
Towards declarative diagnosis of constraint

programs over finite domains

Gérard Ferrand Willy Lesaint Alexandre Tessier

Laboratoire d’Informatique Fondamentale d’Orléans

rue Léonard de Vinci, BP 6759
F-45067 Orléans Cedex 2, France

Abstract

The paper proposes a theoretical approach of the debugging of con-
straint programs based on a notion of explanation tree. The proposed
approach is an attempt to adapt algorithmic debugging to constraint pro-
gramming. In this theoretical framework for domain reduction, expla-
nations are proof trees explaining value removals. These proof trees are
defined by inductive definitions which express the removals of values as
consequence of other value removals. Explanations may be considered as
the essence of constraint programming. They are a declarative view of
the computation trace. The diagnosis consists in locating an error in an
explanation rooted by a symptom.

keywords: declarative diagnosis, algorithmic debugging, CSP, local consistency
operator, fix-point, closure, inductive definition

1 Introduction

Declarative diagnosis [15] (also known as algorithmic debugging) have been
successfully used in different programming paradigms (e.g. logic programming
[15], functional programming [14]). Declarative means that the user has no need
to consider the computational behavior of the programming system, he only
needs a declarative knowledge of the expected properties of the program. This
paper is an attempt to adapt declarative diagnosis to constraint programming
thanks to a notion of explanation tree.

Constraint programs are not easy to debug because they are not algorith-
mic programs [13] and tracing techniques are revealed limited in front of them.
Moreover it would be incoherent to use only low level debugging tools whereas
for these languages the emphasis is on declarative semantics. Here we are inter-
ested in a wide field of applications of constraint programming: finite domains
and propagation.

This work is supported by the French RNTL project OADymPPaC.
http://contraintes.inria.fr/OADymPPaC/

1

The aim of constraint programming is to solve Constraint Satisfaction Prob-
lems (CSP) [17], that is to provide an instantiation of the variables which is
solution of the constraints. The solver goes towards the solutions combining
two different methods. The first one (labeling) consists in partitioning the do-
mains. The second one (domain reduction) reduces the domains eliminating
some values which cannot be correct according to the constraints. In general,
the labeling alone is very expensive and domain reduction only provides a su-
perset of the solutions. Solvers use a combination of these two methods until to
obtain singletons and test them.

The formalism of domain reduction given in the paper is well-suited to define
explanations for the basic events which are “the withdrawal of a value from a
domain”. It has already permitted to prove the correctness of a large family of
constraint retraction algorithms [6]. A closed notion of explanations have been
proved useful in many applications: dynamic constraint satisfaction problems,
over-constrained problems, dynamic backtracking,. . . Moreover, it has also been
used for failure analysis in [11]. The introduction of labeling in the formal-
ism has already been proposed in [12]. But this introduction complicates the
formalism and is not really necessary here (labeling can be considered as ad-
ditional constraints). The explanations defined in the paper provide us with a
declarative view of the computation and their tree structure is used to adapt
algorithmic debugging to constraint programming.

From an intuitive viewpoint, we call symptom the appearance of an anomaly
during the execution of a program. An anomaly is relative to some expected
properties of the program, here to an expected semantics. A symptom can be a
wrong answer or a missing answer. A wrong answer reveals a lack in the con-
straints (a missing constraint for example). This paper focuses on the missing
answers. Symptoms are caused by erroneous constraints. Strictly speaking, the
localization of an erroneous constraint, when a symptom is given, is error diag-
nosis. It amounts to search for a kind of minimal symptom in the explanation
tree. For a declarative diagnostic system, the input must include at least (1) the
actual program, (2) the symptom and (3) a knowledge of the expected semantics.
This knowledge can be given by the programmer during the diagnosis session
or it can be specified by other means but, from a conceptual viewpoint, this
knowledge is given by an oracle.

We are inspired by GNU-Prolog [7], a constraint programming language over
finite domains, because its glass-box approach allows a good understanding of
the links between the constraints and the rules used to build explanations. But
this work can be applied to all solvers over finite domains using propagation
whatever the local consistency notion used.

Section 2 defines the basic notions of CSP and program. In section 3, symp-
toms and errors are described in this framework. Section 4 defines explanations.
An algorithm for error diagnosis of missing answer is proposed in section 5.

2

2 Preliminary notations and definitions

This section gives briefly some definitions and results detailed in [9].

2.1 Notations

Let us assume fixed:

• a finite set of variable symbols V ;

• a family (Dx)x∈V where each Dx is a finite non empty set, Dx is the
domain of the variable x.

We are going to consider various families f = (fi)i∈I . Such a family can be
identified with the function i 7→ fi, itself identified with the set {(i, fi) | i ∈ I}.

In order to have simple and uniform definitions of monotonic operators on a
power-set, we use a set which is similar to an Herbrand base in logic program-
ming: we define the domain by D =

⋃
x∈V

({x} ×Dx).
A subset d of D is called an environment. We denote by d|W the restriction

of d to a set of variables W ⊆ V , that is, d|W = {(x, e) ∈ d | x ∈ W}. Note
that, with d, d′ ⊆ D, d =

⋃
x∈V

d|{x}, and (d ⊆ d′ ⇔ ∀x ∈ V, d|{x} ⊆ d′|{x}).
A tuple (or valuation) t is a particular environment such that each variable

appears only once: t ⊆ D and ∀x ∈ V, ∃e ∈ Dx, t|{x} = {(x, e)}. A tuple t on
a set of variables W ⊆ V , is defined by t ⊆ D|W and ∀x ∈ W, ∃e ∈ Dx, t|{x} =
{(x, e)}.

2.2 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) on (V, D) is made of:

• a finite set of constraint symbols C;

• a function var : C → P(V), which associates with each constraint symbol
the set of variables of the constraint;

• a family (Tc)c∈C such that: for each c ∈ C, Tc is a set of tuples on var(c),
Tc is the set of solutions of c.

Definition 1 A tuple t is a solution of the CSP if ∀c ∈ C, t|var(c) ∈ Tc.

From now on, we assume fixed a CSP (C, var, (Tc)c∈C) on (V, D) and we
denote by Sol its set of solutions.

Example 1 The conference problem [11]
Michael, Peter and Alan are organizing a two-day seminar for writing a report on
their work. In order to be efficient, Peter and Alan need to present their work to
Michael and Michael needs to present his work to Alan and Peter. So there are
four variables, one for each presentation: Michael to Peter (MP), Peter to Michael

3

(PM), Michael to Alan (MA) and Alan to Michael (AM). Those presentations are
scheduled for a whole half-day each.

Michael wants to know what Peter and Alan have done before presenting his
own work (MA > AM, MA > PM, MP > AM, MP > PM). Moreover, Michael
would prefer not to come the afternoon of the second half-day because he has got
a very long ride home (MA 6= 4, MP 6= 4, AM 6= 4, PM 6= 4). Finally, note that
Peter and Alan cannot present their work to Michael at the same time (AM 6= PM).
The solutions of this problem are:
{(AM,2),(MA,3),(MP,3),(PM,1)} and {(AM,1),(MA,3),(MP,3),(PM,2)}.

The set of constraints can be written in GNU-Prolog [7] as:

conf(AM,MP,PM,MA):-

fd_domain([MP,PM,MA,AM],1,4),

MA #> AM, MA #> PM, MP #> AM, MP #> PM,

MA #\= 4, MP #\= 4, AM #\= 4, PM #\= 4,

AM #\= PM.

2.3 Constraint Satisfaction Program

A program is used to solve a CSP, (i.e to find the solutions) thanks to domain
reduction and labeling. Labeling can be considered as additional constraints,
so we concentrate on the domain reduction. The main idea is quite simple: to
remove from the current environment some values which cannot participate to
any solution of some constraints, thus of the CSP. These removals are closely
related to a notion of local consistency. This can be formalized by local consis-
tency operators.

Definition 2 A local consistency operator r is a monotonic function r : P(D)→
P(D).

Note that in [9], a local consistency operator r have a type (in(r), out(r))
with in(r), out(r) ⊆ D. Intuitively, out(r) is the set of variables whose environ-
ment is reduced (values are removed) and these removals only depend on the
environments of the variables of in(r). But this detail is not necessary here.

Example 2 The GNU-Prolog solver uses local consistency operators following
the X in r scheme [4]: for example, AM in 0..max(MA)-1. It means that the
values of AM must be between 0 and the maximal value of the environment of MA
minus 1.

As we want contracting operator to reduce the environment, next we will
consider d 7→ d ∩ r(d). But in general, the local consistency operators are not
contracting functions, as shown later to define their dual operators.

A program on (V, D) is a set R of local consistency operators.

Example 3 Following the X in r scheme, the GNU-Prolog conference prob-
lem is implemented by the following program:

4

AM in 1..4, MA in 1..4, PM in 1..4, MP in 1..4,

MA in min(AM)+1..infinity, AM in 0..max(MA)-1,

MA in min(PM)+1..infinity, PM in 0..max(MA)-1,

MP in min(AM)+1..infinity, AM in 0..max(MP)-1,

MP in min(PM)+1..infinity, PM in 0..max(MP)-1,

MA in -{val(4)}, AM in -{val(4)}, PM in -{val(4)},

MP in -{val(4)}, AM in -{val(PM)}, PM in -{val(AM)}.

From now on, we assume fixed a program R on (V, D).
We are interested in particular environments: the common fix-points of the

reduction operators d 7→ d∩r(d), r ∈ R. Such an environment d′ verifies ∀r ∈ R,
d′ = d′ ∩ r(d′), that is values cannot be removed according to the operators.

Definition 3 Let r ∈ R. We say an environment d is r-consistent if d ⊆ r(d).
We say an environment d is R-consistent if ∀r ∈ R, d is r-consistent.

Domain reduction from a domain d by R amounts to compute the greatest
fix-point of d by R.

Definition 4 The downward closure of d by R, denoted by CL↓(d, R), is the
greatest d′ ⊆ D such that d′ ⊆ d and d′ is R-consistent.

In general, we are interested in the closure of D by R (the computation
starts from D), but sometimes we would like to express closures of subset of D

(environments, tuples). It is also useful in order to take into account dynamic
aspects or labeling [9, 6].

Example 4 The execution of the GNU-Prolog program provides the following
closure: {(AM,1),(AM,2),(MA,2),(MA,3),(MP,2),(MP,3),(PM,1),(PM,2)}.

By definition 4, since d ⊆ D:

Lemma 1 If d is R-consistent then d ⊆ CL↓(D, R).

2.4 Links between CSP and program

Of course, the program is linked to the CSP. The operators are chosen to “im-
plement” the CSP. In practice, this correspondence is expressed by the fact
that the program is able to test any valuation. That is, if all the variables
are bounded, the program should be able to answer to the question: “is this
valuation a solution of the CSP ?”.

Definition 5 A local consistency operator r preserves the solutions of a set of
constraints C ′ if, for each tuple t, (∀c ∈ C ′, t|var(c) ∈ Tc)⇒ t is r-consistent.

In particular, if C ′ is the set of constraints C of the CSP then we say r

preserves the solutions of the CSP.

5

In the well-known case of arc-consistency, a set of local consistency operators
Rc is chosen to implement each constraint c of the CSP. Of course, each r ∈ Rc

preserves the solutions of {c}. It is easy to prove that if r preserves the solutions
of C ′ and C ′ ⊆ C, then r preserves the solutions C. Therefore ∀r ∈ Rc, r

preserves the solutions of the CSP.
To preserve solutions is a correction property of operators. A notion of

completeness is used to choose the set of operators “implementing” a CSP. It
ensures to reject valuations which are not solutions of constraints. But this
notion is not necessary for our purpose. Indeed, we are only interested in the
debugging of missing answers, that is in locating a wrong local consistency
operators (i.e. constraints removing too much values).

In the following lemmas, we consider S ⊆ Sol, that is S a set of solutions of
the CSP and

⋃
S (=

⋃
t∈S

t) its projection on D.

Lemma 2 Let S ⊆ Sol, if r preserves the solutions of the CSP then
⋃

S is
r-consistent.

Proof. ∀t ∈ S, t ⊆ r(t) so
⋃

S ⊆
⋃

t∈S
r(t). Now, ∀t ∈ S, t ⊆

⋃
S

so ∀t ∈ S, r(t) ⊆ r(
⋃

S).

Extending definition 5, we say R preserves the solutions of C if for each
r ∈ R, r preserves the solutions of C. From now on, we consider that the fixed
program R preserves the solutions of the fixed CSP.

Lemma 3 If S ⊆ Sol then
⋃

S ⊆ CL↓(D, R).

Proof. by lemmas 1 and 2.

Finally, the following corollary emphasizes the link between the CSP and
the program.

Corollary 1
⋃

Sol ⊆ CL↓(D, R).

The downward closure is a superset (an “approximation”) of
⋃

Sol which is
itself the projection (an “approximation”) of Sol. But the downward closure is
the most accurate set which can be computed using a set of local consistency
operators in the framework of domain reduction without splitting the domain
(without search tree).

3 Expected Semantics

To debug a constraint program, the programmer must have a knowledge of
the problem. If he does not have such a knowledge, he cannot say something is
wrong in his program! In constraint programming, this knowledge is declarative.

6

3.1 Correctness of a CSP

At first, the expected semantics of the CSP is considered as a set of tuples: the
expected solutions. Next definition is motivated by the debugging of missing
answer.

Definition 6 Let S be a set of tuples. The CSP is correct wrt S if S ⊆ Sol.

Note that if the user exactly knows S then it could be sufficient to test each
tuple of S on each local consistency operator or constraint. But in practice, the
user only needs to know some members of

⋃
S and some members of D \

⋃
S.

We consider the expected environment
⋃

S, that is the approximation of S.
By lemma 2:

Lemma 4 If the CSP is correct wrt a set of tuples S then
⋃

S is R-consistent.

3.2 Symptom and Error

From the notion of expected environment, we can define a notion of symptom. A
symptom emphasizes a difference between what is expected and what is actually
computed.

Definition 7 h ∈ D is a symptom wrt an expected environment d if h ∈ d \
CL↓(D, R).

It is important to note that here a symptom is a symptom of missing solution
(an expected member of D is not in the closure).

Example 5 From now on, let us consider the new following CSP in GNU-Prolog:

conf(AM,MP,PM,MA):-

fd_domain([MP,PM,MA,AM],1,4),

MA #> AM, MA #> PM, MP #> AM, PM #> MP,

MA #\= 4, MP #\= 4, AM #\= 4, PM #\= 4,

AM #\= PM.

As we know, a solution of the conference problem contains (AM,1). But, the
execution provides an empty closure. So, in particular, (AM,1) has been removed.
Thus, (AM,1) is a symptom.

Definition 8 R is approximately correct wrt d if d ⊆ CL↓(D, R).

Note that R is approximately correct wrt d is equivalent to there is no
symptom wrt d. By this definition and lemma 1 we have:

Lemma 5 If d is R-consistent then R is approximately correct wrt d.

In other words, if d is R-consistent then there is no symptom wrt d. But,
our purpose is debugging (and not program validation), so:

7

Corollary 2 Let S be a set of expected tuples. If R is not approximately correct
wrt

⋃
S then

⋃
S is not R-consistent, thus the CSP is not correct wrt S.

The lack of an expected value is caused by an error in the program, more
precisely a local consistency operator. If an environment d is not R-consistent,
then there exists an operator r ∈ R such that d is not r-consistent.

Definition 9 A local consistency operator r ∈ R is an erroneous operator wrt
d if d 6⊆ r(d).

Note that d is R-consistent is equivalent to there is no erroneous operator
wrt d in R.

Theorem 1 If there exists a symptom wrt d then there exists an erroneous
operator wrt d (the converse does not hold).

When the program is R =
⋃

c∈C
Rc with each Rc a set of local consistency

operators preserving the solutions of c, if r ∈ Rc is an erroneous operator wrt
⋃

S

then it is possible to say that c is an erroneous constraint. Indeed, there exists
a value (x, e) ∈

⋃
S \ r(

⋃
S), that is there exists t ∈ S such that (x, e) ∈ t\ r(t).

So t is not r-consistent, so t|var(c) 6∈ Tc i.e. c rejects an expected solution.

4 Explanations

The previous theorem shows that when there exists a symptom there exists an
erroneous operator. The goal of error diagnosis is to locate such an operator
from a symptom. To this aim we now define explanations of value removals
as in [9], that is a proof tree of a value removal. If a value has been wrongly
removed then there is something wrong in the proof of its removal, that is in its
explanation.

4.1 Explanations

First we need some notations. Let d = D\d. In order to help the understanding,
we always use the notation d for a subset of D if intuitively it denotes a set of
removed values.

Definition 10 Let r be an operator, we denote by r̃ the dual of r defined by:
∀d ⊆ D, r̃(d) = r(d).

We consider the set of dual operators of R: let R̃ = {r̃ | r ∈ R}.

Definition 11 The upward closure of d by R̃, denoted by CL↑(d, R̃) exists and
is the least d′ such that d ⊆ d′ and ∀r ∈ R, r̃(d′) ⊆ d′ (see [9]).

Next lemma establishes the correspondence between downward closure of
local consistency operators and upward closure of their duals.

8

Lemma 6 CL↑(d, R̃) = CL↓(d, R).

Proof. CL↑(d, R̃) = min{d′ | d ⊆ d′, ∀r̃ ∈ R̃, r̃(d′) ⊆ d′}
= min{d′ | d ⊆ d′, ∀r ∈ R, d′ ⊆ r(d′)}
= max{d′ | d′ ⊆ d, ∀r ∈ R, d′ ⊆ r(d′)}

Now, we associate rules in the sense of [1] with these dual operators. These
rules are natural to build the complementary of an environment and well suited
to provide proof (trees) of value removals.

Definition 12 A deduction rule is a rule h← B such that h ∈ D and B ⊆ D.

Intuitively, a deduction rule h ← B can be understood as follow: if all the
elements of B are removed from the environment, then h does not participate
in any solution of the CSP and it can be removed.

A very simple case is arc-consistency where the B corresponds to the well-
known notion of support of h. But in general (even for hyper arc-consistency)
the rules are more intricate. Note that these rules are only a theoretical tool to
define explanations and to justify the error diagnosis method. But in practice,
this set does not need to be given. The rules are hidden in the algorithms which
implement the solver.

For each operator r ∈ R, we denote by Rr a set of deduction rules which
defines r̃, that is, Rr is such that: r̃(d) = {h ∈ D | ∃B ⊆ d, h ← B ∈ Rr}.
For each operator, this set of deduction rules exists. There possibly exists many
such sets, but for classical notions of local consistency one is always natural [9].
The deduction rules clearly appear inside the algorithms of the solver. In [3]
the proposed solver is directly something similar to the set of rules (it is not
exactly a set of deduction rules because the heads of the rules do not have the
same shape that the elements of the body).

Example 6 With the GNU-Prolog operator AM in 0..max(MA)-1 are associ-
ated the deduction rules:

• (AM,1) ← (MA,2), (MA,3), (MA,4)

• (AM,2) ← (MA,3), (MA,4)

• (AM,3) ← (MA,4)

• (AM,4) ← ∅

Indeed, for the first one, the value 1 is removed from the environment of AM only
when the values 2, 3 and 4 are not in the environment of MA.

From the deduction rules, we have a notion of proof tree [1]. We consider
the set of all the deduction rules for all the local consistency operators of R: let
R =

⋃
r∈R
Rr.

We denote by cons(h, T) the tree defined by: h is the label of its root and T

the set of its sub-trees. The label of the root of a tree t is denoted by root(t).

9

(AM,1)

(MA,3) (MA,4)(MA,2)

(PM,1) (PM,1) (PM,2)

(MP,1)

MA>PMMA>PM MA6=4

PM>MPPM>MP PM>MP

MP>AM

MA>AM

Figure 1: An explanation for (AM,1)

Definition 13 An explanation is a proof tree cons(h, T) with respect to R;
it is inductively defined by: T is a set of explanations with respect to R and
(h← {root(t) | t ∈ T}) ∈ R.

Example 7 The explanation of figure 1 is an explanation for (AM,1). Note that
the root (AM,1) of the explanation is linked to its children by the deduction rule
(AM,1) ← (MA,2), (MA,3), (MA,4). Here, since each rule is associated with
an operator which is itself associated with a constraint (arc-consistency case), the
constraint is written at the right of the rule.

Finally we prove that the elements removed from the domain are the roots
of the explanations.

Theorem 2 CL↓(D, R) is the set of the roots of explanations with respect to
R.

Proof. Let E the set of the roots of explanations wrt to R. By
induction on explanations E ⊆ min{d | ∀r̃ ∈ R̃, r̃(d) ⊆ d}. It is easy

to check that r̃(E) ⊆ E. Hence, min{d | ∀r̃ ∈ R̃, r̃(d) ⊆ d} ⊆ E. So

E = CL↑(∅, R̃).

In [9] there is a more general result which establishes the link between the
closure of an environment d and the roots of explanations of R∪{h← ∅ | h ∈ d}.
But here, to be lighter, the previous theorem is sufficient because we do not
consider dynamic aspects. All the results are easily adaptable when the starting
environment is d ⊂ D.

4.2 Computed explanations

Note that for error diagnosis, we only need a program, an expected semantics, a
symptom and an explanation for this symptom. Iterations are briefly mentioned
here only to understand how explanations are computed in concrete terms, as
in the PaLM system [10]. For more details see [9].

CL↓(d, R) can be computed by chaotic iterations introduced for this aim in
[8].

The principle of a chaotic iteration [2] is to apply the operators one after the
other in a “fairly” way, that is such that no operator is forgotten. In practice

10

this can be implemented thanks to a propagation queue. Since ⊆ is a well-
founded ordering (i.e. D is a finite set), every chaotic iteration is stationary.
The well-known result of confluence [5, 8] ensures that the limit of every chaotic
iteration of the set of local consistency operators R is the downward closure
of D by R. So in practice the computation ends when a common fix-point is
reached. Moreover, implementations of solvers use various strategies in order to
determine the order of invocation of the operators. These strategies are used to
optimize the computation, but this is out of the scope of this paper.

We are interested in the explanations which are “computed” by chaotic iter-
ations, that is the explanations which can be deduced from the computation of
the closure. A chaotic iteration amounts to apply operators one after the other,
that is to apply sets of deduction rules one after another. So, the idea of the
incremental algorithm [9] is the following: each time an element h is removed
from the environment by a deduction rule h ← B, an explanation is built. Its
root is h and its sub-trees are the explanations rooted by the elements of B.

Note that the chaotic iteration can be seen as the trace of the computation,
whereas the computed explanations are a declarative vision of it.

The important result is that CL↓(d, R) is the set of roots of computed ex-
planations. Thus, since a symptom belongs to CL↓(d, R), there always exists a
computed explanation for each symptom.

5 Error Diagnosis

If there exists a symptom then there exists an erroneous operator. Moreover,
for each symptom an explanation can be obtained from the computation. This
section describes how to locate an erroneous operator from a symptom and its
explanation.

5.1 From Symptom to Error

Definition 14 A rule h← B ∈ Rr is an erroneous rule wrt d if B ∩ d = ∅ and
h ∈ d.

It is easy to prove that r is an erroneous operator wrt d if and only if there
exists an erroneous rule h ← B ∈ Rr wrt d. Consequently, theorem 1 can be
extended into the next lemma.

Lemma 7 If there exists a symptom wrt d then there exists an erroneous rule
wrt d.

We say a node of an explanation is a symptom wrt d if its label is a symptom
wrt d. Since, for each symptom h, there exists an explanation whose root is
labeled by h, it is possible to deal with minimality according to the relation
parent/child in an explanation.

Definition 15 A symptom is minimal wrt d if none of its children is a symptom
wrt d.

11

Note that if h is a minimal symptom wrt d then h ∈ d and the set of its
children B is such that B ⊆ d. In other words h ← B is an erroneous rule wrt
d.

Theorem 3 In an explanation rooted by a symptom wrt d, there exists at least
one minimal symptom wrt d and the rule which links the minimal symptom to
its children is an erroneous rule.

Proof. Since explanations are finite trees, the relation parent/child
is well-founded.

To sum up, with a minimal symptom is associated an erroneous rule, itself
associated with an erroneous operator. Moreover, an operator is associated with,
a constraint (e.g. the usual case of hyper arc-consistency), or a set of constraints.
Consequently, the search for some erroneous constraints in the CSP can be done
by the search for a minimal symptom in an explanation rooted by a symptom.

5.2 Diagnosis Algorithms

The error diagnosis algorithm for a symptom (x, e) is quite simple. Let E the
computed explanation of (x, e).

The aim is to find a minimal symptom in E by asking the user with questions
as: “is (y, f) expected ?”.

Note that different strategies can be used. For example, the “divide and
conquer” strategy: if n is the number of nodes of E then the number of questions
is O(log(n)), that is not much according to the size of the explanation and so
not very much compared to the size of the iteration.

Example 8 Let us consider the GNU-Prolog CSP of example 5. Remind us
that its closure is empty whereas the user expects (AM,1) to belong to a solution.
Let the explanation of figure 1 be the computed explanation of (AM,1). A diagnosis
session can then be done using this explanation to find the erroneous operator or
constraint of the CSP.

Following the “divide and conquer” strategy, first question is: “Is (MA,3) a
symptom ?”. According to the conference problem, the knowledge on MA is that
Michael wants to know other works before presenting is own work (that is MA>2)
and Michael cannot stay the last half-day (that is MA is not 4). Then, the user’s
answer is: yes.

Second question is: “Is (PM,2) a symptom ?”. According to the conference
problem, Michael wants to know what Peter have done before presenting his own
work to Alan, so the user considers that (PM,2) belongs to the expected environ-
ment: its answer is yes.

Third question is: “Is (MP,1) a symptom ?”. This means that Michael presents
his work to Peter before Peter presents his work to him. This is contradicting the
conference problem: the user answers no.

So, (PM,2) is a minimal symptom and the rule (PM,2) ← (MP,1) is an erro-
neous one. This rule is associated to the operator PM in min(MP)+1..infinite,

12

associated to the constraint PM>MP. Indeed, Michael wants to know what Peter
have done before presenting his own work would be written PM<MP.

Note that the user has to answer to only three questions whereas the explanation
contains height nodes, there are sixteen removed values and eighteen operators for
this problem. So, it seems an efficient way to find an error.

Note that it is not necessary for the user to exactly know the set of solutions,
nor a precise approximation of them. The expected semantics is theoretically
considered as a partition of D: the elements which are expected and the elements
which are not. For the error diagnosis, the oracle only have to answer to some
questions (he has to reveal step by step a part of the expected semantics). The
expected semantics can then be considered as three sets: a set of elements which
are expected, a set of elements which are not expected and some other elements
for which the user does not know. It is only necessary for the user to answer to
the questions.

It is also possible to consider that the user does not answer to some questions,
but in this case there is no guarantee to find an error [16]. Without such a tool,
the user is in front of a chaotic iteration, that is a wide list of events. In these
conditions, it seems easier to find an error in the code of the program than to
find an error in this wide trace. Even if the user is not able to answer to the
questions, he has an explanation for the symptom which contains a subset of
the CSP constraints.

6 Conclusion

Our theoretical foundations of domain reduction have permitted to define no-
tions of expected semantics, symptom and error.

Explanation trees provide us with a declarative view of the computation
and their tree structure is used to adapt algorithmic debugging [15] to constraint
programming. The proposed approach consists in comparing expected semantics
(what the user wants to obtain) with the actual semantics (the closure computed
by the solver). Here, a symptom, which expresses a difference between the two
semantics is a missing element, that is an expected element which is not in the
closure. Since the symptom is not in the closure there exists an explanation
for it (a proof if its removal). The diagnosis amounts to search for a minimal
symptom in the explanation (rooted by the symptom), that is to locate the error
from the symptom. The traversal of the tree is done thanks to an interaction
with an oracle (usually the user): it consists in questions to know if an element
is member of the expected semantics.

It is important to note that the user does not need to understand the com-
putation of the constraint solver, unlike a method based on a presentation of the
trace. A declarative approach is then more convenient for constraint programs.
Especially as the user only has a declarative knowledge of its problem/program
and the solver computation is too intricate to understand.

13

References

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, volume 90 of Studies in Logic and the
Foundations of Mathematics, chapter C.7, pages 739–782. North-Holland
Publishing Company, 1977.

[2] K. R. Apt. The essence of constraint propagation. Theoretical Computer
Science, 221(1–2):179–210, June 1999.

[3] K. R. Apt and E. Monfroy. Automatic generation of constraint propagation
algorithms for small finite domains. In J. Jaffar, editor, Proceedings of
the 5th International Conference on Principles and Practice of Constraint
Programming, CP 99, number 1713 in Lecture Notes in Computer Science,
pages 58–72. Springer-Verlag, 1999.

[4] P. Codognet and D. Diaz. Compiling constraints in clp(fd). Journal of
Logic Programming, 27(3):185–226, June 1996.

[5] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant as-
sertions mathematical foundation. In Symposium on Artificial Intelligence
and Programming Languages, volume 12(8) of ACM SIGPLAN Not., pages
1–12, 1977.

[6] R. Debruyne, G. Ferrand, N. Jussien, W. Lesaint, S. Ouis, and A. Tessier.
Correctness of constraint retraction algorithms. In I. Russell and S. Haller,
editors, FLAIRS’03: Sixteenth international Florida Artificial Intelligence
Research Society conference, pages 172–176. AAAI Press, 2003.

[7] D. Diaz and P. Codognet. The GNU-Prolog system and its implementation.
In ACM Symposium on Applied Computing, volume 2, pages 728–732, 2000.

[8] F. Fages, J. Fowler, and T. Sola. A reactive constraint logic programming
scheme. In L. Sterling, editor, Proceedings of the Twelfth International
Conference on Logic Programming, ICLP 95, pages 149–163. MIT Press,
1995.

[9] G. Ferrand, W. Lesaint, and A. Tessier. Theoretical foundations of value
withdrawal explanations for domain reduction. Electronic Notes in Theo-
retical Computer Science, 76, November 2002.

[10] N. Jussien and V. Barichard. The PaLM system: explanation-based con-
straint programming. In Proceedings of TRICS: Techniques foR Imple-
menting Constraint programming Systems, a post-conference workshop of
CP 2000, pages 118–133, 2000.

[11] N. Jussien and S. Ouis. User-friendly explanations for constraint program-
ming. In Proceedings of the 11th Workshop on Logic Programming Envi-
ronments, 2001.

14

[12] W. Lesaint. Value withdrawal explanations: a theoretical tool for pro-
gramming environments. In A. Tessier, editor, 12th Workshop on Logic
Programming Environments, 2002.

[13] M. Meier. Debugging constraint programs. In U. Montanari and F. Rossi,
editors, Proceedings of the First International Conference on Principles and
Practice of Constraint Programming, CP 95, volume 976 of Lecture Notes
in Computer Science, pages 204–221. Springer-Verlag, 1995.

[14] H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional lan-
guages. Journal of Functional Programming, 4(3):337–370, 1994.

[15] E. Shapiro. Algorithmic Program Debugging. ACM Distinguished Disser-
tation. MIT Press, 1982.

[16] A. Tessier and G. Ferrand. Analysis and Visualisation Tools for Constraint
Programming, volume 1870 of Lecture Notes in Computer Science, chapter
5. Declarative Diagnosis in the CLP scheme, pages 151–176. Springer-
Verlag, 2000.

[17] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

15

