
Theoretical Foundations of Value Withdrawal

Explanations for Domain Reduction

Gérard Ferrand, Willy Lesaint, and Alexandre Tessier

Laboratoire d’Informatique Fondamentale d’Orléans
rue Léonard de Vinci – BP 6759 – F-45067 Orléans Cedex 2 – France

{Gerard.Ferrand,Willy.Lesaint,Alexandre.Tessier}@lifo.univ-orleans.fr

Abstract. Solvers on finite domains use local consistency notions to
remove values from the domains. This paper defines value withdrawal
explanations. Domain reduction is formalized with chaotic iterations of
monotonic operators. To each operator is associated its dual which will
be described by a set of rules. For classical consistency notions, there
exists a natural such system of rules. They express value removals as
consequences of other value removals. The linking of these rules induc-
tively defines proof trees. Such a proof tree clearly explains the removal
of a value (the root of the tree). Explanations can be considered as the
essence of domain reduction.

1 Introduction

Constraint programming [18] is an important programming paradigm of the last
years. It combines declarativity of relational style and efficiency of constraint
solvers which are implemented for specific domains. We are interested here in
the constraints over finite domains [22, 23]. A constraint is a relation between
variables. In finite domains, each variable can only have a finite set of possible
values. The aim of constraint programming is to prove satisfiability or to find one
or all the solutions of a Constraint Satisfaction Problem (a set of variables with
their domains and a set of constraints). In theory, solutions can be obtained by an
enumeration of all the combination of values for the variables of the problem (the
labeling method). But in practice this method is very expensive, so one prefers to
interlace the labeling with domain reduction stages. Domain reduction consists in
eliminating some values from variable domains which cannot belong to a solution
according to the constraints. In general, these values are characterized by a
notion of local consistency. The labeling can be seen as additional constraints.
This paper only deals with the domain reduction part.

Several works [11, 5, 3] formalize domain reduction thanks to operators (these
operators reduce the variable domains). In practice, they are applied according
to different strategies. Chaotic iterations [8] have been used in order to describe
domain reduction from a theoretical general point of view. It ensures confluence,
that is to obtain the same reduced domain whatever the order of application
of the operators is. Domain reduction can then be described with notions of
fix-points and closures.

From another point of view, constraint community is also interested in ex-
planations (or nogoods). The notions of explanations seem to be an interest-
ing answer to constraint retraction problems: they have been used for dynamic
constraint satisfaction problems, over-constrained problems, dynamic backtrack-
ing, An explanation is roughly a set of constraints responsible for a value
withdrawal: domain reduction by this set of constraints, or any super-set of it,
will always remove this value. There exist other applications of the explana-
tions, among others debugging applications. See http://www.e-constraints.net
for more details.

This paper is an attempt to lay a theoretical foundation of value withdrawal
explanations in the above-mentioned framework of chaotic iteration. It presents
the first results obtained by the authors in the RNTL project OADymPPaC
(More details at http://contraintes.inria.fr/OADymPPaC/).

A first notion of explanation is defined as a set of operators (from which one
can find the set of constraints responsible for the value removal). A monotonic
operator can always be defined by a set of rules (in the sense of the inductive
definitions of Aczel [1]). A natural such system exists but is not computed, it
is just a theoretical tool to define explanations in our theoretical model. Rules
express value removals as consequences of other value removals. So, a more pre-
cise notion of explanation can be obtained: the linking of these rules allows to
inductively define proof trees. Such a proof tree clearly explains the removal of
a value (the root of the tree) by the solver and then, it is called an explanation
for this value withdrawal. It is important to note that the unique role of a solver
is to remove values and that our explanations are proof of these removals, that
is explanations are the essence of domain reduction.

The paper will be illustrated by examples in GNU-Prolog [7]. More exam-
ples, more detailled proofs of lemmas and some basic notions about monotonic
operators, closures, rules and proof trees can be found in [12]. The paper is or-
ganized as follows. Section 2 gives some notations and definitions for Constraint
Satisfaction Problems in terms of rules in a set theoretical style. Section 3 re-
calls in our formalism a model for domain reduction based on local consistency
operators and chaotic iterations. Section 4 associates deduction rules with this
model. Section 5 uses deduction rules in order to build explanations.

2 Preliminaries

We recall the definition of a constraint satisfaction problem as in [22]. The no-
tations used are natural to express basic notions of constraints involving only
some subsets of the set of all variables.

Here we only consider the framework of domain reduction as in [5, 7, 23].
A Constraint Satisfaction Problem (CSP) is made of two parts, the syntactic

part:

– a finite set of variable symbols (variables in short) V ;
– a finite set of constraint symbols (constraints in short) C;

– a function var : C → P(V), which associates with each constraint symbol
the set of variables of the constraint;

and a semantic part for which preliminaries are needed.
We are going to consider various families f = (fi)i∈I . Such a family can be

identified with the function i 7→ fi, itself identified with the set {(i, fi) | i ∈ I}.
We consider a family (Dx)x∈V where each Dx is a finite non empty set.

In order to have simple and uniform definitions of monotonic operators on a
power-set, we use a set which is similar to an Herbrand base in logic program-
ming: we define the global domain by D =

⋃
x∈V ({x}×Dx). We consider subsets

d of D. We denote by d|W the restriction of a set d ⊆ D to a set of variables
W ⊆ V , that is, d|W = {(x, e) ∈ d | x ∈ W}. We use the same notations for
the tuples (valuations). A global tuple t is a particular d such that each variable
appears only once: t ⊆ D and ∀x ∈ V, ∃e ∈ Dx, t|{x} = {(x, e)}. A tuple t on

W ⊆ V , is defined by t ⊆ D|W and ∀x ∈ W, ∃e ∈ Dx, t|{x} = {(x, e)}. So a global
tuple is a tuple on V .

Then the semantic part of the CSP is defined by:

– the family (Dx)x∈V (Dx is the domain of the variable x);
– a family (Tc)c∈C such that: for each c ∈ C, Tc is a set of tuples on var(c) (Tc

is the set of solutions of c).

A global tuple t is a solution to the CSP if ∀c ∈ C, t|var(c) ∈ Tc.
Let d ⊆ D, for x ∈ V , we define dx = {e ∈ Dx | (x, e) ∈ d}. To give any

d ⊆ D amounts to give a family (dx)x∈V with dx ⊆ Dx. So we can note: ∀x ∈ V ,
d|{x} = {x} × dx; d =

⋃
x∈V d|{x}; for d, d′ ⊆ D, (d ⊆ d′ ⇔ ∀x ∈ V, dx ⊆ d′x);

Example 1. We introduce a CSP which will be used in several examples through-
out the paper. Let us consider the CSP defined by:

– V = {x, y, z};
– C = {x < y, y < z, z < x};
– var(x < y) = {x, y}, var(y < z) = {y, z} and var(z < x) = {x, z};
– D = {(x, 0), (x, 1), (x, 2), (y, 0), (y, 1), (y, 2), (z, 0), (z, 1), (z, 2)};
– Tx<y = {{(x, 0), (y, 1)}, {(x, 0), (y, 2)}, {(x, 1), (y, 2)}},

Ty<z = {{(y, 0), (z, 1)}, {(y, 0), (z, 2)}, {(y, 1), (z, 2)}},
Tz<x = {{(x, 1), (z, 0)}, {(x, 2), (z, 0)}, {(x, 2), (z, 1)}};

To reduce the domains of variable means to replace each Dx by a subset dx

of Dx without losing any solution. Such dx is called a domain of the variable x

and d =
⋃

x∈V ({x} × dx) is called a domain. Dx is merely the greatest domain
of x.

Here, we focus on the reduction stage. Intuitively, we want all the solutions
to remain in the reduced domain and we attempt to approximate the smallest
domain containing all these solutions. So this domain must be an “approxima-
tion” of the solutions according to the subset ordering ⊆. Next section describes
a model for the computation of such approximations.

3 Domain reduction

A way to compute an approximation of the solutions is to associate with the
constraints a notion of local consistency which is expressed here by some lo-

cal consistency operators. The type of such an operator is (Win ,Wout) with
Win ,Wout ⊆ V . A local consistency operator is applied to the whole domain.
But in fact, it eliminates from the domains of Wout some values which are incon-
sistent with respect to the domains of Win and the local consistency notion used.
We introduce the use of local consistency operators by the following examples.

Example 2. Arc consistency is a simple and particular case of hyper-arc consis-
tency. Let c ∈ C with var(c) = {x, y} and d ⊆ D. The property of arc con-
sistency for d is: (1) ∀e ∈ dx, ∃f ∈ dy, {(x, e), (y, f)} ∈ Tc; (2) ∀f ∈ dy, ∃e ∈
dx, {(x, e), (y, f)} ∈ Tc.

We can associate with (1) the operator r defined by: r(d) = D|V \{x}∪{(x, e) ∈
D | ∃(y, f) ∈ d, {(x, e), (y, f)} ∈ Tc}. It is obvious that the property of arc
consistency is equivalent to d ⊆ r(d). Here, Wout = {x} and we can take Win =
{y}. There exist different possibilities to choose r, but for reasons which will
appear later this one is the most convenient. An operator associated with (2)
can be defined in the same way.

This example motivates the following definition.

Definition 1. A local consistency operator of type (Win ,Wout), Win ,Wout ⊆
V , is a monotonic function r : P(D)→ P(D) such that: ∀d ⊆ D,

– r(d)|V \Wout
= D|V \Wout

,

– r(d) = r(d|Win
).

We can note that r(d)|V \Wout
does not depend neither on d, nor on r and

that r(d)|Wout
only depends on d|Win

.

Definition 2. We say a domain d is r-consistent if d ⊆ r(d), that is, d|Wout
⊆

r(d)|Wout
.

The solver is described by a set of such operators associated with the con-
straints of the CSP. We can choose more or less accurate local consistency op-
erators for each constraint (in general, the more accurate they are, the more
expensive is the computation). Any notion of local consistency in the framework
of domain reduction may be expressed by such operators. Reduction operators
are associated with these operators in order to reduce the domains.

Definition 3. The reduction operator associated with the local consistency op-

erator r is the monotonic and contracting function d 7→ d ∩ r(d).

All the solvers proceeding by domain reduction may be formalized by op-
erators with this form. GNU-Prolog associates with each constraint as many
operators as variables in the constraint (Wout is always a singleton).

Example 3. In GNU-Prolog, these operators are written x in r [7], where r is a
range dependent on the domains of a set of variables. GNU-Prolog has two kinds
of local consistency: hyper-arc consistency and partial hyper-arc consistency.
The constraint x #= y (partial arc consistency) is implemented by two GNU-
Prolog rules x in min(y)..max(y) and y in min(x)..max(x). The rule x in

min(y)..max(y) uses the local consistency operator of type ({y}, {x}) defined
by r(d)|{x} = {(x, e) | min(dy) ≤ e ≤ max(dy)} where min(dy), max(dy)
are respectively the smallest and the greatest value in the domain of y. The
reduction operator associated with this local consistency operator computes the
intersection with the domain of x and is applied by activation of the rule.

The local consistency operators we use must not remove solutions from the
CSP. This is formalized in [12] by notions of correct operators that are not
essential here.

The solver applies the reduction operators one by one replacing the domain
with the one it computes. The computation stops when a domain of a vari-
able becomes empty (in this case, there is no solution), or when the reduction
operators cannot reduce the domain anymore (a common fix-point is reached).

From now on, we denote by R a set of local consistency operators (the set
of local consistency operators associated with the constraints of the CSP). A
common fix-point of the reduction operators associated with R starting from a
domain d is a domain d′ ⊆ d such that ∀r ∈ R, d′ = d′ ∩ r(d′), that is ∀r ∈ R,
d′ ⊆ r(d′). The greatest common fix-point is the greatest d′ ⊆ d such that
∀r ∈ R, d′ is r-consistent. To be more precise:

Definition 4. The downward closure of d by R, denoted by CL ↓ (d, R), is the

greatest d′ ⊆ D such that d′ ⊆ d and ∀r ∈ R, d′ ⊆ r(d′).

Note that CL ↓ (d, ∅) = d and CL ↓ (d, R) ⊆ CL ↓ (d, R′) if R′ ⊆ R.
The downward closure is the most accurate set which can be computed using

a set of (correct) local consistency operators in the framework of domain reduc-
tion. CL ↓ (d, R) can be computed by chaotic iterations introduced for this aim
in [11]. The following definition is taken up to Apt [2].

Definition 5. A run is an infinite sequence of operators of R, that is, a run

associates with each i ∈ IN (i ≥ 1) an element of R denoted by ri. A run is fair
if each r ∈ R appears in it infinitely often, that is, ∀r ∈ R, {i | r = ri} is infinite.

The downward iteration of the set of local consistency operators R from

the domain d ⊆ D with respect to the run r1, r2, . . . is the infinite sequence

d0, d1, d2, . . . inductively defined by: d0 = d; for each i ∈ IN, di+1 = di∩ri+1(di).
Its limit is ∩i∈INdi.

A chaotic iteration is an iteration with respect to a fair run.

Note that an iteration starts from a domain d which can be different from D.
This is more general and convenient for a lot of applications (dynamic aspects
of constraint programming for example).

The next well-known result of confluence [8, 11] ensures that any chaotic
iteration reaches the closure. Note that, since ⊆ is a well-founded ordering (i.e.

D is a finite set), every iteration from d ⊆ D is stationary, that is, ∃i ∈ IN, ∀j ≥
i, dj = di.

Lemma 1. The limit of every chaotic iteration of the set of local consistency

operators R from d ⊆ D is the downward closure of d by R.

Proof. Let d0, d1, d2, . . . be a chaotic iteration of R from d with respect to
r1, r2, Let dω be the limit of the chaotic iteration.

[CL ↓ (d, R) ⊆ dω] For each i, CL ↓ (d, R) ⊆ di, by induction: CL ↓ (d, R) ⊆
d0 = d. Assume CL ↓ (d, R) ⊆ di, CL ↓ (d, R) ⊆ ri+1(CL ↓ (d, R)) ⊆ ri+1(di)
by monotonicity. Thus, CL ↓ (d, R) ⊆ di ∩ ri+1(di) = di+1.

[dω ⊆ CL ↓ (d, R)] There exists k ∈ IN such that dω = dk because ⊆ is a
well-founded ordering. The run is fair, hence dk is a common fix-point of the set
of reduction operators associated with R, thus dk ⊆ CL ↓ (d, R) (the greatest
common fix-point).

Infinite runs and fairness are a convenient theoretical notion to state the
previous lemma. Every chaotic iteration is stationary, so in practice the com-
putation ends when a common fix-point is reached. Moreover, implementations
of solvers use various strategies in order to determine the order of invocation of
the operators. These strategies are used to optimize the computation, but this
is out of the scope of this paper.

In practice, when a domain of variable becomes empty, we know that there
is no solution, so an optimization consists in stopping the computation before
the closure is reached. In this case, we say that we have a failure iteration.

We have recalled here a model of the operational semantics for the solvers
on finite domains using domain reduction. This model is language independent
and general enough to be applied to different solvers. Furthermore it allows us
to define a notion of explanation.

Sometimes, when the domain of a variable becomes empty or when a value
is simply removed from a domain of a variable, the user wants an explanation
of this phenomenon [16]. The case of failure is the particular case where all
the values are removed. It is the reason why the basic event here is a value
withdrawal. Let us consider a chaotic iteration, and let us assume that at a step
a value is removed from the domain of a variable. In general, all the operators
used from the beginning of the iteration are not necessary to explain the value
withdrawal. It is possible to explain the value withdrawal by a subset of these
operators such that every chaotic iteration using this subset of operators removes
the considered value.

We can define an explanation set [16], which is a set of operators responsible
for a value withdrawal during a computation starting from a fixed domain d.

Definition 6. Let h ∈ D and d ⊆ D. We call explanation set for h wrt d a set

of local consistency operators E ⊆ R such that h 6∈ CL ↓ (d, E).

Since E ⊆ R, CL ↓ (d, R) ⊆ CL ↓ (d, E). So an explanation set E is indepen-
dent of any chaotic iteration with respect to R in the sense of: if the explanation

set is responsible for a value withdrawal then whatever the chaotic iteration used
is, the value will always be removed. Note that when h 6∈ d, then the empty set
is an explanation set for h.

For some applications (as debugging for example), we need a notion of expla-
nation which is finer than explanation set. We are interested in the dependency
between the values and the operators. This will be the purpose of section 5, but
before we need to associate systems of rules with the operators.

4 Deduction rules

We are interested by the value withdrawal, that is, when a value is not in a
domain but in its complementary. So we consider this complementary and the
“duals” of the local consistency operators. In this way, at the same time we reduce
the domain, we build its complementary. We associate rules systems (inductive
definition [1]) with these dual operators. These rules will be the constructors of
the explanations.

First we need some notations. Let d = D\d. In order to help the understand-
ing, we always use the notation d for a subset of D if intuitively it denotes the
complementary of a domain.

Definition 7. Let r be an operator, we denote by r̃ the dual of r defined by:

∀d ⊆ D, r̃(d) = r(d).

We need to consider sets of such operators as for local consistency operators.
Let R̃ = {r̃ | r ∈ R}. The upward closure of d by R̃, denoted by CL ↑ (d, R̃)
exists and is the least d′ such that d ⊆ d′ and ∀r ∈ R, r̃(d′) ⊆ d′ (see [12]).

Next lemma establishes the correspondence between downward closure of
local consistency operators and upward closure of their duals.

Lemma 2. CL ↑ (d, R̃) = CL ↓ (d, R).

Proof.

CL ↑ (d, R̃) = min{d′ | d ⊆ d′, ∀r̃ ∈ R̃, r̃(d′) ⊆ d′}
= min{d′ | d ⊆ d′, ∀r ∈ R, d′ ⊆ r(d′)}
= max{d′ | d′ ⊆ d, ∀r ∈ R, d′ ⊆ r(d′)}

In the same way we defined a downward iteration of a set of operators from
a domain, we define an upward iteration of a set of dual operators.

The upward iteration of R̃ from d ⊆ D with respect to r̃1, r̃2, . . . is the infinite

sequence δ0, δ1, δ2, . . . inductively defined by: δ0 = d and δi+1 = δi ∪ r̃i+1(δi).

We can rewrite the second item: δi+1 = δi ∪ ri+1(δi), that is, we add to δi

the elements of δi removed by ri+1.
If we consider the downward iteration from d with respect to r1, r2, . . ., then

the link between the downward and the upward iteration clearly appears by

noting that: δi ∪ r̃i+1(δi) = di ∩ ri+1(di), that is, δi+1 = di+1, and ∪j∈INδj =

CL ↑ (d, R̃) = CL ↓ (d, R) = ∩j∈INdi.

We have shown two points of view for the reduction of a domain d with respect
to a run r1, r2, In the previous section, we considered the reduced domain,
but in this section, we consider the complementary of this reduced domain, that
is, the set of elements removed of the domain.

Now, we associate rules in the sense of [1] with these dual operators. These
rules are natural to build the complementary of a domain and well suited to
provide proof trees.

Definition 8. A deduction rule of type (Win ,Wout) is a rule h← B such that

h ∈ D|Wout
and B ⊆ D|Win

.

A deduction rule h ← B can be understood as follow: if all the elements of
B are removed from the domain, then h does not participate in any solution of
the CSP and can be removed.

For each operator r ∈ R of type (Win ,Wout), we denote by Rr a set of
deduction rules of type (Win ,Wout) which defines r̃, that is, Rr is such that:
r̃(d) = {h ∈ D | ∃B ⊆ d, h← B ∈ Rr}. For each operator, this set of deduction
rules exists [12]. There exists possibly many such sets, but in general one is
natural in our context.

We provide an illustration of this model for arc consistency. Examples for
partial-arc consistency and hyper-arc consistency are provided in [12].

Example 4. Let us consider the local consistency operator r defined in example 2.

So r̃(d) = r(d) = {(x, e) ∈ D | ∀(y, f) ∈ d, {(x, e), (y, f)} 6∈ Tc}.
Let B(x,e) = {(y, f) | {(x, e), (y, f)} ∈ Tc}. Then it is easy to show that

B(x,e) ⊆ d ⇔ ∀(y, f) ∈ d, {(x, e), (y, f)} 6∈ Tc. So r̃(d) = {(x, e) ∈ D |

B(x,e) ⊆ d}. Finally, r̃ is defined by Rr = {(x, e)← B(x,e) | (x, e) ∈ d}.

Example 5. Let us consider the CSP of example 1. Two local consistency oper-
ators are associated with the constraint x < y: r1 of type ({y}, {x}) and r2 of
type ({x}, {y}). The set of deduction rules Rr1

associated with r1 contains the
three deduction rules: (x, 0)← {(y, 1), (y, 2)}; (x, 1)← {(y, 2)}; (x, 2)← ∅.

5 Value withdrawal explanations

We use the deduction rules in order to build proof trees [1]. We consider the
set of all the deduction rules for all the local consistency operators of R: let
R = ∪r∈RRr.

We denote by cons(h, T) the tree defined by: h is the label of its root and T

the set of its sub-trees. The label of the root of a tree t is denoted by root(t).
Let us recall the definition of a proof tree for a set of rules.

Definition 9. A proof tree cons(h, T) with respect to R is inductively defined

by: h← {root(t) | t ∈ T} ∈ R and T is a set of proof trees with respect to R.

(x, 0)

(y, 1)

(z, 2)

(y, 2)

(x, 0)

(y, 1)

(x, 0)

(y, 2)

(x, 0)

Fig. 1. Proof trees for (x, 0)

Our set of deduction rules is not complete: we must take the initial domain
into account. If we compute a downward closure from the global domain D,
then its complementary is the empty set (in this case, R is complete). But if
we compute a downward closure from a domain d ⊂ D, then its dual upward
closure starts with d. We need to add facts (rules with an empty body) in order
to directly deduce the elements of d: let Rd = {h← ∅ | h ∈ d}. The next theorem
ensures that, with this new set of deduction rules, we can build proof trees for
each element of CL ↑ (d, R̃).

Theorem 1. CL ↓ (d, R) is the set of the roots of proof trees with respect to

R ∪Rd.

Proof. Let E the set of the roots of proof trees wrt to R ∪Rd.
E ⊆ min{d′ | d ⊆ d′, ∀r̃ ∈ R̃, r̃(d′) ⊆ d′} by induction on proof trees.
It is easy to check that d ⊆ E and r̃(E) ⊆ E. Hence, min{d′ | d ⊆ d′, ∀r̃ ∈

R̃, r̃(d′) ⊆ d′} ⊆ E.

Example 6. Let us consider the CSP defined in example 1. Six local consistency
operators are associated with the constraints of the CSP:
r1 of type ({y}, {x}) and r2 of type ({x}, {y}) for x < y

r3 of type ({z}, {y}) and r4 of type ({y}, {z}) for y < z

r5 of type ({z}, {x}) and r6 of type ({x}, {z}) for z < x

Figure 1 shows three different proof trees rooted by (x, 0). For example, the
first one says: (x, 0) may be removed from the domain if (y, 1) and (y, 2) may
be removed from the domain (thanks to a deduction rule of Rr2

). (y, 1) may be
removed from the domain if (z, 2) may be removed from the domain (thanks to
Rr4

). (y, 2) and (z, 2) may be removed from the domain without any condition
(thanks to Rr4

and Rr6
).

Each deduction rule used in a proof tree comes from a packet of deduction
rules, either a packet Rr defining a local consistency operator r, or the packet
Rd. We can associate sets of local consistency operators with a proof tree.

Definition 10. Let t be a proof tree. A set of local consistency operators asso-
ciated with t is a set X such that, for each node of t labeled by h 6∈ d, if B is

the set of labels of its children then there exists r ∈ X, h← B ∈ Rr.

Note that there exist several sets associated with a proof tree because, for
example, a deduction rule may appear in several packets or each super-set is also
convenient. It is important to recall that the root of a proof tree does not belong
to the closure of d by the set of local consistency operators. So there exists an
explanation set (definition 6) for this value. The biggest one is the whole set
R of local consistency operators, but we prove in the next theorem that the
sets defined above are also explanation sets for this value. In fact, such a set of
operators is responsible for the withdrawal of the root of the tree:

Theorem 2. If t is a proof tree, then a set of local consistency operators asso-

ciated with t is an explanation set for root(t).

Proof. by theorem 1 and definition 6.

We proved that we can find explanation sets in proof trees. So it remains to
find proof trees. We are going to show that some proof trees are “computed”
by chaotic iterations, but it is important to note that some proof trees do not
correspond to any chaotic iteration. We are interested in the proof trees which
can be deduced from a computation.

Example 7. The first and third proof trees of figure 1 correspond to some chaotic
iterations. But the second one does not correspond to any (because (x, 0) could
not disappear twice).

From now on, we consider a fixed chaotic iteration d = d0, d1, . . . , di, . . . of
R with respect to the run r1, r2, In this context we can associate with each
h 6∈ CL ↓ (d, R), one and only one integer i ≥ 0. This integer is the step in the
chaotic iteration where h is removed from the domain.

Definition 11. Let h 6∈ CL ↓ (d, R). We denote by step(h), either the integer

i ≥ 1 such that h ∈ di−1 \ di, or the integer 0 if h 6∈ d = d0.

A chaotic iteration can be seen as the incrementaly construction of proof
trees. We define the set of proof trees Si which can be built at a step i ∈ IN.
More formally, the family (Si)i∈IN is defined by: S0 = {cons(h, ∅) | h 6∈ d};
Si+1 = Si ∪ {cons(h, T) | h ∈ di, T ⊆ Si, h← {root(t) | t ∈ T} ∈ Rri+1}.

We prove that the roots of the trees of Si are exactly the elements removed
from the domain at a step j ≤ i of the chaotic iteration.

Lemma 3. {root(t) | t ∈ Si} = di. So, {root(t) | t ∈ ∪i∈INSi} = CL ↓ (d, R).

Proof. {root(t) | t ∈ Si} = di by induction on i.
{root(t) | t ∈ ∪i∈INSi} = ∪i∈IN{root(t) | t ∈ Si}

= ∪i∈INdi

= ∩i∈INdi

= CL ↓ (d, R)

This lemma is important because it ensures that, whatever the chaotic itera-
tion used is, we can incrementaly compute the proof trees for each element which
is not in the closure. All proof trees do not correspond to a chaotic iteration,
but for each one, there exists a proof tree with the same root which correspond
to the chaotic iteration. Consequently, we will call explanation a proof tree and
computed explanation a proof tree of ∪i∈INSi.

Let t ∈ ∪i∈INSi, according to definition 10 and theorem 2, the set of local con-
sistency operators {rstep((x,e)) | (x, e) has an occurrence in t and step((x, e)) > 0}
is an explanation set for root(t). From a theoretical point of view, the funda-
mental object is the explanation t.

6 Conclusion

This paper has laid theoretical foundations of value withdrawal explanations in
the framework of chaotic iteration. We were interested in domain reduction for
finite domains. But this work could be extended to interval constraints [6]: our
approach is general enough for any notion of local consistency and the domain is
a (finite) set of floating point values. Furthermore, labeling could be included in
this framework if we consider it as constraint addition. But dynamic aspects are
not in the scope of this paper, the focus is on pure domain reduction by chaotic
iterations.

Domain reduction can be considered as a particular case of constraint reduc-
tion [2] because domains can be seen as unary constraints. This work could also
be extended to constraint reduction. To extend D, it would be enough to con-
sider the set of all possible tuples for the constraints of the CSP. The operators
should then reduce this set, that is remove tuples from the constraints.

First, we have shown how each solver based on some notions of local consis-
tency can be described in our formalism in term of local consistency operators.
In systems like GNU-Prolog, these operators correspond to the implementation
of the solver (the X in r scheme [7, 10]). The associated reduction operators
reduce the domains of variables according to a constraint and a notion of local
consistency.

In other works, CSP resolution is described by considering the reduced do-
mains instead of the removed values. Indeed, users are interested in the solutions
(which belong to the reduced domains) and the removed values are forgotten.
So a natural view of domain reduction is to consider the values which remains in
the domains. But this does not reflect the solver mechanism. The solver keeps in
the domains values for which it cannot prove that they do not belong to a solu-
tion (incompleteness of solvers). In other words, it computes proof only for value
removals. So, we claim that domain reduction is based on negative information
and we have described it from the natural view point of removed values.

Note that by considering d in place of d we reverse an ordering: d ⊆ d′ ⇔
d′ ⊆ d. This inversion must not be mistaken for another inversion: the inverse
ordering � defined by d′ � d⇔ d ⊆ d′ i.e. d gives more information than d′, the
least fix-point of an operator becomes the greatest fix-point of the same operator

(and vice versa). To choose � or ⊆ is just a matter of taste. But in this paper we
do not use the same idea: we cannot freely choose the ordering because it is only
for the ⊆ ordering that the least fix-point of an operator is a set of proof tree
roots. Here, the complementary of a greatest fix-point becomes a least fix-point
by the use of dual operators.

A monotonic operator can always be defined by a set of rules in the sense of
inductive definitions of [1]. We have shown in [12] that there always exists such
a system which has a natural formulation for classical notions of consistency
(partial and hyper-arc consistency of GNU-Prolog for example). These rules
express a value removal as a consequence of other value removals. A notion of
explanation, more precise than explanation sets, has been defined: the linking
of these rules allows to inductively define proof trees. These proof trees explain
the removal of a value (the root of the tree), so we called them value withdrawal
explanations. Finally we have shown how to build incrementaly a proof tree
from a chaotic iteration, in other words, how to obtain an explanation from a
computation.

There already exists another explanation tree notion defined in [13] but it
explains solutions obtained by inference in a particular case. In [13] the problem
is assumed to have only one solution and the resolution of the problem must not
require any search. The inference rules used to build explanations are defined
thanks to cliques of disequalities.

There exists another formalization of solvers by domain reduction in terms
of rules in [4]. The body of such a rule contains positive information (that is the
membership of a domain) and the head contains negative information (that is
non membership of a domain). So they have not the appropriate form to induc-
tively define proof trees. Furthermore, the scope of these rules is to describe a
new form of consistency called rule consistency. This consistency coincides with
arc consistency in some cases and has been implemented thanks to Constraint
Handling Rules [14]. Note that these Constraints Handling Rules could be trans-
formed to obtain the appropriate form by allowing disequality constraints in the
body.

Explanation sets have been proved useful in many applications: dynamic con-
straint satisfaction problems, over-constrained problems, dynamic backtracking,
. . . The formalism proposed in this paper has permitted to prove the correctness
of a large family of constraint retraction algorithms [9]. Explanations may be
an interesting notion for the debugging of constraints programs (already used
for failure analysis in [17]). Constraints programs are not easy to debug because
they are not algorithmic programs [19]. Negative semantics provided by expla-
nations can be a useful tool for debugging. An approach of constraint program
debugging consists in comparing expected semantics (what the user want to ob-
tain) with the actual semantics (what the solver has computed). The symptoms,
which express the differences between the two semantics, can be either a wrong
answer, or a missing answer. The role of diagnosis is then to locate the error (for
example an erroneous constraint) from a symptom. In logic programming, it is
easier to understand a wrong answer than a missing answer because a wrong

answer is a logical consequence of the program then there exists a proof of it
(which should not exist). Here, it is easier to understand missing answer because
explanations are proof of value removals. Explanations provide us with a declar-
ative view of the computation and we plan to use their tree structure to adapt
declarative diagnosis [20] to constraint programming.

In [21] a framework for declarative debugging was described for the CLP
scheme [15]. Symptom and error are connected via some kind of proof tree using
clauses of the program. The diagnosis amounts to search for a kind of minimal
symptom in the tree. In [21], the solver was only seen as a (possibly incomplete)
test of unsatisfiability (well-behaved solver of [15]) so constraint solving was
not fully taken into account. But, for CLP in finite domains, constraint solving
involves domain reduction for which we have defined in this paper another kind
of proof tree: explanation trees. In a future work we plan to integrate these two
kinds of proof trees in order to have finer connections between symptom and
error.

Acknowledgements: This paper has benefitted from works and discussions with
Patrice Boizumault and Narendra Jussien.

References

1. P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Hand-

book of Mathematical Logic, volume 90 of Studies in Logic and the Foundations

of Mathematics, chapter C.7, pages 739–782. North-Holland Publishing Company,
1977.

2. K. R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1–2):179–210, June 1999.

3. K. R. Apt. The role of commutativity in constraint propagation algorithms. ACM

Transactions On Programming Languages And Systems, 22(6):1002–1036, Novem-
ber 2000.

4. K. R. Apt and E. Monfroy. Automatic generation of constraint propagation algo-
rithms for small finite domains. In J. Jaffar, editor, Proceedings of the 5th Interna-

tional Conference on Principles and Practice of Constraint Programming, CP 99,
number 1713 in Lecture Notes in Computer Science, pages 58–72. Springer-Verlag,
1999.

5. F. Benhamou. Heterogeneous constraint solving. In M. Hanus and M. Rofŕıguez-
Artalejo, editors, Proceedings of the 5th International Conference on Algebraic and

Logic Programming, ALP 96, volume 1139 of Lecture Notes in Computer Science,
pages 62–76. Springer-Verlag, 1996.

6. F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer and
boolean constraints. Journal of Logic Programming, 32(1):1–24, July 1997.

7. P. Codognet and D. Diaz. Compiling constraints in clp(fd). Journal of Logic

Programming, 27(3):185–226, June 1996.

8. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions
mathematical foundation. In Symposium on Artificial Intelligence and Program-

ming Languages, volume 12(8) of ACM SIGPLAN Not., pages 1–12, 1977.

9. R. Debruyne, G. Ferrand, N. Jussien, W. Lesaint, S. Ouis, and A. Tessier. Cor-
rectness of constraint retraction algorithms. Research Report 2002-09, LIFO, Uni-
versity of Orléans, BP 6759, F-45067 Orléans Cedex 2, May 2002.

10. Y. Deville, V. Saraswat, and P. Van Hentenryck. Constraint processing in cc(fd).
Draft, 1991.

11. F. Fages, J. Fowler, and T. Sola. A reactive constraint logic programming scheme.
In L. Sterling, editor, Proceedings of the Twelfth International Conference on Logic

Programming, ICLP 95, pages 149–163. MIT Press, 1995.
12. G. Ferrand, W. Lesaint, and A. Tessier. Theoretical foundations of value with-

drawal explanations in constraints solving by domain reduction. Research Report
2001-05, LIFO, University of Orléans, BP 6759, F-45067 Orléans Cedex 2, Novem-
ber 2001.

13. E. C. Freuder, C. Likitvivatanavong, and R. J. Wallace. A case study in explanation
and implication. In CP 00 Workshop on Analysis and Visualization of Constraint

Programs and Solvers, 2000.
14. T. Frühwirth. Constraint Handling Rules. In A. Podelski, editor, Constraint Pro-

gramming: Basics and Trends, volume 910 of Lecture Notes in Computer Science,
pages 90–107. Springer-Verlag, 1995.

15. J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. Semantics of constraint
logic programs. Journal of Logic Programming, 37(1-3):1–46, October 1998.

16. N. Jussien. Relaxation de Contraintes pour les Problèmes Dynamiques. PhD thesis,
Université de Rennes I, 1997.

17. N. Jussien and S. Ouis. User-friendly explanations for constraint programming. In
Proceedings of the 11th Workshop on Logic Programming Environments, 2001.

18. K. Marriott and P. Stuckey. Programming with Constraints: An Introduction. MIT
Press, 1998.

19. M. Meier. Debugging constraint programs. In U. Montanari and F. Rossi, edi-
tors, Proceedings of the First International Conference on Principles and Practice

of Constraint Programming, CP 95, volume 976 of Lecture Notes in Computer

Science, pages 204–221. Springer-Verlag, 1995.
20. E. Shapiro. Algorithmic Program Debugging. ACM Distinguished Dissertation.

MIT Press, 1982.
21. A. Tessier and G. Ferrand. Analysis and Visualisation Tools for Constraint Pro-

gramming, volume 1870 of Lecture Notes in Computer Science, chapter 5. Declar-
ative Diagnosis in the CLP scheme, pages 151–176. Springer-Verlag, 2000.

22. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
23. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-

gramming. MIT Press, 1989.

