
Explanations and Proof Trees

Gérard Ferrand and Willy Lesaint and Alexandre Tessier
Laboratoire d’Informatique Fondamentale d’Orléans

Rue Léonard de Vinci – BP 6759 – 45067 Orléans Cedex 2 – France
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Introduction
This paper proposes a model for explanations in a set the-
oretical framework using the notions of closure or fixpoint.
In this approach, sets of rules associated with monotonic op-
erators allow to define proof trees (Aczel 1977). The proof
trees may be considered as a declarative view of the trace of
a computation. We claim they are explanations of the result
of a computation.

First, the general scheme is given.
This general scheme is applied to Constraint Logic Pro-

gramming, two notions of explanations are given: positive
explanations and negative explanations. A use for declara-
tive error diagnosis is proposed.

Next, the general scheme is applied to Constraint Pro-
gramming. In this framework, two definitions of explana-
tions are described as well as an application to constraint
retraction.

Proof trees and fixpoint
Our model for explanations is based on the notion of proof
tree. To be more precise, from a formal point of view we
see an explanation as a proof tree, which is built with rules.
Here is an example: the following tree

a
/|\
b c d
| / \
e f g

is built with 7 rules including the rule a← {b, c, d}; the rule
b ← {e}; the rule e ← ∅ and so on. From an intuitive point
of view the rule a← {b, c, d} is an immediate explanation of
a by the set {b, c, d}, the rule e ← ∅ is a fact which means
that e is given as an axiom. The whole tree is a complete
explanation of a.

For legibility purpose, we do not write braces in the body
of rules: the rule a ← {b, c, d} is written a ← b, c, d, the
fact e← ∅ is written e←.

Rules and proof trees
Rules and proof trees (Aczel 1977) are abstract notions
which are used in various domains in logic and computer
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science such as proof theory (Prawitz 1965) or opera-
tional semantics of programming languages (Plotkin 1981;
Kahn 1987; Despeyroux 1986).

A rule h← B is merely a pair (h, B) where B is a set. If
B is empty the rule is a fact denoted by h←. In general h is
called the head and B is called the body of the rule h← B.
In some contexts h is called the conclusion and B the set of
premises.

A tree is well founded if it has no infinite branch. In any
tree t, with each node ν is associated a rule h ← B: h is
the label of ν and B is the set of the labels of the children
of ν. Note that B may be infinite. Obviously with a leaf is
associated a fact.

A set of rulesR defines a notion of proof tree: a tree t is a
proof tree wrtR if it is well founded and the rules associated
with its nodes are inR.

Monotonic operators, fixpoints and closures

In logic and computer science, interesting sets are often de-
fined as least fixpoints of monotonic operators. Our frame-
work is set-theoretical, so here an operator is merely a map
T : P(S) → P(S) where P(S) is the power set of a set S.
T is monotonic if X ⊆ Y ⊆ S ⇒ T (X) ⊆ T (Y ). From
now on, T is supposed monotonic.

X is a fixpoint of T if T (X) = X . Note that if X is a
fixpoint of T and Y ⊆ X then T (Y ) ⊆ X (since T (Y ) ⊆
T (X) = X). So T (T (Y )) ⊆ X ,..., T n(Y ) ⊆ X for n ≥ 0.

The least X such that T (X) ⊆ X exists (it is the inter-
section of all these X) and it is also the least fixpoint of
T , denoted by lfp(T ) (it is a particular case of the classical
Knaster-Tarski theorem). Since lfp(T ) is the least X such
that T (X) ⊆ X , to prove lfp(T ) ⊆ X it is sufficient to
prove T (X) ⊆ X . It is the principle of proof by induction.

Since ∅ ⊆ lfp(T ), T n(∅) ⊆ lfp(T ) for n ≥ 0. This
gives approximations which will be used below for comput-
ing lfp(T ) by iterations.

Now let R be a given set of rules. In practice a set S is
supposed to be given such that h ∈ S and B ⊆ S for each
rule (h← B) ∈ R. In this context the set of rulesR defines
the operator TR : P(S)→ P(S) by

TR(X) = {h | ∃B ⊆ X, (h← B) ∈ R}

which is obviously monotonic.



For example, h ∈ TR(∅) if and only if h← is a fact ofR;
h ∈ TR(TR(∅)) if and only if there is a rule h ← B in R
such that b← is a rule (fact) ofR for each b ∈ B; it is easy
to see that the members of T n

R(∅) are proof tree roots.
Conversely, in this set-theoretical framework, each mono-

tonic operator T is defined by a set of rules, that is to say
T = TR for some R (for example take the trivial rules
h← B such that h ∈ T (B)).

Now to prove lfp(TR) ⊆ X by induction, that is to say to
prove merely TR(X) ⊆ X , is exactly to prove B ⊆ X ⇒
h ∈ X for each rule h← B in R.

A significant property is that the members of the least fix-
point of TR are exactly the proof tree roots wrt R. Let R
the set of the proof tree roots wrt R. It is easy to prove
lfp(TR) ⊆ R by induction. R ⊆ lfp(TR) is also easy to
prove: if t is a proof tree, by well-founded induction all the
labels of the nodes of t are in lfp(TR).

Note that for each monotonic operator T there are possi-
bly many R such that T = TR. In each particular context
there is often oneR that is natural, which can provide a no-
tion of explanation for the membership of the least fixpoint
of T . Here, the operator T is associated to a program and
there exists a set of rules that can be naturally deduced from
the program and that give an interesting notion of explana-
tions for the members of the least fixpoint of T .

Sometimes an interesting set is not directly defined as
least fixpoint of a monotonic operator, it is defined as up-
ward closure of a set by a monotonic operator, but it is ba-
sically the same machinery: the upward closure of X by T
is the least Y such that X ⊆ Y and T (Y ) ⊆ Y , that is
to say the least Y such that X ∪ T (Y ) ⊆ Y , which is the
least fixpoint of the operator Y 7→ X ∪ T (Y ) (but it is not
necessarily a fixpoint of T itself).

Several operators Ti : P(S) → P(S) (i ∈ I) may be
considered together and the interesting set is the common
least fixpoint, which is the least fixpoint of the operator T
defined by T (X) =

⋃
i∈I Ti(X).

Iterations
The least fixpoint of a monotonic operator T : P(S) →
P(S) can be computed by iterating T from the empty set:
Let X0 = ∅, Xn+1 = T (Xn). It is easy to see that we have
X0 ⊆ X1 ⊆ · · · ⊆ Xn and that Xn ⊆ lfp(T ). If S is finite,
obviously for some natural number n we have Xn = Xn+1.
It is easy to see that Xn = lfp(T ).

In the general case the iteration must be transfinite: n may
be any ordinal, and Xn =

⋃
ν<n Xν if n is a limit ordinal.

Then for some ordinal α we have Xα = Xα+1 which is
lfp(T ). The first such α is the (upward) closure ordinal of
T .

In practice S is not necessarily finite but often T = TR for
a setR of rules which are finitary, that is to say, in each rule
h← B, B is finite. In that case the closure ordinal of T is≤
ω (ω is the first limit ordinal) that is to say lfp(T ) = Xω =⋃

n<w Xn =
⋃

n∈N
Xn (intuitively, the natural numbers are

sufficient because each proof tree is a finite tree).
More generally the upward closure of X by T can be

computed by iterating T from X by defining: X0 =
X, Xn+1 = Xn ∪ T (Xn), · · ·.

The upward closure of X by several operators Ti :
P(S) → P(S) (i ∈ I) is the least Y such that X ⊆ Y and
Ti(Y ) ⊆ Y for each i ∈ I . Instead of computing this clo-
sure by using T (X) =

⋃
i∈I Ti(X), in practice, it is more

efficient to use a chaotic iteration (Cousot & Cousot 1977;
Fages, Fowler, & Sola 1995; Apt 1999) of the Ti (i ∈ I),
where at each step only one Ti is chosen and applied: X0 =
X, Xn+1 = Xn ∪ Tin+1

(Xn), · · · where in+1 ∈ I . The se-
quence i1, i2, · · · is called run and is a formalization of the
choices of the Ti. If S is finite obviously for some natural
number n we have Xn = Xn+1 that is to say Tin+1

(Xn) ⊆
Xn but Xn is the closure only if Ti(Xn) ⊆ Xn for all i ∈ I .
If I is also finite it is easy to see that finite runs i1, i2, · · · , in
exist such that Xn is the closure, for example by choosing
each i in turn.

In general, from a theoretical point of view a fairness con-
dition on the (infinite) run is presupposed to ensure that the
closure is reached, such a run is called a fair run, but the de-
tails are beyond the scope of the paper. For the application
below to Constraint Satisfaction Problems, I and S may be
supposed to be finite.

Duality and negative information

Sometimes the interesting sets are greatest fixpoint or down-
ward closures of some monotonic operators.

Each monotonic operator T : P(S)→ P(S) has a great-
est fixpoint, denoted by gfp(T ), that is to say the greatest
X such that T (X) = X . In fact gfp(T ) is also the great-
est X such that X ⊆ T (X). It is the reason why to prove
X ⊆ gfp(T ) it is sufficient to prove X ⊆ T (X) (principle
of proof by co-induction).

The downward closure of X by T is the greatest Y such
that Y ⊆ X and Y ⊆ T (Y ), that is to say the greatest Y
such that Y ⊆ X ∩ T (Y ), which is the greatest fixpoint of
the operator Y 7→ X ∩ T (Y ) (but it is not necessarily a
fixpoint of T itself).

Several operators Ti : P(S) → P(S) (i ∈ I) may be
considered together and the interesting set is the common
greatest fixpoint, which is also the greatest fixpoint of the
operator T defined by T (X) =

⋂
i∈I Ti(X).

Greatest fixpoint and downward closure can be computed
by iterations, similar to the iterations of the previous sub-
section, but now iterations are downward (the previous it-
erations are said to be upward), reversing ⊆, replacing ∪
by ∩ and replacing ∅ by S. Each monotonic operator has a
(downward) closure ordinal which is obviously finite (natu-
ral number) if S is a finite set. If S is infinite, the downward
closure ordinal may be > ω even if the upward closure or-
dinal is ≤ ω, for example, it is the case for the application
to constraint logic programming (but it is outside the scope
of this paper).

But this apparent symmetry between least fixpoint and
greatest fixpoint is misleading because we are mainly inter-
ested in the notion of proof tree, as a model for explanations,
so we are interested in R, set of rules, which defines an op-
erator T = TR. It is only the least fixpoint of TR which
has the significant property that its members are exactly the
proof tree roots wrt R. The greatest fixpoint can be also



described in terms of trees, but theses trees are not necessar-
ily well founded and they are not in the scope of this paper.
In this paper a tree must be well founded in order to be an
explanation.

However, concerning greatest fixpoint and downward clo-
sure, we are going to see that a proof tree can be an explana-
tion for the non-membership that is to say to deal with nega-
tive information. It is possible because in this set-theoretical
framework we can use complementation: for X ⊆ S, the
complementary S − X is denoted by X. The dual of
T : P(S) → P(S) is the operator T ′ : P(S) → P(S)

defined by T ′(X) = T (X). T ′ is obviously monotonic if
T is monotonic. X is a fixpoint of T ′ if and only if X
is a fixpoint of T . Since X ⊆ Y if and only if Y ⊆ X ,
gfp(T ) = lfp(T ′) and gfp(T ) = lfp(T ′). So if R′ is a nat-
ural set of rules defining T ′, a proof tree wrt R′ can provide
a natural notion of explanation for the membership of the
complementary of the greatest fixpoint of T since it is the
membership of the least fixpoint of T ′.

Concerning iterations it is easy to see that downward iter-
ations which compute greatest fixpoint of T and downward
closures can be uniformly converted by complementation
into upward iterations which compute least fixpoint of T ′

and upward closures.

Explanations for diagnosis
Intuitively, let us consider that a set of rulesR is an abstract
formalization of a computational mechanism so that a proof
tree is an abstract view of a trace. The results of the possible
computations are proof tree roots wrt R that is to say mem-
bers of the least fixpoint of a monotonic operator T = TR.
Infinite computations related to non-well founded trees and
greatest fixpoint are outside the scope of this paper. For ex-
ample, in the application below to Constraint Satisfaction
Problems the formalization uses a greatest fixpoint but in
fact by the previous duality we consider proof trees related
to a least fixpoint.

Now let us consider that the set of rules R may be er-
roneous, producing non expected results: some r ∈ lfp(T )
are non expected and some others r ∈ lfp(T ) are expected.
From a formal viewpoint this is represented by a set E ⊆ S
such that, for each r ∈ S, r is expected if and only if r ∈ E.
r ∈ lfp(T ) − E (a non expected result) is called a symp-
tom wrt to E. If there exists a symptom, lfp(T ) 6⊆ E so
T (E) 6⊆ E (otherwise lfp(T ) ⊆ E by the principle of proof
by induction). T (E) 6⊆ E means that there exists a rule
h ← B in R such that B ⊆ E but h 6∈ E. Such a rule
is called an error wrt to E. Intuitively it is the existence of
errors which explains the existence of symptoms. Diagnosis
consists in locating errors inR from symptoms.

Now the notion of proof tree can explain how an error can
be a cause of a symptom: if r is a symptom it is the root of a
proof tree t wrt R. In t we call symptom node a node whose
label is a symptom (there is at least a symptom node which
is the root). Since t is well founded, the relation parent-child
is well founded, so there is at least a minimal symptom node
wrt this relation. The rule h← B associated with a minimal
symptom node is obviously an error since h is a symptom but

no b ∈ B is a symptom. The proof tree t is an abstract view
of a trace of a computation which has produced the symptom
r. It explains how erroneous information is propagated to the
root. Moreover by inspecting some nodes in t it is possible
to locate an error.

Constraint Logic Programming
We consider the general scheme of Constraint Logic Pro-
gramming (Jaffar et al. 1998) called CLP(X), where X is
the underlying constraint domain. For example, X may be
the Herbrand domain, infinite trees, finite domains, N, R...

Two kinds of atomic formula are considered in this
scheme: constraints (with built-in predicates) and atoms
(with program predicates, i.e. predicates defined by the pro-
gram).

A clause is a formula

a0 ← c ∧ a1 ∧ · · · ∧ an

(n ≥ 0) where the ai are atoms and c is a (possibly empty)
conjunction of constraints. In order to simplify, we assume
that each ai is an atom pi(x

i
1, . . . , x

i
ki

) and all the variables
xi

j (i = 0, . . . , n, j = 1, . . . , ki) are differents. This is
always possible by adding equalities to the conjunction of
constraints c.

Each program predicate p is defined by a set of clauses:
the clauses that have an atom with the predicate symbol p
in the left part (the head of the clause), this set of clauses is
called the packet of p.

A constraint logic program is a set of clauses.

Positive Answer
In Constraint Logic Programming, an answer to a goal← a
(a is an atom) is a formula c → a where c is a conjunction
of constraints, c → a is a logical consequence of the pro-
gram. Considering the underlying constraint domain, if v is
a valuation solution of c, then v(a) belongs to the semantics
of the program. If no valuation satisfies c then the answer is
not interesting (because c is false and false → a is always
true). A reject criterion tests the satisfiability of the con-
junction of constraints built during the computation in order
to end the computation when it detects that the conjunction
is unsatisfiable. The reject criterion is often incomplete and
it just ensures that rejected conjunctions of constraints are
unsatisfiable in the underlying constraint domain. From an
operational viewpoint, the reject criterion may be seen as an
optimization of the computation (needless to continue the
computation when the conjunction of constraints has no so-
lution).

A monotonic operator may be defined such that its least
fixpoint provides the semantics of the program. A candidate
is an operator similar to the well known immediate conse-
quence operator (often denoted by TP ) in the framework of
pure logic programming (logic programming is a particular
case of constraint logic programming where unification is
seen as equality constraint over terms).

A set of rules may be associated with this monotonic
operator. For example, a convenient set of rules is the
set of all the v(a0) ← v(a1), . . . , v(an) such that a0 ←



c∧a1∧· · ·∧an is a clause of the program and v is a valuation
solution of c. This set of rules basically provides a notion of
explanation. Because of the clause, if v(a1), . . . , v(an) be-
long to the semantics of the program, then v(a0) belongs to
the semantics of the program. The point is that the expla-
nations defined by this set of rules are theoretical because
they cannot always be expressed in the language of the pro-
gram (for example, if the constraint domain is R, each value
of the domain does not correspond to a constant of the pro-
gramming language). Moreover it is better to use the same
language for the program answers and their explanations.

Another monotonic operator may be defined such that its
least fixpoint is the set of answers (c → a), that is the oper-
ational semantics of the program.

Again, we can give a set of rules which inductively defines
the operator. The rules come directly from the clauses of the
program and the reject criterion (Ferrand & Tessier 1997).
The rules may be defined as follows:

• for all renamed clause a0 ← c ∧ a1 ∧ · · · ∧ an

• for all conjunction of constraints c1, . . . , cn

we have the rule:

(c0 → a0)← (c1 → a1), . . . , (cn → an)

where c0 is not rejected by the reject criterion and c0 is de-
fined by c0 = ∃−a0

(c ∧ c1 ∧ · · · ∧ cn), ∃−a0
denotes the

existential quantification except on the variables of a0.
These rules provide another notion of explanation. For

each answer c → a, there exists an explanation rooted by
c → a. Moreover, each node of an explanation is also an
answer: a formula c → a. An answer is explained as a
consequence of other answers using a rule deduced from a
clause of the program. This notion of explanation has been
successfully used for declarative error diagnosis (Tessier &
Ferrand 2000) in the framework of algorithmic debugging
(Shapiro 1982) as shown later.

Negative Answer
Because of the non-determinism of constraint logic pro-
grams, another level of answer may be considered. It is built
from the answers of the first level. If c1 → a, . . . , cn → a
are the answers of the first level to a goal ← a, we have
c1 ∨ · · · ∨ cn → a in the program semantics. For the second
level of answer we now consider c1 ∨ · · · ∨ cn ← a.

The answers of the first level (the ci → a) are called pos-
itive answers because they provide positive information on
the goals (each solution of a ci is a solution of a) whereas the
answers of the second level (the c1∨· · ·∨cn ← a) are called
negative answers because they provide negative information
on the goals (there does not exist a solution of a which is not
a solution of a ci).

Again, the set of negative answers is the least fixpoint of a
monotonic operator. A set of rules may be naturally associ-
ated with the operator, each rule is defined using the packet
of clauses of a program predicate. The set of rules provides
a notion of negative explanation.

It is not possible to give in few lines the set of (negative)
rules because it requires several preliminary definitions (it
needs to define very rigorously the CSLD-search tree with

the notion of skeleton of partial explanations), but the reader
may find details about some systems of negative rules and
the explanations of negative answers in (Ferrand & Tessier
1997; 1998; Tessier 1997).

The nodes of a negative explanation are negative answers:
formula C ← a, where C is a disjunction of conjunctions of
constraints.

Links between explanations and computation
In this article, the notion of answer is defined when the com-
putation is finite, that is to say when the computation ends
and provides a result.

The notion of positive computation corresponds to the no-
tion of CSLD-derivation (Lloyd 1987; Jaffar et al. 1998), it
corresponds to the computation of a branch of the CSLD-
search tree. With each finite branch of the CSLD-search tree
is associated a positive answer (even when the CSLD-search
tree is not finite).

The notion of negative computation corresponds to the
notion of CSLD-resolution (Lloyd 1987; Jaffar et al. 1998),
it corresponds to the computation of the whole CSLD-search
tree. Thus a negative answer is associated only with a finite
CSLD-search tree.

A positive explanation explains an answer computed by a
finite CSLD-derivation (a positive answer) while a negative
explanation explains an answer computed by a finite CSLD-
search tree (negative answer).

The interesting point is that the nodes of the explanations
are answers, that is, an answer is explained as a consequence
of other answers.

The explanations defined here may be seen as a declara-
tive view of the trace: it contains all the declarative infor-
mation of the trace without the operational details. This
is important because in constraint logic programming, the
programmer may write its program using only a declarative
knowledge of the problem to solve. Thus it would be such a
great pity that the explanations of answers used operational
aspects of the computation.

Declarative Error Diagnosis
An unexpected answer of a constraint logic program is the
symptom of an error in the program. Because we have an
(unexpected) answer the computation is finite. If we have
a positive symptom, that is an unexpected positive answer,
the finite computation corresponds to a finite branch of the
CSLD-search tree. If we have a negative symptom, that is
an unexpected negative answer, then the CSLD-search tree
is finite.

Given some expected properties of a constraint logic pro-
gram, given a (positive or negative) symptom, using the pre-
vious notions of explanations (positive explanations or neg-
ative explanations), using the general scheme for diagnosis
given before, we can locate an error (or several errors) in a
constraint logic program. The diagnoser asks an oracle (in
practice, the user or a specification of the program) in order
to know if a node of the explanation is a symptom. The di-
agnoser searches for a minimal symptom in the explanation.
A minimal symptom exists because the root of the explana-
tion is a symptom and the explanation is well founded (it is



finite). The rule that links the minimal symptom to its chil-
dren is erroneous in some sense:

• If the symptom is a positive symptom, then it is a positive
rule and the clause used to define the rule is a positive
error: the clause is incorrect according to the expected
properties of the program. Moreover the constraint in the
minimal symptom provides a context in which the clause
is not correct.

• If the symptom is a negative symptom, then it is a nega-
tive rule and the packet of clauses used to define the rule
is a negative error: the packet of clauses is incomplete
according to the expected properties of the program.

Thanks to the diagnosis, the programmer knows the clause
or the packet of clause that is not correct and can fix its pro-
gram.

A positive symptom is a wrong positive answer. A nega-
tive symptom is a wrong negative answer, but it is also the
symptom of a missing positive answer. Another kind of neg-
ative error diagnosis has been developed for pure logic pro-
grams. It needs the definition of infinite (positive) explana-
tions. The set of roots of infinite positive explanations is the
greatest fixpoint of the operator defined by the positive rules.
Note that, if the programmer can notice that a positive an-
swer is missing then the CSLD-search tree is finite (there is a
negative answer). Thus, if a positive answer is missing, then
it is not in the greatest fixpoint of the operator defined by the
positive rules (in that case, the missing positive answer is not
also in the least fixpoint of the operator). Note however that,
in this context, the good notion refers to the greatest fixpoint
and infinite positive explanations. The principle of this other
error diagnosis for missing positive answer (Ferrand 1987;
1993) consists in trying to build an infinite positive explana-
tion rooted by the missing positive answer. Because it is not
in the greatest fixpoint, the building of the infinite positive
explanation fails. When it fails, it provides an error: a packet
of clauses insufficient according to the expected properties of
the program.

Constraint Satisfaction Problems
Constraint Satisfaction Problems (CSP) (Tsang 1993; Apt
2003; Dechter 2003) have proved to be efficient to model
many complex problems. Most of modern constraint solvers
(e.g. CHIP, GNUPROLOG, ILOG SOLVER, CHOCO) are
based on domain reduction to find the solutions of a CSP.
But these solvers are often black-boxes whereas the need
to understand the computations is crucial in many appli-
cations. Explanations have already prove their efficiency
for such applications. Furthermore, they are useful for
Dynamic Constraint Satisfaction Problems (Bessière 1991;
Schiex & Verfaillie 1993; Boizumault & Jussien 1997),
over-constrained problems (Jussien & Ouis 2001), search
methods (Prosser 1993; Ginsberg 1993; Boizumault, De-
bruyne, & Jussien 2000), declarative diagnosis (Ferrand, Le-
saint, & Tessier 2003). . .

Here, two notions of explanations are described:
explanation-tree and explanation-set. The first one corre-
sponds to the notion of proof tree. But the second one,
which can be deduced from explanation-tree, is sufficient

for the application to correctness of constraint retraction al-
gorithms. A more detailed model of these explanations for
constraint programming over finite domains is proposed in
(Ferrand, Lesaint, & Tessier 2002) and a more precise pre-
sentation of their application to constraint retraction can be
found in (Debruyne et al. 2003).

CSP and solutions
Following (Tsang 1993), a Constraint Satisfaction Problem
is made of two parts: a syntactic part and a semantic part.
The syntactic part is a finite set V of variables, a finite set C
of constraints and a function var : C → P(V ), which asso-
ciates a set of related variables to each constraint. Indeed, a
constraint may involve only a subset of V . For the seman-
tic part, we need to consider various families f = (fi)i∈I .
Such a family is referred to by the function i 7→ fi or by the
set {(i, fi) | i ∈ I}.

(Dx)x∈V is a family where each Dx is a finite non empty
set of possible values for x. We define the domain of com-
putation by D =

⋃
x∈V ({x} × Dx). This domain allows

simple and uniform definitions of (local consistency) oper-
ators on a power-set. For reduction, we consider subsets d
of D. Such a subset is called an environment. Let d ⊆ D,
W ⊆ V , we denote by d|W the set {(x, e) ∈ d | x ∈ W}.
d is actually a family (dx)x∈V with dx ⊆ Dx: for x ∈ V ,
we define dx = {e ∈ Dx | (x, e) ∈ d}. dx is the domain of
variable x.

Constraints are defined by their set of allowed tuples. A
tuple t on W ⊆ V is a particular environment such that
each variable of W appears only once: t ⊆ D|W and ∀x ∈
W, ∃e ∈ Dx, t|{x} = {(x, e)}. For each c ∈ C, Tc is a set
of tuples on var(c), called the solutions of c. Note that a
tuple t ∈ Tc is equivalent to a family (ex)x∈var(c) and t is
identified with {(x, ex) | x ∈ var(c)}.

We can now formally define a CSP and a solution:
A Constraint Satisfaction Problem (CSP) is defined by:

a finite set V of variables, a finite set C of constraints, a
function var : C → P(V ), a family (Dx)x∈V (the domains)
and a family (Tc)c∈C (the constraints semantics). A solution
for a CSP (V, C, var, (Dx)x∈V , (Tc)c∈C) is a tuple t on V
such as ∀c ∈ C, t|var(c) ∈ Tc.

Domain reduction
To find the possibly existing solutions, solvers are often
based on domain reduction. In this framework, monotonic
operators are associated with the constraints of the problem
with respect to a notion of local consistency (in general, the
more accurate is the consistency, the more expensive is the
computation). These operators are called local consistency
operators. In GNU-Prolog for example, these operators cor-
respond to the x in r (Codognet & Diaz 1996).

For the sake of clarity, we will consider in our presenta-
tion that each operator is applied to the whole environment,
but in practice, it only removes from the environments of one
variable some values which are inconsistent with respect to
the environments of a subset of V .

A local consistency operator is a monotonic function r :
P(D)→ P(D).



Classically (Benhamou 1996; Apt 1999), reduction oper-
ators are considered as monotonic, contracting and idempo-
tent functions. However, on the one hand, contractance is
not mandatory because environment reduction after apply-
ing a given operator r can be forced by intersecting its result
with the current environment, that is d ∩ r(d). On the other
hand, idempotence is useless from a theoretical point of view
(it is only useful in practice for managing the propagation
queue). This is generally not mandatory to design effec-
tive constraint solvers. We can therefore use only monotonic
functions to define the local consistency operators.

The solver semantics is completely described by the set
of such operators associated with the handled constraints.
More or less accurate local consistency operators may be se-
lected for each constraint. Moreover, this framework is not
limited to arc-consistency but may handle any local consis-
tency which boils down to domain reduction as shown in
(Ferrand, Lesaint, & Tessier 2002).

Of course local consistency operators should be correct
with respect to the constraints. In practice, to each constraint
c ∈ C is associated a set of local consistency operators R(c).
The set R(c) is such that for each r ∈ R(c), d ⊆ D and
t ∈ Tc: t ⊆ d⇒ t ⊆ r(d).

From a general point of view, domain reduction consists
in applying these local consistency operators according to
a chaotic iteration until to reach their common greatest fix-
point. Note that finite domains and chaotic iteration ensure
to reach this fixpoint.

Obviously, the common greatest fixpoint is an environ-
ment which contains all the solutions of the CSP. It is the
most accurate set which can be computed using a set of lo-
cal consistency operators.

In practice, constraint propagation is handled through a
propagation queue. The propagation queue contains local
consistency operators that may reduce the environment (in
other words, the operators which are not in the propagation
queue cannot reduce the environment). Informally, starting
from the given initial environment. for the problem, a local
consistency operator is selected from the propagation queue
(initialized with all the operators) and applied to the environ-
ment resulting to a new one. If a domain reduction occurs,
new operators are added to the propagation queue. Note that
the operators selection corresponds to the fair run.

Of course in practice, the computations needs to be finite.
Termination is reached when:

• a domain of variable is emptied: there is no solution to the
associated problem;

• the propagation queue is emptied: a common fix-point
(or a desired consistency state) is reached ensuring that
further propagation will not modify the result.

Explanations

Now, we detail two notions of explanations for CSP:
explanation-set and explanation-tree. These two notions ex-
plain why a value is removed from the environment. Note
that explanation-trees are both more precise and general than
explanation-sets, but explanation-sets are sufficient for the

following application to the correctness of constraint retrac-
tion algorithms.

Let R be the set of all local consistency operators. Let
h ∈ D and d ⊆ D. We call explanation-set for h w.r.t. d
a set of local consistency operators E ⊆ R such that h 6∈
CL ↓ (d, E).

Explanation-sets allow a direct access to direct and indi-
rect consequences of a given constraint c. For each h 6∈
CL ↓ (d, R), expl(h) represents any explanation-set for h.
Notice that for any h ∈ CL ↓ (d, R), expl(h) does not exist.

Several explanations generally exist for the removal of a
given value. (Jussien 2001) show that a good compromise
between precision (small explanation-sets) and ease of com-
putation of explanation-sets is to use the solver-embedded
knowledge. Indeed, constraint solvers always know, al-
though it is scarcely explicit, why they remove values from
the environments of the variables. By making that knowl-
edge explicit and therefore kind of tracing the behavior of
the solver, quite precise explanation-sets can be computed.
Indeed, explanation-sets are a compact representation of the
necessary constraints to achieve a given domain reduction.

A more complete description of the interaction of the con-
straints responsible for this domain reduction can be intro-
duced through explanation-trees which are closely related to
actual computation.

According to the solver mechanism, domain reduction
must be considered from a dual point of view. Indeed, we
are interested in the values which may belong to the solu-
tions, but the solver keeps in the domains values for which it
cannot prove that they do not belong to a solution. In other
words, it only computes proofs for removed values.

With each local consistency operator considered above,
can be associated its dual operator (the one removing val-
ues). Then, these dual operators can be defined by sets of
rules. Note that for each operator there can exists many such
systems of rules, but in general one is more natural to ex-
press the notion of local consistency used. Examples for
classical notions of consistency are developed in (Ferrand,
Lesaint, & Tessier 2002). First, we need to introduce the
notion of deduction rule related to dual of local consistency
operators.

A deduction rule is a rule h ← B such that h ∈ D and
B ⊆ D.

The intended semantics of a deduction rule h← B can be
presented as follows: if all the elements of B are removed
from the environment, then h does not appear in any solution
of the CSP and may be removed harmlessly i.e. elements of
B represent the support set of h.

A set of deduction rules Rr may be associated with each
dual of local consistency operator r. It is intuitively obvi-
ous that this is true for arc-consistency enforcement but it
has been proved in (Ferrand, Lesaint, & Tessier 2002) that
for any dual of local consistency which boils down to do-
main reduction it is possible to associate such a set of rules
(moreover it shows that there exists a natural set of rules
for classical local consistencies). Note that, in the general
case, there may exist several rules with the same head but
different bodies. We consider the set R of all the deduction
rules for all the local consistency operators of R defined by



R = ∪r∈RRr.
The initial environment must be taken into account in the

set of deduction rules: the iteration starts from an environ-
ment d ⊆ D; it is therefore necessary to add facts (deduction
rules with an empty body) in order to directly deduce the
elements of d: let Rd = {h← ∅ | h ∈ d} be this set.

A proof tree with respect to a set of rulesR∪Rd is a finite
tree such that for each node labelled by h, let B be the set of
labels of its children, h← B ∈ R ∪Rd.

Proof trees are closely related to the computation of do-
main reduction. Let d = d0, . . . , di, . . . be an iteration. For
each i, if h 6∈ di then h is the root of a proof tree with re-
spect to R ∪ Rd. More generally, CL ↓ (d, R) is the set of
the roots of proof trees with respect to R∪Rd.

Each deduction rule used in a proof tree comes from a
packet of deduction rules, either from a packet Rr defining
a local consistency operator r, or fromRd.

A set of local consistency operators can be associated with
a proof tree:

Let t be a proof tree. A set X of local consistency op-
erators associated with t is such that, for each node of t:
let h be the label of the node and B the set of labels of
its children: either h 6∈ d (and B = ∅); or there exists
r ∈ X, h← B ∈ Rr .

Note that there may exist several sets associated with a
proof tree. Moreover, each super-set of a set associated with
a proof tree is also convenient (R is associated with all proof
trees). It is important to recall that the root of a proof tree
does not belong to the closure of the initial environment d
by the set of local consistency operators R. So there exists
an explanation-set for this value.

If t is a proof tree, then each set of local consistency op-
erators associated with t is an explanation-set for the root of
t.

From now on, a proof tree with respect toR∪Rd is there-
fore called an explanation-tree. As we just saw, explanation-
sets can be computed from explanation-trees.

Let us consider a fixed iteration d = d0, d1, . . . , di, . . .
of R with respect to r1, r2, . . .. In order to incrementally
define explanation-trees during an iteration, let (S i)i∈N be
the family recursively defined as (where cons(h, T ) is the
tree defined by h is the label of its root and T is the set of its
subtrees, and where root(cons(h, T )) = h):

• S0 = {cons(h, ∅) | h 6∈ d};

• Si+1 = Si ∪ {cons(h, T ) | h ∈ di, T ⊆ Si, h ←
{root(t) | t ∈ T} ∈ Rri+1}.

It is important to note that some explanation-trees do not
correspond to any iteration, but when a value is removed
there always exists an explanation-tree in

⋃
i Si for this

value removal.
Among the explanation-sets associated with an

explanation-tree t ∈ Si, one is preferred. This explanation-
set is denoted by expl(t) and defined as follows (where
t = cons(h, T )):

• if t ∈ S0 then expl(t) = ∅;

• else there exists i > 0 such that t ∈ Si \ Si−1, then
expl(t) = {ri} ∪

⋃
t′∈T expl(t′).

In fact, expl(t) is expl(h) previously defined where t is
rooted by h.

Obviously explanation-trees are more precise than
explanation-sets. An explanation-tree describes the value re-
moval thanks to deduction rules. Each deduction rule comes
from a set of deduction rules that defines an operator. The
explanation-set just provides these operators.

Note also that in practice explanation-trees can easily be
extracted from a trace following the process described in
(Ferrand, Lesaint, & Tessier 2004).

In the following, we will associate a single explanation-
tree, and therefore a single explanation-set, to each element
h removed during the computation. This set will be denoted
by expl(h).

Constraint Retraction
We detail an application of explanations to constraint retrac-
tion algorithms (Debruyne et al. 2003). Thanks to explana-
tions, necessary conditions to ensure the correctness of any
incremental constraint retraction algorithms are given.

Dynamic constraint retraction is performed through the
three following steps (Georget, Codognet, & Rossi 1999;
Jussien 2001): disconnecting (i.e. removing the retracted
constraint), setting back values (i.e. reintroducing the values
removed by the retracted constraint) and repropagating (i.e.
some of the reintroduced values may be remove by other
constraints).

Disconnecting The first step is to cut the retracted con-
straints C ′ from the constraint network. C ′ needs to be
completely disconnected (and therefore will never get prop-
agated again in the future).

Disconnecting a set of constraint C ′ amounts to remove
all their related operators from the current set of active op-
erators. The resulting set of operators is Rnew ⊆ R, where
Rnew =

⋃
c∈C\C′ R(c). Constraint retraction amounts to

compute the closure of d by Rnew.

Setting back values The second step, is to undo the past
effects of the retracted constraints. Both direct (each time
the constraint operators have been applied) and indirect (fur-
ther consequences of the constraints through operators of
other constraints) effects of that constraints. This step re-
sults in the enlargement of the environment: values are put
back.

Here, we want to benefit from the previous computation
of di instead of starting a new iteration from d. Thanks
to explanation-sets, we know the values of d \ di which
have been removed because of a retracted operator (that is
an operator of R \ Rnew). This set of values is defined by
d′ = {h ∈ d | ∃r ∈ R \ Rnew, r ∈ expl(h)} and must
be re-introduced in the domain. Notice that all incremen-
tal algorithms for constraint retraction amount to compute
a (often strict) super-set of this set. The next result (proof
in (Debruyne et al. 2003)) ensures that we obtain the same
closure if the computation starts from d or from di ∪ d′ (the
correctness of all the algorithms which re-introduce a super-
set of d′):

CL ↓ (d, Rnew) = CL ↓ (di ∪ d′, Rnew)



Repropagating Some of the put back values can be re-
moved applying other active operators (i.e. operators asso-
ciated with non retracted constraints). Those domain reduc-
tions need to be performed and propagated as usual. At the
end of this process, the system will be in a consistent state.
It is exactly the state (of the domains) that would have been
obtained if the retracted constraint would not have been in-
troduced into the system.

In practice the iteration is done with respect to a sequence
of operators which is dynamically computed thanks to a
propagation queue. At the ith step, before setting values
back, the set of operators which are in the propagation queue
is Ri. Obviously, the operators of Ri∩Rnew must stay in the
propagation queue. The other operators (Rnew \ Ri) cannot
remove any element of di, but they may remove an element
of d′ (the set of re-introduced values). So we have to put
back in the propagation queue some of them: the operators
of the set R′ = {r ∈ Rnew | ∃h ← B ∈ Rr, h ∈ d′}. The
next result (proof in (Debruyne et al. 2003)) ensures that the
operators which are not in Ri ∪ R′ do not modify the envi-
ronment di ∪ d′, so it is useless to put them back into the
propagation queue (the correctness of all algorithms which
re-introduce a super-set of R′ in the propagation queue):

∀r ∈ Rnew \ (Ri ∪ R′), di ∪ d′ ⊆ r(di ∪ d′)

Therefore, by the two results, any algorithm which
restarts with a propagation queue including Ri ∪ R′ and an
environment including di ∪ d′ is proved correct.

Note that the presented constraint retraction process
encompasses both information recording methods and
recomputation-based methods. The only difference relies on
the way values to set back are determined. The first kind
of methods record information to allow an easy computa-
tion of values to set back into the environment upon a con-
straint retraction. (Bessière 1991) and (Debruyne 1996) use
justifications: for each value removal the applied responsi-
ble constraint (or operator) is recorded. (Fages, Fowler, &
Sola 1998) uses a dependency graph to determine the por-
tion of past computation to be reset upon constraint retrac-
tion. More generally, those methods amount to record some
dependency information about past computation. A gener-
alization (Boizumault, Debruyne, & Jussien 2000) of both
previous techniques rely upon the use of explanation-sets.

Note that constraint retraction is useful for Dynamic Con-
straint Satisfaction Problems but also for over-constrained
problems. Indeed, users often prefer to have a solution to a
relaxed problem than no solution for their problem. In this
case, explanation does not only allow to compute a solu-
tion to the relaxed problem but it may also helps the user
to choose the constraint to retract (Boizumault & Jussien
1997).

Conclusion
The paper recalls the notions of closure and fixpoint. When
program semantics can be described by some notions of clo-
sure or fixpoint, proof trees are suitable to provide explana-
tions: the computation has proved the result and a proof tree
is a declarative explanation of this result.

The paper shows two different domains where these no-
tions apply: Constraint Logic Programming (CLP) and Con-
straint Satisfaction Problems (CSP).

Obviously, these proof trees are explanations because they
can be considered as a declarative view of the trace of a com-
putation and so, they may help to understand how the results
are obtained. Consequently, debugging is a natural appli-
cation for explanations. Considering the explanation of an
unexpected result it is possible to locate an error in the pro-
gram (in fact an incorrect rule used to build the explanation,
but this rule can be associated to an incorrect piece of pro-
gram). As an example, the paper presents the declarative
error diagnosis of constraint logic programs. But the same
method has also been investigated for Constraint Program-
ming in (Ferrand, Lesaint, & Tessier 2003). In this frame-
work, a symptom is a removed value which was expected to
belong to a solution and the error is a rule associated with a
local consistency operator.

It is interesting to note the difference between the appli-
cation to CLP and CSP. In CLP, it is easier to understand a
wrong (positive) answer because a wrong answer is a logi-
cal consequence of the program then there exists a proof of
it (which should not exists). In CSP, it is easier to under-
stand a missing answer because explanations are proofs of
value removals. A finite domain constraint solver just tries
to prove that some values cannot belong to a solution, but it
does not prove that remaining values belong to a solution.

In Constraint Programming, when a constraint is removed
from the set of constraints, a first possibility is to restart the
computation of the new solutions from the initial domain.
But, it may be more efficient to benefit of the past compu-
tations. This is achieve by a constraint retraction algorithm.
The paper has shown how explanations can be used to prove
the correctness of a large class of constraint retraction al-
gorithm (Debruyne et al. 2003). In practice, such algo-
rithms use explanations, for dynamic problems, for intelli-
gent backtracking during the search, for failure analysis...
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