines a generalization of our previous notion of explanation.

Now we generalize the reduction rules to **hyper-arc consistency**.
An abstract hyper-arc consistency reduction rule \(r \) is defined by a set of variables \(in_r \), a variable \(out_r \) and a set \(Arc_r \) of functions \(D_{out_r} \rightarrow \mathcal{P}(\prod_{x \in in_r} D_x) \).

The type of \(r \) is \((in_r \cup \{out_r\}, out_r) \) and \(r(d) = \{ e \in d_{out_r} \mid \bigwedge_{arc \in Arc_r} (arc(e) \cap \prod_{x \in in_r} d_x \neq \emptyset) \} \) for each \(d \in D(in_r \cup \{out_r\}) \).

Note that for hyper-arc consistency, \(Arc_r \) contains only one function.

Obviously, for each \(arc \in Arc_r \) we have:

\[
\left(\bigwedge_{f \in arc(e)} (f \notin \prod_{x \in in_r} d_x) \right) \Rightarrow e \notin r(d)
\]

that is

\[
\left(\bigwedge_{f \in arc(e)} \left(\bigvee_{x \in in_r} f_x \notin d_x \right) \right) \Rightarrow e \notin r(d) \tag{1}
\]

But

\[
\left(\bigwedge_{f \in arc(e)} \left(\bigvee_{x \in in_r} f_x \notin d_x \right) \right) \Leftrightarrow \left(\bigvee_{t : arc(e) \rightarrow in_r} \left(\bigwedge_{f \in arc(e)} f_t(f) \notin d_t(f) \right) \right) \tag{2}
\]

Intuitively, the \(t : arc(e) \rightarrow in_r \) are choice functions and each \(t(f) \) is one \(x \) such that \(f_x \notin d_x \).

So we have, for each \(t : arc(e) \rightarrow in_r \),

\[
\left(\bigwedge_{f \in arc(e)} f_t(f) \notin d_t(f) \right) \Rightarrow e \notin r(d) \tag{3}
\]

Example 9 Hyper-arc Consistency in GNU-Prolog

Let us consider the constraint “\(x \neq\neq y+z \)” in GNU-Prolog. Let \(D_x = D_y = D_z = \{1, 2, 3\} \). The constraint is implemented by three reduction rules:

- \(r_1 \) of type \((\{x, y, z\}, x) \) defined by \(r_1(d) = \{ e \in d_x \mid \exists f \in \prod_{v \in \{y, z\}} d_v, e = f_y + f_z \} \);

- \(r_2 \) of type \((\{x, y, z\}, y) \) and \(r_3 \) of type \((\{x, y, z\}, z) \) defined in the same way.
Here, \(in_{r_1} = \{y, z\} \), \(out_{r_1} = x \) and \(Arc_{r_1} = \{arc\} \), where \(arc(e) = \{f \in \prod_{v \in \{y, z\}} D_v \mid e = f_y + f_z\} \).

For example, \(arc(3) = \{(y \mapsto 1, z \mapsto 2), (y \mapsto 2, z \mapsto 1)\} \). We have as an instance of (1): \((1 \not\in d_y \lor 2 \not\in d_z) \land (2 \not\in d_y \lor 1 \not\in d_z) \Rightarrow 3 \not\in r_1(d)\). But \((1 \not\in d_y \lor 2 \not\in d_z) \land (2 \not\in d_y \lor 1 \not\in d_z)\) is equivalent to \((1 \not\in d_y \land 2 \not\in d_y) \lor (1 \not\in d_y \land 1 \not\in d_z) \lor (2 \not\in d_y \land 2 \not\in d_y) \lor (2 \not\in d_z \land 1 \not\in d_z)\) This equivalence is the corresponding instance of (2). So we have the following instances of (3):

- \(1 \not\in d_y \land 2 \not\in d_y \Rightarrow 3 \not\in r_1(d) \);
- \(1 \not\in d_y \land 1 \not\in d_z \Rightarrow 3 \not\in r_1(d) \);
- \(2 \not\in d_z \land 2 \not\in d_y \Rightarrow 3 \not\in r_1(d) \);
- \(2 \not\in d_z \land 1 \not\in d_z \Rightarrow 3 \not\in r_1(d) \).

Again a more general notion of explanation is defined by abstracting \(d \).

Let us suppose that each \(r \in R \) is such an abstract hyper-arc consistency reduction rule.

Definition 5 For each reduction rule \(r \), for each \(e \in D_{out_r} \), for each \(arc \in Arc_r \), for each \(t : arc(e) \rightarrow in_r \), we define the deduction rule named \((e, r, arc, t)\):

\[
(e, r, arc, t) : (e, out_r) \leftarrow \{(f_t(f), t(f)) \mid f \in arc(e)\}
\]

The inductive definition for hyper-arc consistency is larger than for arc consistency because of the number of variables of the rules, but in practice (GNU-Prolog), the rules contain two or three variables.

5 Conclusion

This paper has given a model for the operational semantics of CSP solvers by domain reduction.

This model is applied to the definition of a notion of explanation. An explanation is a set of rules structured as a tree. An interesting aspect of our definition is that a subtree of an explanation is also an explanation (inductive definition).

This model can be applied to usual constraint solvers using propagation, for example it takes into account the full and the partial hyper-arc consistency of GNU-Prolog.
As it is written in the introduction, constraint solving combines domain reduction and labeling. A perspective is to really take into account labeling in our model.

We plan to use explanations in order to diagnose errors in a CSP (according to an expected semantics), in the style of [15, 7].

Another perspective is to take advantage of the glass-box model [5] and more generally the S-box model [9] and to distinguish different levels of rules ($x \in r$, built-in constraints, S-box, ...)

Acknowledgements

Discussions with Patrice Boizumault and Narendra Jussien are gracefully acknowledged. We would also like to thank our anonymous referees for the helpful comments.

References

