
Gentra4cp: a Generic Trace Format for

Constraint Programming?

Ludovic Langevine1 and The OADymPPaC RNTL Project Team??

SICS � Uppsala � Sweden, langevin@sics.se

Introduction. Several debugging tools have been designed for constraint pro-
gramming (CP). There is no ultimate tool, that satis�es all the needs, but rather
a set of complementary tools. Most of them are dynamic tools. They collect data
from the execution and produce abstract views of this execution, for instance a
search-tree, the evolution of some domains, or an application-speci�c display.

So far, there are two issues concerning CP debugging tools. Firstly, each tool
is dedicated to a given platform: there is no sharing of tools among the CP plat-
forms, whereas most of solvers are based on the same techniques. Secondly, the
extraction of execution data requires the solver to be instrumented. Such instru-
mentation is tedious and needs to access the solver code. We propose to address
those two issues by means of a generic trace format which allows the execution
to be described as a sequence of elementary events re�ecting the behavior of the
search procedure and the propagation process. The tools can then pick in the
trace the data they need.

The genericity of the trace format is twofold. It is generic with respect to
the tools since the trace contains all the data they need. It is also generic with
respect to the solvers, as the very same set of events can re�ect the executions of
many solvers. The di�cult and tedious work of instrumenting the solver is made
only once. The e�ciency of this scheme is ensured by an adaptation of the trace
to the needs of a speci�c tool. There exist four tracers implementing Gentra4cp,
namely for CHIP, Choco, PaLM and GNU-Prolog. Another tracer is currently
under implementation within SICStus Prolog. Several tools are freely available.

A Semantics to Specify the Trace. The trace is based on an abstraction of the
solver state, including the domains and the constraint store. This abstract state
speci�es what in the execution state can be observed by a tool. The trace format
de�nes a set of possible events that are elementary modi�cations of this state.
Each one of these events is speci�ed by a state transition rule [1]. This semantics
helps interpret the trace.

A Trace of Search and Propagation. The execution of a constraint program is
often viewed as the overlapping of two levels: search and propagation. The trace
format follows the same distinction.
? This work has been partly supported by the OADymPPaC project.

?? Pierre Deransart, François Fages (Inria), Jean-Daniel Fekete, Mohammad Ghoniem,
Narendra Jussien (EMN), Mireille Ducassé, Erwan Jahier (IRISA), Alexandre
Tessier, Willy Lesaint, Gerard Ferrand, Ali Ed-Dbali (LIFO).



2 Langevine and the OADymPPaC team

The search level is described by 9 di�erent events. Firstly, three events deal
with the creation of entities (creation of a variable, of a constraint, adding of a
constraint into the store). Three speci�c events are used to trace solutions, fail-
ures and choice-points. Most of search-strategies can be modeled as the traversal
of a search-tree. The jump-to event aims at tracing the restoration of a former
choice-point. The latter four events (solution, failure, choice-point and jump-
to) can trace any tree-based search strategy, such as chronological backtracking
associated to depth-�rst search, branch-and-bound, or dynamic backjumping.
Some search strategies cannot be described as a search-tree, for instance repair
techniques such as MAC-DBT. Two additional events, relax and restore allow
tracing the relaxation of a constraint and an elementary restoration of a domain.
It is thus possible to trace a large variety of search strategies [1].

Di�erent solvers exhibit di�erent propagation strategies (e.g. variable- or
constraint-oriented propagation queues, and some priorities). The trace format
models the common behaviors while allowing solver speci�c extensions. Six dif-
ferent events have been de�ned to trace the propagation process. They capture
the common concepts of the solvers we studied. Most of the di�erences of these
solvers are re�ected by the order in which those events occur. The reduce event
traces an elementary domain reduction. Four events describe the propagation
loop: the awakening of a constraint, its suspension, the detection of its entail-
ment or of its unsatis�ability. Those �ve events are generic: they can be found in
many constraint solvers, whatever the exact propagation strategy is. The sixth
event, schedule, is used to trace solver-speci�c aspects of the propagation.

Easy development of tools thanks to XML. The trace format is an XML dialect.
Since XML is a widely-used standard, an interested developer can choose among
dozens of libraries to parse the trace. XML answers the needs of trace structuring
thanks to attributes and nested elements: an event is an XML tag that encloses
all its attached data. WBXML, a binary representation using a table of symbols,
copes with the verbosity of XML and speeds up the parsing of the trace.

Trace Content Negotiation. The trace format makes for a potentially very
detailed description of the execution. This potential trace is not meant to be
exhaustively generated. The format provides a protocol between the debugging
tool and the tracer. This protocol is used to set the actual level of details. This
level of details can even be modi�ed during the execution. This protocol is �exible
enough to cope with the versatility of the tools and the evolution of their needs.

Evolution of the trace format. The OADymPPaC project is now �nished,
but the Gentra4cp format is still under development by instrumentation of new
solvers, (e.g. SICStus Prolog). In order to take advantage of these experiences,
a new SourceForge project has been set up (see http://tra4cp.sf.net).

References

1. The OADymPPaC Project. Generic trace format for constraint programming.
http://contraintes.inria.fr/OADymPPaC/Public/Trace/indexl.html, May 2004.


