
A model of constraint solvers by chaotic iteration adapted to

value withdrawal explanations

LIFO, EMN

Gérard Ferrand, Willy Lesaint, Alexandre Tessier
public, rapport de recherche

D1.1.1

Abstract
The aim of this report is to provide the theoretical foundations of domain reduc-

tion. The model is well suited to the solvers on finite domains which are used on
the respective platforms of each partner of the project: GNU-Prolog (INRIA), CHIP
(COSYTEC) and PaLM (EMN). A computation is formalized by a chaotic iteration
of operators and the result is described as a closure. The model is well suited to the
definition of traces and explanations which will be useful for the debugging of con-
straint programs. This report only deals with the reduction stage. It will be extended
to the labeling and the host language in next reports.

1 Introduction

Constraint Logic Programming (CLP) [12] can be viewed as the reunion of two program-
ming paradigms : logic programming and constraint programming. Declarative debugging
of constraints logic programs has been treated in previous works and tools have been pro-
duced for this aim during the DiSCiPl (Debugging Systems for Constraint Programming)
ESPRIT Project [9, 15]. But these works deal with the clausal aspects of CLP. This report
focus on the constraint level alone. The tools used at this level strongly depend on the
constraint domain and the way to solve constraints. Here we are interested in a wide field
of applications of constraint programming: finite domains and propagation.

The aim of constraint programming is to solve Constraint Satisfaction Problems (CSP)
[16], that is to provide an instantiation of the variables which is correct with respect to
the constraints.

The solver goes toward the solutions combining two different methods. The first one
(labeling) consists in partitioning the domains until to obtain singletons and, testing them.
The second one (domain reduction) reduces the domains eliminating some values which
cannot be correct according to the constraints. Labeling provides exact solutions whereas
domain reduction simply approximates them. In general, the labeling alone is very expen-
sive and a good combination of the two methods is more efficient. In this paper labeling
is not really treated. We consider only one branch of the search tree: the labeling part is
seen as additional constraint to the CSP. In future work, we plan to extend our framework
in order to fully take labeling and the whole search tree (instead of a single branch) into
account.

1

This kind of computation is not easy to debug because CSP are not algorithmic pro-
grams [13]. The constraints are re-invoked according to the domain reductions until a
fix-point is reached. But the order of invocation is not known a priori and strongly de-
pends on the strategy used by the solver.

The main contribution of this report is to formalize the domain reduction in order
to provide a notion of explanation for the basic event which is “the withdrawal of a
value from a domain”. This notion of explanation is essential for the debugging of CSP
programs. Indeed, the disappearance of a value from a domain may be a symptom of an
error in the program. But the error is not always where the value has disappeared and
an analysis of the explanation of the value withdrawal is necessary to locate the error.
[6] provides a tool to find symptoms, this paper provides a tool which could be used to
find errors from symptoms. Explanations are a tool to help debugging: we extract from a
(wide) computation a structured part (a proof tree or an explanation tree) which will be
analyzed more efficiently.

We are inspired by a constraint programming language over finite domains, GNU-
Prolog [7], because its glass-box approach allows a good understanding of the links between
the constraints and the rules. But our model is sufficiently general to take the solver of
each partner into account, that is GNU-Prolog (INRIA), CHIP (COSYTEC) and PaLM
(EMN).

We provide explanations in the general case of hyper-arc consistency. Obviously, this
definition of explanations is correct for weaker consistencies usually used in the imple-
mented solvers. To be easily understandable, we provide examples in the arc-consistency
case.

An explanation is a subset of operators used during the computation and which are
responsible for the removal of a value from a domain. Several works shown that detailed
analysis of explanations have a lot of applications [10, 11]. But these applications of expla-
nations are outside the scope of this report (see [11]). Here, our definitions of explanations
are motivated by applications to debugging, in particular to error diagnosis.

An aspect of the debugging of constraint programming is to understand why we have
a failure (i.e. we do not obtain any solution); this problem has been raised in [2]. This
case appears when a domain becomes empty, that is no value of the domain belongs to a
solution. So, an explanation of why these values have disappeared provides an explanation
of the failure.

Another aspect is error diagnosis. Let us assume an expected semantics for the CSP.
Consider we are waiting for a solution containing a certain value for a variable, but this
value does not appear in the final domain. An explanation of the value withdrawal help us
to find what is wrong in our program. It is important to note that the error is not always
the constraint responsible of the value withdrawal. Another constraint may have made
a wrong reduction of another domain which has finally produced the withdrawal of the
value. The explanation is a structured object in which this information may be founded.

The report is organized as follows. Section 2 gives some notations and basic definitions
for Constraint Satisfaction Problems. Section 3 describes a model for domain reduction
based on reduction operators and chaotic iteration. Section 4 associates deduction rules
to this model. Section 5 uses deduction rules in order to build explanations. Next section
is a conclusion.

2

2 Preliminaries

We provide the classical definition of a constraint satisfaction problem as in [16]. The
notations used are natural to express basic notions of constraints involving only some
subset of the set of all variables.

Here we only consider the framework of domain reduction as in [5, 7, 17, 18]. More
general framework is described in [4, 14].

A Constraint Satisfaction Problem (CSP) is made of two parts, the syntactic part:

• a finite set of variable symbols (variables in short) V ;

• a finite set of constraint symbols (constraints in short) C;

• a function var : C → P(V), which associates with each constraint symbol the set of
variables of the constraint;

and a semantic part.

For the semantic part, we need some preliminaries. We are going to consider various
families f = (fi)i∈I . Such a family is identified with the function i 7→ fi, itself identified
with the set {(i, fi) | i ∈ I}.

We consider a family (Dx)x∈V where each Dx is a finite non empty set called the domain
of the variable x (domain of x in short). In order to have simple and uniform definitions
of monotonic operators on a power-set, we use a set which is similar to an Herbrand base
in logic programming. We define the global domain by G =

⋃
x∈V ({x}×Dx). We consider

subsets d of G, i.e. d ⊆ G. We denote by d|W the restriction of a set d ⊆ G to a set of
variables W ⊆ V , that is d|W = {(x, e) ∈ d | x ∈W}.

We use the same notations for the tuples. A global tuple t is a particular d such that
each variable appears only once: t ⊆ G and ∀x ∈ V , t|{x} = {(x, e)}. A tuple t on W ⊆ V ,
is defined by t ⊆ G|W and ∀x ∈W , t|{x} = {(x, e)}. So, a global tuple is a tuple on V .

Then, the semantic part is defined by:

• the family (Dx)x∈V ,

• the family (Tc)c∈C which is defined by: for each c ∈ C, Tc is a set of tuple on var(c)
i.e. each t ∈ Tc is identified with a set {(x, e) | x ∈ var(c)}.

A global tuple t is a solution of the CSP if ∀c ∈ C, t|var(c) ∈ Tc.
For any d ⊆ G, we need another notation: for x ∈ V , we define dx = {e ∈ Dx | (x, e) ∈

d}. So, we can note the following points:

• for d = G, dx = Dx,

• d =
⋃

x∈V ({x} × dx);

• for d, d′ ⊆ G, d ⊆ d′ ⇔ ∀x ∈ V, dx ⊆ d′x,

• ∀x ∈ V , d|{x} = {x} × dx;

• for W ⊆ V , d ⊆ G|W ⇔ ∀x ∈ V \W,dx = ∅.

3

Example 1 CSP
Let us consider the CSP defined by:

• V = {x, y, z}

• C = {x < y, y < z, z < x}

• var such that: var(x < y) = {x, y}, var(y < z) = {y, z} and var(z < x) = {x, z}.

• Dx = Dy = Dz = {0, 1, 2}, that is:

G = {(x, 0), (x, 1), (x, 2), (y, 0), (y, 1), (y, 2), (z, 0), (z, 1), (z, 2)}

• T such that:

Tx<y = {{(x, 0), (y, 1)}, {(x, 0), (y, 2)}, {(x, 1), (y, 2)}}
Ty<z = {{(y, 0), (z, 1)}, {(y, 0), (z, 2)}, {(y, 1), (z, 2)}}
Tz<x = {{(x, 1), (z, 0)}, {(x, 2), (z, 0)}, {(x, 2), (z, 1)}}

For a given CSP, one is interested in the computation of the solutions. The simplest
method consists in generating all the tuples from the initial domains, then testing them.
This generate and test method is clearly expensive for wide domains. So, one prefers to
reduce the domains first (“test” and generate).

To be more precise, to reduce the domains means to replace each Dx by a subset of
Dx. But in this context, each subset of Dx can be denoted by dx for d ⊆ G. Such dx

is called the domain of x and d is called the global domain. Dx is merely the greatest
domain of x. In fact, the reduction of domains will be applied to all domains, but since
d =

⋃
x∈V ({x} × dx), it amounts to the reduction of the global domain d.

Here, we focus on the reduction stage. Let d the global domain. Intuitively, if t
is a solution of the CSP, then t ⊆ d and we attempt to approach the smallest domain
containing all the solutions of the CSP. So this domain must be an “approximation” of
the solutions according to an ordering which is exactly the subset ordering ⊆.

We describe in the next section a model for the computation of such approximations.

3 Domain reduction

We propose here a model of the operational semantics for the computation of approxima-
tions. It will be well suited to define notions of basic events necessary for trace analysis,
and explanations useful for debugging. Moreover main classical results [4, 5, 14] are proved
again in this model.

A set of operators (local consistency operators) is associated to each constraint. The
intersection between the global domain and the domain obtained by application of a local
consistency operator provides a new global domain. Finally, in order to always reach a
fix-point (that is the approximation we look for), all the operators will be applied, as many
time as necessary, according to a chaotic iteration.

A way to compute an approximation of the solutions is to associate with the constraints
some local consistency operators. A local consistency operator is applied to the whole
global domain. But in fact, the result only depends on a restriction of it to a subset of

4

variables Win ⊆ V . The type of such an operator is (Win ,Wout) with Win ,Wout ⊆ V .
Only the domains of Wout are modified by the application of this operator. It eliminates
from these domains some values which are inconsistent with respect to the domains of
Win .

Definition 1 A local consistency operator of type (Win ,Wout), with Win ,Wout ⊆ V is a
monotonic function r : P(G)→ P(G) such that: ∀d ⊆ G,

• r(d)|V \Wout
= G|V \Wout

,

• r(d) = r(d|Win)

We can note that:

• r(d)|V \Wout
is independent of d,

• r(d)|Wout only depends on d|Win ,

• a local consistency operator is not a contracting function.

Definition 2 We say a domain d is r-consistent if d ⊆ r(d), that is d|Wout ⊆ r(d)|Wout .

We provide an example in the obvious case of arc-consistency.

Example 2 Arc-consistency
Let c ∈ C with var(c) = {x, y} and d ⊆ G. The property of arc-consistency for d is:

(1) ∀e ∈ dx,∃f ∈ dy, {(x, e), (y, f)} ∈ Tc,

(2) ∀f ∈ dy,∃e ∈ dx, {(x, e), (y, f)} ∈ Tc.

The local consistency operator r associated to (1) has the type ({y}, {x}) and is defined
by: r(d) = G|V \{x} ∪ {(x, e) ∈ G | ∃(y, f) ∈ d, {(x, e), (y, f)} ∈ Tc}. It is obvious that (1)
⇐⇒ d ⊆ r(d), that is d is r-consistent. We can define in the same way the operator of
type ({x}, {y}) associated to (2).

Example 3 Continuation of example 1
Let us consider the constraint x < y defined in example 1. For d = G, the property of arc-
consistency provided in the example above is associated to: r1(d) = G|{y,z}∪{(x, 0), (x, 1)}
and r2(d) = G|{x,z} ∪ {(y, 1), (y, 2)}.

The solver is described by a set of such operators associated with the constraints of the
CSP. We can choose more or less accurate local consistency operators for each constraint
(in general, the more accurate they are, the more expensive is the computation).

We associate to these operators, reduction operators in order to compute the intersec-
tion with the current global domain.

Definition 3 The reduction operator associated to the local consistency operator r is the
monotonic and contracting function d 7→ d ∩ r(d).

5

All the solvers proceeding by domain reduction use operators with this form. For GNU-
Prolog, we associate to each constraint as many operators as variables in the constraint.

Example 4 GNU-Prolog
In GNU-Prolog, such operators are written x in r [7], where r is a range dependent on
domains of a set of variables. The rule x in 0..max(y) is the local consistency opera-
tor of type ({y}, {x}) which computes {0, 1, . . . ,max(dy)} where max(dy) is the greatest
value in the domain of y. It is the local consistency operator defined by r(d)|{x} =
{(x, e) | 0 ≤ e ≤ max(dy)}. The reduction operator associated to this local consistency
operator computes the intersection with the domain of x and is implemented by the rule
x in 0..max(y):dom(x).

The local consistency operators we use must not remove solutions of the CSP. We
formalize it by the following definition.

Definition 4 A local consistency operator r is correct if, for each d ⊆ G, for each solution
t, t ⊆ d⇒ t ⊆ r(d).

A local consistency operator is associated to a constraint of the CSP. Such an oper-
ator must obviously keep the solutions of the constraint. This is formalized by the next
definition and lemma.

Definition 5 Let c ∈ C and Wout ⊆ var(c). A local consistency operator r of type
(Win ,Wout) is correct with respect to the constraint c if, for each d ⊆ G, for each t ∈ Tc,
t ⊆ d⇒ t ⊆ r(d).

Lemma 1 If r is correct with respect to c, then r is correct.

Proof. Let d ⊆ G and s ⊆ d a solution of the CSP. s|var(c) ∈ Tc, so s|var(c) ⊆
r(d). Moreover s|V \var(c) ⊆ G|V \var(c) = r(d)|V \var(c) because Wout ⊆ var(c).
�

Note that the converse does not hold.

Example 5 GNU-Prolog
The rule r : x in 0..max(y) is correct with respect to the constraint c defined by var(c) =
{x, y} and Tc = {{(x, 0), (y, 0)}, {(x, 0), (y, 1)}, {(x, 1), (y, 1)}} (Dx = Dy = {0, 1} and c is
the constraint x ≤ y).

Intuitively, the solver applies the reduction operators one by one replacing the global
domain with the one it computes. The computation stops when some domain becomes
empty (in this case, there is no solution), or when the reduction operators cannot reduce
the global domain anymore (a common fix-point is reached).

From now on, we denote by R a set of local consistency operators. The common fix-
point of the reduction operators associated to R from a global domain d is a global domain
d′ ⊆ d such that ∀r ∈ R, d′ = d′ ∩ r(d′), that is ∀r ∈ R, d′ ⊆ r(d′). The greatest common
fix-point is the greatest d′ ⊆ d such that ∀r ∈ R, d′ is r-consistent. To be more precise:

6

Definition 6 max{d′ ⊆ G | d′ ⊆ d ∧ ∀r ∈ R, d′ ⊆ r(d′)} is the downward closure of d by
R and is denoted by CL ↓ (d, R).

The downward closure is the most accurate set which can be computed using a set of
correct operators. Obviously, each solution belongs to this set. It is easy to verify that
CL ↓ (d,R) exists and can be obtained by iteration of the operator d 7→ d ∩

⋂
r∈R r(d).

There exists another way to compute CL ↓ (d, R) called the chaotic iteration that we are
going to recall.

The following definition is taken up to Apt [3].
A run is an infinite sequence of operators of R, that is, a run associates to each i ∈ IN

(i ≥ 1) an element of R denoted by ri. A run is fair if each r ∈ R appears in it infinitely
often, that is {i | r = ri} is infinite. Let us define a downward iteration of a set of operators
with respect to a run.

Definition 7 The downward iteration of the set of local consistency operators R from the
global domain d ⊆ G with respect to the run r1, r2, . . . is the infinite sequence d0, d1, d2, . . .
inductively defined by:

1. d0 = d;

2. for each i ∈ IN, di+1 = di ∩ ri+1(di).

Its limit is denoted by dω = ∩i∈INdi. A chaotic iteration is an iteration with respect to a
fair run.

The operator d 7→ d ∩
⋂

r∈R r(d) may reduce several domains at each step. But the
computations are more intricate and some can be useless. In practice chaotic iterations
are preferred, they proceed by elementary steps, reducing only one domain at each step.
The next well-known result of confluence [3, 8] ensures that any chaotic iteration reaches
the closure. Note that, since ⊆ is a well-founded ordering (i.e. G is a finite set), every
iteration from d ⊆ G is stationary, that is ∃i ∈ IN,∀j ≥ i,rj+1(dj) ∩ dj = dj , that is
dj ⊆ rj+1(dj).

Lemma 2 The limit of every chaotic iteration of the set of local consistency operators R
from d ⊆ G is the downward closure of d by R.

Proof. Let d0, d1, d2, . . . be a chaotic iteration of R from d with respect to
r1, r2, Let dω be the limit of the chaotic iteration.
CL ↓ (d,R) ⊆ dω: For each i, CL ↓ (d,R) ⊆ di, by induction: CL ↓ (d, R) ⊆
d0 = d. Assume CL ↓ (d, R) ⊆ di, CL ↓ (d,R) ⊆ ri+1(CL ↓ (d,R)) ⊆ ri+1(di)
by monotonicity. Thus, CL ↓ (d, R) ⊆ di ∩ ri+1(di) = di+1.
dω ⊆ CL ↓ (d, R): There exists k ∈ IN such that dω = dk because ⊆ is a
well-founded ordering. The run is fair, hence dk is a common fix-point of the
set of reduction operators associated to R, thus dk ⊆ CL ↓ (d, R) (the greatest
common fix-point). �

The fairness of runs is a convenient theoretical notion to state the previous lemma.
Every chaotic iteration is stationary, so in practice the computation ends when a common

7

fix-point is reached. Moreover, implementations of solvers use various strategies in order
to determinate the order of invocation of the operators. These strategies are used so as to
optimize the computation, but this is not in the scope of this report.

In practice, when a domain becomes empty, we know that there is no solution, so an
optimization consists in stopping the computation before the closure is reached. In that
case, we say that we have a failure iteration.

We have provided in this section a model of the operational semantics for the solvers on
finite domains using domain reduction. This model is language independent and enough
general in order to be used for the platform of each partner: GNU-Prolog, CHIP and
PaLM.

4 Deduction rules

The application of a local consistency operator can be considered as a basic event. But
for the notion of explanation, we need to be more precise. So, in this section, we attempt
to explain in detail the application of a local consistency operator.

Note that we are interested by the value withdrawal, that is when a value is not in
a global domain but in its complementary. So, we consider this complementary and the
“duals” of the local consistency operators. By this way, at the same time we reduce the
global domain, we build its complementary. We associate natural rules to these operators.
These rules will be the constructors of the explanations.

First we need some notations. Let d = G \ d. In order to help the understanding, we
always use d for the complementary of a global domain and d for a global domain.

Definition 8 Let r an operator, we denote by r̃ the dual of r defined by: ∀d ⊆ G, r̃(d) =
r(d).

We need to consider sets of such operators as for local consistency operators. Let
R̃ = {r̃ | r ∈ R}. The upward closure of d by R̃, denoted by CL ↑ (d, R̃) exists and is the
least d′ such that d ⊆ d′ and ∀r ∈ R, r̃(d′) ⊆ d′.

Next lemma ensures that the downward closure of a set of local consistency operators
from a global domain d is the complementary of the upward closure of the set of dual
operators from the complementary of d.

Lemma 3 CL ↑ (d, R̃) = CL ↓ (d, R).

Proof. straightforward �

By the same way we defined a downward iteration of a set of operators from a domain,
we define an upward iteration.

The upward iteration of R̃ from the global domain d ⊆ G with respect to r̃1, r̃2, . . . is
the infinite sequence d0, d1, d2, . . . inductively defined by:

1. d0 = d,

2. di+1 = di ∪ r̃i+1(di).

8

We can rewrite the second item: di+1 = di ∪ ri+1(di). It is then obvious, that we add
to di, the elements of di removed by ri+1.

The link between the downward and the upward iteration clearly appears by noting
that: di+1 = di ∩ ri+1(di) and ∪j∈INdj = CL ↑ (d, R̃) = CL ↓ (d,R).

We have provided two points of view for the reduction of a global domain d with respect
to a run r1, r2, In the previous section, we consider the reduced global domain, but
in this section, we consider the complementary of this reduced global domain, that is the
set of elements removed of the global domain. As a local consistency operator “keeps”
elements in a domain, its dual “adds the others” in the complementary.

Now, we associate deduction rules to these dual operators. These rules are natural to
build the complementary of the global domain and well suited to provide proof trees.

Definition 9 A deduction rule of type (Win ,Wout) is a rule h← B such that h ∈ G|Wout

and B ⊆ G|Win .

For each operator r ∈ R of type (Win ,Wout), we denote by Rr a set of deduction rules
of type (Win ,Wout) which defines r̃, that is r̃ is such that: r̃(d) = {h ∈ G | ∃B ⊆ d, h ←
B ∈ Rr}. For each operator, this set of deduction rules exists. There exists possibly many
such sets, but one is natural.

We provide illustrations of this model on different consistency examples. Let us begin
with the obvious arc consistency case.

Example 6 Arc consistency
Let us consider the local consistency operator r defined in example 2 by:
r(d) = G|V \{x} ∪ {(x, e) ∈ G | ∃(y, f) ∈ d, {(x, e), (y, f)} ∈ Tc}.
So, r̃(d) = r(d) = {(x, e) ∈ G | ∀(y, f) ∈ d, {(x, e), (y, f)} 6∈ Tc}.
Let B(x,e) = {(y, f) | {(x, e), (y, f)} ∈ Tc}. Then,
B(x,e) ⊆ d ⇔ ∀(y, f) ∈ G, [{(x, e), (y, f)} ∈ Tc ⇒ (y, f) ∈ d]

⇔ ∀(y, f) ∈ G, [(y, f) ∈ d⇒ {(x, e), (y, f)} 6∈ Tc]
⇔ ∀(y, f) ∈ d, {(x, e), (y, f)} 6∈ Tc

So, r̃(d) = {(x, e) ∈ G | B(x,e) ⊆ d}.
Finally, the set of deduction rules associated to r is Rr = {(x, e)← B(x,e) | (x, e) ∈ d}.

Example 7 Continuation of example 1
Let us consider the CSP of example 1. Two local consistency operators are associated to
the constraint x < y: r1 of type ({y}, {x}) and r2 of type ({x}, {y}). The set of deduction
rules Rr1 associated to r1 contains the three deduction rules:

• (x, 0)← {(y, 1), (y, 2)},

• (x, 1)← {(y, 2)}, and

• (x, 2)← ∅.

9

'

&

$

%

'

&

$

%

�

�

�

�

```````````̀            ```
```

```
``̀

```````````̀            

b
b
b
b
b
b
b
b
b
b
bb((((((((((((

XXXXXXXXXXX

G|{y} G|{x}
Tc

h
B

Figure 1: The particular case of arc consistency

A deduction rule h ← B can be understood as follow: if all the elements of B are
removed from the global domain, then h does not participate in any solution of the CSP
and we can remove it. See for example figure 1. Note that if (x, e) ∈ G|{x} does not appear
in any tuple of Tc, then we have the trivial deduction rule (x, e)← ∅.

Our formalization is also well suited to include weaker arc consistency operators. In
GNU-Prolog, a full arc consistency operator r of type ({y}, {x}) uses the whole domain
of y, whereas, a partial arc consistency reduction operator only uses its lower and upper
bounds. In that case, we need two sets of deduction rules Rmax and Rmin, one for each
bound. Then, for d ⊆ G, r̃(d) = {(x, e) | ∃B(x,e) ⊆ d, (x, e) ← B(x,e) ∈ (Rmax ∪ Rmin)}.
Note that there exists two rules with the head (x, e), one for the upper bound in Rmax

and one for the lower bound in Rmin.

Example 8 Partial Arc Consistency in GNU-Prolog
Let us consider the constraint “x #= y+c” in GNU-Prolog where x, y are variables and
c a constant. This constraint is implemented by two local consistency operators: r1

of type ({y}, {x}) and r2 of type ({x}, {y}). In GNU-Prolog, r1 is defined by the rule
x in min(y)+c..max(y)+c.
r̃1(d) = {(x, e) | ∃B(x,e) ⊆ d, (x, e)← B(x,e) ∈ (Rmax ∪Rmin)} with:

• Rmax = {(x, e)← {(y, f) | f + c ≥ e} | (x, e) ∈ G|{x}} and

• Rmin = {(x, e)← {(y, f) | f + c ≤ e} | (x, e) ∈ G|{x}}.

r2 of type ({x}, {y}) is defined in the same way by the rule y in min(x)-c..max(x)-c.

In the framework of hyper-arc consistency, the tuples may contain more than two
variables. For a constraint c ∈ C and a variable x ∈ var(c), if one value of each tuple
containing (x, e) has disappeared of the global domain, then (x, e) can be removed from
the global domain. For (x, e), we have as much deduction rules as possibilities to take one
element (except (x, e)) in each tuple of Tc containing (x, e).

10

Example 9 Hyper-arc Consistency in GNU-Prolog
Let us consider the constraint “x #=# y+z” in GNU-Prolog.
Let G = {(x, 3), (y, 1), (y, 2), (z, 1), (z, 2)}. The constraint is implemented by three local
consistency rules r1, r2 and r3. Let us consider r1 of type ({y, z}, {x}). r1 is defined by:
r̃1(d) = {(x, e) | ∃B(x,e) ⊆ d, (x, e)← B(x,e) ∈ R}.
We can eliminate (x, 3) from d if for each tuple containing (x, 3), one value is removed from
d. There exists two tuples containing (x, 3): {(x, 3), (y, 1), (z, 2)} and {(x, 3), (y, 2), (z, 1)}.
So, we have:

• (y, 1) 6∈ d ∧ (y, 2) 6∈ d⇒ (x, 3) 6∈ r1(d);

• (y, 1) 6∈ d ∧ (z, 1) 6∈ d⇒ (x, 3) 6∈ r1(d);

• (y, 2) 6∈ d ∧ (z, 2) 6∈ d⇒ (x, 3) 6∈ r1(d);

• (z, 1) 6∈ d ∧ (z, 2) 6∈ d⇒ (x, 3) 6∈ r1(d);

Then, R contains the four deduction rules:

• (x, 3)← {(y, 1), (y, 2)}

• (x, 3)← {(y, 1), (z, 1)}

• (x, 3)← {(y, 2), (z, 2)}

• (x, 3)← {(z, 1), (z, 2)}

In this section, we have considered a dual view of domain reduction. In this framework,
we have introduced deduction rules. These rules explain the withdrawal of a value by the
withdrawal of other values. In the next section, we construct trees with these rules, in
order to have a complete explanation of a value withdrawal associated to an iteration.

5 Value withdrawal explanations

Sometimes, when a domain becomes empty or just when a value is removed from a domain,
the user wants an explanation of this phenomenon [2, 11]. The case of failure is the
particular case where all the values are removed. It is the reason why the basic event here
will be a value withdrawal. Let us consider a chaotic iteration, and let us assume that at
a step a value is removed from the domain of a variable. In general, all the operators used
from the beginning of the iteration are not necessary to explain the value withdrawal. It
is possible to explain the value withdrawal by a subset of these operators such that every
chaotic iteration using this subset of operators removes the considered value. We associate
a set of proof trees to a value withdrawal during a chaotic iteration. We have two notions
of explanation for a value withdrawal. The first one is a set of local consistency operators
responsible of this withdrawal, the second one, more precise is based on the proof trees.
We recall here the definition of proof trees, then we deduce the explanation set and provide
some important properties for our explanations.

First, we use the deduction rules in order to build proof trees. We consider the set of
all the deduction rules for all the local consistency operators r ∈ R: let R = ∪r∈RRr.

11

We use the following notations: cons(h, T) is a tree, h is the label of its root and T
the set of its sub-trees. We denote by root(t) the label of the root of a tree t. We recall
the definition of a proof tree [1].

Definition 10 A proof tree with respect to R is inductively defined by: cons(h, T) is a
proof tree if h← {root(t) | t ∈ T} ∈ R and T is a set of proof trees with respect to R.

Our set of deduction rules is not complete: we must take the initial domain into
account. If we compute a downward closure from the whole global domain G, then its
complementary is the empty set. In this case, R is complete. But if we compute a
downward closure from a domain d ⊂ G, then its dual upward closure starts with d. We
need facts in order to directly include the elements of d. Let Rd = R ∪ {h ← ∅ | h ∈ d}.
Next lemma ensures that, with this set of deduction rules, we can build proof trees for
each element of CL ↑ (d, R̃).

Lemma 4 CL ↓ (d, R) is the set of the roots of proof trees with respect to Rd.

Proof. straightforward �

It is important to note that some proof trees do not correspond to any chaotic iteration.
We are interested in the proof trees corresponding to a chaotic iteration.

Example 10 Continuation of example 1
Let us consider the CSP defined in example 1. Six reduction rules are associated to the
constraints of the CSP:

• r1 of type ({y}, {x}) and r2 of type ({x}, {y}) for x < y.

• r3 of type ({z}, {y}) and r4 of type ({y}, {z}) for y < z.

• r5 of type ({z}, {x}) and r6 of type ({x}, {z}) for z < x.

Figure 2 shows three different proof trees rooted by (x, 0). For example, the first one
says: (x, 0) is removed from the global domain because (y, 1) and (y, 2) are removed from
the global domain. (y, 1) is removed from the global domain because (z, 2) is removed
from the global domain and so on . . . The first and third proof trees correspond to some
chaotic iterations. But the second one does not correspond to any (because (x, 0) could
not disappear twice).

We provide now the definition of an explanation set.

Definition 11 We call an explanation set for h ∈ G a set of local consistency operators
E ⊆ R such that h 6∈ CL ↓ (d,E).

From now on, we consider a fixed chaotic iteration d = d0, d1, . . . , di, . . . such that
dω = CL ↓ (d, R). In this context, to each h ∈ d \ dω, we can associate one and only one
integer i ≥ 1 such that h ∈ di−1 \di. This integer is the step in the chaotic iteration where
h is removed of the global domain.

12

(x, 0)

(y, 1)

(z, 2)

(y, 2)

(x, 0)

(y, 1)

(x, 0)

(y, 2)

(x, 0)

Figure 2: Proof trees for (x, 0)

Definition 12 If h ∈ d\dω, we denote by step(h), the integer i ≥ 1 such that h ∈ di−1\di.
If h 6∈ d then step(h) = 0.

We know that when an element is removed, there exists a proof tree rooted by this
element. This proof tree uses a set of local consistency operators. These operators are
responsible of this value withdrawal. We give a notation for such a set in the following
definition.

Definition 13 Let t a proof tree. We denote by expl set(t) the set of local consistency
operators: {rstep((x,e)) | (x, e) has an occurrence in t}.

Note that an explanation set is independent of any chaotic iteration in the sense of:
if an explanation set is responsible of a value withdrawal then whatever is the chaotic
iteration used, this set of operators will always remove this element.

Theorem 1 If t is a proof tree, then expl set(t) is an explanation set for root(t).

Proof. By lemma 4. �

We have defined explanation sets which are independent of the computation. So, when
a value is removed during a computation, we are able to obtain a set local consistency
operators responsible of this removal and thus a set of constraints linked to these operators.
This can be useful for failure analysis.

But we are interested in an other problem which is the debugging of constraint pro-
grams. In this framework, it is useful to have more accurate knowledge than sets of
operators. So, the structure of proof trees which contains a notion of causality for the
removals, provides us more information.

In order to compute incrementaly the explanations from a chaotic iteration, we define
the set of proof trees Si which can be constructed at a step i ∈ IN of a chaotic iteration.
Obviously, before any computation, it only contains the trees without sub-trees rooted by
the elements which are not in the initial domain. At each step, we construct the new trees
with the trees of the previous steps and the local consistency operator used at this step.
More formally:

13

Definition 14 Let the family (Si)i∈IN defined by:

• S0 = {cons(h, ∅) | h 6∈ d},

• Si+1 = Si ∪ {cons(h, T) | h ∈ di, T ⊆ Si, h← {root(t) | t ∈ T} ∈ Rri+1}.

Lemma 5 {root(t) | t ∈ Si} = di.

Proof. By induction on i: S0 obviously checks this property.
We suppose {root(t) | t ∈ Si} = di and we prove

1. {root(t) | t ∈ Si+1} ⊆ di+1. Let h the root of t such that t ∈ Si+1. There
exists two cases:

• t ∈ Si, then h ∈ di, then h ∈ di+1 because di ⊆ di+1.
• t 6∈ Si. There exists h ← B ∈ Rri+1 , h ∈ di and ∀b ∈ B, b =

root(tb), tb ∈ Si. So, b ∈ di, thus h ∈ ri+1(di) ∪ di = di+1.

2. di+1 ⊆ {root(t) | t ∈ Si+1}. Let h ∈ di+1. There exists two cases:

• h ∈ di, then h ∈ {root(t) | t ∈ Si}, then h ∈ {root(t) | t ∈ Si+1}.
• h ∈ di, then ∃h ← B ∈ Rri+1 and ∀b ∈ B, b ∈ di. That is B =
{root(t) | t ∈ T} and cons(h, T) ∈ Si+1, that is h ∈ {root(t) | t ∈
Si+1}.

�

The previous lemma is reformulated in the following corollary which ensures that each
element removed from d during a chaotic iteration is the root of a tree of ∪i∈INSi.

Corollary 1 {root(t) | t ∈ ∪i∈INSi} = CL ↓ (d,R).

Proof.

{root(t) | t ∈ ∪i∈INSi} = ∪i∈IN{root(t) | t ∈ Si}
= ∪i∈INdi by lemma 5
= dω

= CL ↓ (d, R)

�

(x, 0, r1)

(y, 1, r3)

(z, 2, r6)

(y, 2, r3)

Figure 3: Explanation tree for (x, 0)

From a proof tree, we can obtain the local consistency operators used with the function
step. It could be interesting to have this information directly in the tree. So, we consider
an explanation tree as a proof tree such that, to each element h of the tree, we add the

14

local consistency operator corresponding to step(h). For example, the first proof tree of
Figure 2 provides the explanation tree of Figure 3. The corresponding explanation set is
{r1, r3, r6}.

In this last section, we have provided the theoretical foundations of value withdrawal
explanations. We will use them to explain failures and error diagnosis but this is not in
the scope of this report.

6 Conclusion

This report has given the theoretical model for the solvers on finite domains by domain
reduction. This model is language independent and can be applied to each platform of the
partners: GNU-Prolog, CHIP and PaLM. This model takes several consistencies (partial
and full hyper-arc consistency of GNU-Prolog for example) into account and is well suited
to define explanations and traces.

This model rests on reduction operators and chaotic iteration. Reduction operators
are defined from the constraint and the consistency used. These operators are applied
among a chaotic iteration which ensures to take all of them into account. The order of
invocation of the operators depends on the strategy used by the solver and is out of the
scope of this report.

In the fourth part of the report, we were motivated by the explanations, that is to
be able to answer to the question: Why this value does not appear in any solution ? So,
we did not have to consider the global domain but its complementary, that is the set of
removed values. A deduction rule is able to explain the propagation mechanism. It says
us: these values are not in the current global domain, so this one can be removed too.

The linking of these rules defines proof trees. These trees explain the withdrawal of a
value from the beginning of the computation to the value withdrawal. Only the elements
responsible of the value withdrawal appears in these trees. We have defined explanations
sets, that is sets of operators responsible of a value withdrawal, which can be sufficient for
several applications.

Narrowing and labeling are interleaved during a resolution. So the next step of our
work will include the labeling stage in this model. Finally we will take the language into
account.

This report has benefited from works and discussions with EMN.

References

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook
of Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathe-
matics, chapter C.7, pages 739–782. North-Holland Publishing Company, 1977.

[2] A. Aggoun, F. Bueno, M. Carro, P. Deransart, M. Fabris, W. Drabent, G. Fer-
rand, M. Hermenegildo, C. Lai, J. Lloyd, J. Ma luszyński, G. Puebla, and A. Tessier.
CP debugging needs and tools. In M. Kamkar, editor, International Workshop on
Automated Debugging, volume 2 of Linköping Electronic Articles in Computer and
Information Science, pages 103–122, 1997.

15

[3] K. R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1–2):179–210, 1999.

[4] K. R. Apt. The role of commutativity in constraint propagation algorithms. ACM
TOPLAS, 22(6):1002–1034, 2000.

[5] F. Benhamou. Heterogeneous constraint solving. In M. Hanus and M. Rofŕıguez-
Artalejo, editors, International Conference on Algebraic and Logic Programming,
volume 1139 of Lecture Notes in Computer Science, pages 62–76. Springer-Verlag,
1996.

[6] F. Benhamou and F. Goualard. A visualization tool for constraint program debug-
ging. In International Conference on Automated Software Engineering, pages 110–117.
IEEE Computer Society Press, 1999.

[7] P. Codognet and D. Diaz. Compiling constraints in clp(fd). Journal of Logic Pro-
gramming, 27(3):185–226, 1996.

[8] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions math-
ematical foundation. In Symposium on Artificial Intelligence and Programming Lan-
guages, volume 12(8) of ACM SIGPLAN Not., pages 1–12, 1977.

[9] G. Ferrand and A. Tessier. Positive and negative diagnosis for constraint logic pro-
grams in terms of proof skeletons. In M. Kamkar, editor, International Workshop on
Automated Debugging, volume 2 of Linköping Electronic Articles in Computer and
Information Science, pages 141–154, 1997.

[10] C. Guéret, N. Jussien, and C. Prins. Using intelligent backtracking to improve branch
and bound methods: an application to open-shop problems. European Journal of
Operational Research, 127(2):344–354, 2000.

[11] N. Jussien. Relaxation de Contraintes pour les Problèmes dynamiques. PhD thesis,
Université de Rennes 1, 1997.

[12] K. Marriott and P. J. Stuckey. Programming with Constraints: An Introduction. MIT
Press, 1998.

[13] M. Meier. Debugging constraint programs. In U. Montanari and F. Rossi, editors,
International Conference on Principles and Practice of Constraint Programming, vol-
ume 976 of Lecture Notes in Computer Science, pages 204–221. Springer-Verlag, 1995.

[14] U. Montanari and F. Rossi. Constraint relaxation may be perfect. Artificial Intelli-
gence, 48:143–170, 1991.

[15] A. Tessier and G. Ferrand. Declarative diagnosis in the CLP scheme. In P. Deransart,
M. Hermenegildo, and J. Ma luszyński, editors, Analysis and Visualisation Tools for
Constraint Programming, volume 1870 of Lecture Notes in Computer Science, chap-
ter 5, pages 151–176. Springer-Verlag, 2000.

[16] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

16

[17] M. H. Van Emden. Value constraints in the CLP scheme. In International Logic
Programming Symposium, post-conference workshop on Interval Constraints, 1995.

[18] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Program-
ming. MIT Press, 1989.

17

