
Value withdrawal explanations: a theoretical tool
for programming environments

Willy Lesaint

Laboratoire d’Informatique Fondamentale d’Orléans
rue Léonard de Vinci – BP 6759 – F-45067 Orléans Cedex 2 – France

Willy.Lesaint@lifo.univ-orleans.fr

Abstract. Constraint logic programming combines declarativity and ef-
ficiency thanks to constraint solvers implemented for specific domains.
Value withdrawal explanations have been efficiently used in several con-
straints programming environments but there does not exist any formal-
ization of them. This paper is an attempt to fill this lack. Furthermore,
we hope that this theoretical tool could help to validate some program-
ming environments. A value withdrawal explanation is a tree describing
the withdrawal of a value during a domain reduction by local consistency
notions and labeling. Domain reduction is formalized by a search tree us-
ing two kinds of operators: for local consistency notions and for labeling.
These operators are defined by sets of rules. Proof trees are built with
respect to these rules. For each removed value, there exists such a proof
tree which is the withdrawal explanation of this value.

1 Introduction

Constraint logic programming is one of the most important computing paradigms
of the last years. It combines declarativity and efficiency thanks to constraint
solvers implemented for specific domains. The needs in programming environ-
ments is growing. But logic programming environments are not always suffi-
cient to deal with the constraint side of constraint logic programming. Value
withdrawal explanations have been efficiently used in several constraints pro-
gramming environments but there does not exist any formalization of them.
This paper is an attempt to fill this lack. This work is supported by the french
RNTL1 project OADymPPaC2 whose aim is to provide constraint programming
environments.

A value withdrawal explanation is a tree describing the withdrawal of a value
during a domain reduction. This description is done in the framework of domain
reduction of finite domains by notions of local consistency and labeling. A first
work [7] dealt with explanations in the framework of domain reduction by local
consistency notions only. A value withdrawal explanation contains the whole

1 Réseau National des Technologies Logicielles
2 Outils pour l’Analyse Dynamique et la mise au Point de Programmes avec Con-

traintes http://contraintes.inria.fr/OADymPPaC/

2

information about a removal and may therefore be a useful tool for programming
environments. Indeed it allows performing:

– failure analysis: a failure explanation being a set of value withdrawal expla-
nations;

– constraint retraction: explanations provide the values which have been with-
drawn directly or indirectly by the constraint and then allow to easily repair
the domains;

– debugging: an explanation being a kind of declarative trace of a value with-
drawal, it can be used to find an error from a symptom.

The first and second item have been implemented in the PaLM system [8]. PaLM
is based on the constraint solver choco [9] where labeling is replaced by the
use of explanations. Note that the constraint retraction algorithm of PaLM has
been proved correct thanks to our definition of explanations, and more gener-
ally a large family of constraint retraction algorithms are also included in this
framework.

The main motivation of this work is not only to provide a common model for
the partners of the OADymPPaC project but also to use explanations for the
debugging of constraints programs. Nevertheless, the aim of this paper is not to
describe the applications of value withdrawal explanations but to formally define
this notion of explanation.

The definition of a Constraint Satisfaction Problem is given in the preliminary
section. In third and fourth sections a theoretical framework for the computation
of solutions is described in sections 3 and 4. A computation is viewed as a search
tree where each branch is an iteration of operators. Finally, explanations are
presented in the last section thanks to the definition of rules associated to these
operators.

2 Preliminaries

Following [10], a Constraint Satisfaction Problem (CSP) is made of two parts:
a syntactic part and a semantic part. The syntactic part is a finite set V of
variables, a finite set C of constraints and a function var : C → P(V), which
associates a set of related variables to each constraint. Indeed, a constraint may
involve only a subset of V .

For the semantic part, we need to introduce some preliminary concepts. We
consider various families f = (fi)i∈I . Such a family is referred to by the function
i 7→ fi or by the set {(i, fi) | i ∈ I}.

Each variable is associated with a set of possible values. Therefore, we con-
sider a family (Dx)x∈V where each Dx is a finite non empty set.

We define the domain by D =
⋃

x∈V ({x} × Dx). This domain allows sim-
ple and uniform definitions of (local consistency) operators on a power-set. For
domain reduction, we consider subsets d of D. Such a subset is called an envi-
ronment. We denote by d|W the restriction of a set d ⊆ D to a set of variables
W ⊆ V , that is, d|W = {(x, e) ∈ d | x ∈ W}. Any d ⊆ D is actually a family

3

(dx)x∈V with dx ⊆ Dx: for x ∈ V , we define dx = {e ∈ Dx | (x, e) ∈ d} and call
it the environment of x.

Constraints are defined by their set of allowed tuples. A tuple t on W ⊆ V
is a particular environment such that each variable of W appears only once:
t ⊆ D|W and ∀x ∈ W,∃e ∈ Dx, t|{x} = {(x, e)}. For each c ∈ C, Tc is a set of
tuples on var(c), called the solutions of c.

We can now formally define a CSP.

Definition 1. A Constraint Satisfaction Problem (CSP) is defined by:

– a finite set V of variables;
– a finite set C of constraints;
– a function var : C → P(V);
– the family (Dx)x∈V (the domains);
– a family (Tc)c∈C (the constraints semantics).

Note that a tuple t ∈ Tc is equivalent to the family (ex)x∈var(c) and that t is
identified with {(x, ex) | x ∈ var(c)}.

A user is interested in particular tuples (on V) which associate a value to
each variable, such that all the constraints are satisfied.

Definition 2. A tuple t on V is a solution of the CSP if ∀c ∈ C, t|var(c) ∈ Tc.

Example 1. Conference problem
Mike, Peter and Alan want to give a talk about their work to each other

during three half-days. Peter knows Alan’s work and vice versa. There are four
talks (and so four variables): Mike to Peter (MP), Peter to Mike (PM), Mike to
Alan (MA) and Alan to Mike (AM). Note that Mike can not listen to Alan and
Peter simultaneously (AM 6= PM). Mike wants to know the works of Peter and
Alan before talking (MA > AM, MA > PM, MP > AM, MP > PM).

This can be written in GNU-Prolog [4] (with a labeling on PM) by:

conf(AM,MP,PM,MA):-
fd_domain([MP,PM,MA,AM],1,3),
MA #> AM,
MA #> PM,
MP #> AM,
MP #> PM,
AM #\= PM,
fd_labeling(PM).

The values 1, 2, 3 corresponds to the first, second and third half-days. Note that
the labeling on PM is sufficient to obtain the solutions. Without this labeling,
the solver provides reduced domains only (no solution).

This example will be continued throughout the paper. �

The aim of a solver is to provide one (or more) solutions. In order to obtain
them, two methods are interleaved: domain reduction thanks to local consistency

4

notions and labeling. The first one is correct with respect to the solutions, that is
it only removes values which cannot belong to any solution, whereas the second
one is used to restrict the search space. Note that to do a labeling amounts to
cutting a problem in several sub-problems.

In the next section, we do not consider the whole labeling (that is the passage
from a problem to a set of sub-problems) but only the passage from a problem
to one of its sub-problems. The whole labeling will be consider in section 4 with
the well-known notion of search tree.

3 Domain reduction mechanism

In practice, operators are associated with the constraints and are applied with
respect to a propagation queue. This method is interleaved with some restriction
(due to labeling). In this section, this computation of a reduced environment is
formalized thanks to a chaotic iteration of operators. The reduction operators
can be of two types: operators associated with a constraint and a notion of local
consistency, and operators associated with a restriction. The resulting environ-
ment is described in terms of closure ensuring confluence.

Domain reduction with respect to notions of consistency can be expressed in
terms of operators. Such an operator computes a set of consistent values for a
set of variables Wout according to the environments of another set of variables
Win .

Definition 3. A local consistency operator of type (Win ,Wout), with Win ,Wout

⊆ V is a monotonic function f : P(D)→ P(D) such that: ∀d ⊆ D,

– f(d)|V \Wout
= D|V \Wout

,
– f(d) = f(d|Win)

Note that the first item ensures that the operator is only concerned by the
variables Wout . The second one ensures that this result only depends on the
variable Win .

These operators are associated with constraints of the CSP. So each operator
must not remove solutions of its associated constraint (and of course of the CSP).
These notions of correction are detailed in [6].

Example 2. In GNU-Prolog, two local consistency operators are associated
with the constraint MA #> PM: the operator which reduces the domain of MA
with respect to PM and the one which reduces the domain of PM with respect
to MA. �

From now on, we denote by L a set of local consistency operators (the set of
local consistency operators associated with the constraints of the CSP).

Domain reduction by notions of consistency alone is not always sufficient.
The resulting environment is an approximation of the solutions (that is all the
solutions are included in this environment). This environment must be restricted

5

(for example, by the choice of a value for a variable). Of course, such a restric-
tion (formalized by the application of a restriction operator) does not have the
properties of correctness of a local consistency operator: the application of such
an operator may remove solutions. But, in the next section, these operators will
be considered as a set (corresponding to the whole labeling on a variable). In-
tuitively, if we consider a labeling search tree, this section deals with only one
branch of this tree.

In the same way local consistency operators have been defined, restriction
operators are now introduced.

Definition 4. A restriction operator on x ∈ V is a constant function f :
P(D)→ P(D) such that: ∀d ⊆ D, f(d)|V \{x} = D|V \{x}.

Example 3. The function f such that ∀d ∈ D, f(d) = D|V \{PM} ∪ {(PM, 1)} is
a restriction operator. �

From now on we denote by R a set of restriction operators.
These two kind of operators are successively applied to the environment. The

environment is replaced by its intersection with the result of the application of
the operator. We denote by F the set of operators L ∪R.

Definition 5. The reduction operator associated with the operator f ∈ F is the
monotonic and contracting function d 7→ d ∩ f(d).

A common fix-point of the reduction operators associated with F starting
from an environment d is an environment d′ ⊆ d such that ∀f ∈ F, d′ = d′ ∩
f(d′), that is ∀f ∈ F, d′ ⊆ f(d′). The greatest common fix-point is this greatest
environment d. To be more precise:

Definition 6. The downward closure of d by F is max{d′ ⊆ D | d′ ⊆ d ∧ ∀f ∈
F, d′ ⊆ f(d′)} and is denoted by CL ↓ (d, F).

Note that CL ↓ (d, ∅) = d and CL ↓ (d, F) ⊆ CL ↓ (d, F ′) if F ′ ⊆ F .
In practice, the order of application of these operators is determined by a

propagation queue. It is implemented to ensures to never forget any operator
and to always reach the closure CL ↓ (d, F). From a theoretical point of view,
this closure can also be computed by chaotic iterations introduced for this aim
in [5]. The following definition is taken from Apt [2].

Definition 7. A run is an infinite sequence of operators of F , that is, a run
associates with each i ∈ IN (i ≥ 1) an element of F denoted by f i. A run is
fair if each f ∈ F appears in it infinitely often, that is, ∀f ∈ F, {i | f = f i} is
infinite.

The iteration of the set of operators F from the environment d ⊆ D with
respect to an infinite sequence of operators of F : f1, f2, . . . is the infinite sequence
d0, d1, d2, . . . inductively defined by:

1. d0 = d;

6

2. for each i ∈ IN, di+1 = di ∩ f i+1(di).

Its limit is ∩i∈INdi.
A chaotic iteration is an iteration with respect to a sequence of operators of

F (with respect to F , in short) where each f ∈ F appears infinitely often.

Note that an iteration may start from a domain d which can be different
from D. This is more general and convenient for a lot of applications (dynamic
aspects of constraint programming, for example).

The next well-known result of confluence [3, 5] ensures that any chaotic iter-
ation reaches the closure. Note that, since ⊆ is a well-founded ordering (i.e. D
is a finite set), every iteration from d ⊆ D is stationary, that is, ∃i ∈ IN,∀j ≥
i, dj = di.

Lemma 1. The limit dF of every chaotic iteration of a set of operators F from
d ⊆ D is the downward closure of d by F .

Proof. Let d0, d1, d2, . . . be a chaotic iteration of F from d with respect to
f1, f2, . . .

[CL ↓ (d, F) ⊆ dF] For each i, CL ↓ (d, F) ⊆ di, by induction: CL ↓ (d, F) ⊆
d0 = d. Assume CL ↓ (d, F) ⊆ di, CL ↓ (d, F) ⊆ f i+1(CL ↓ (d, F)) ⊆ f i+1(di)
by monotonicity. Thus, CL ↓ (d, F) ⊆ di ∩ f i+1(di) = di+1.

[dF ⊆ CL ↓ (d, F)] There exists k ∈ IN such that dF = dk because ⊆ is a
well-founded ordering. The iteration is chaotic, hence dk is a common fix-point
of the set of operators associated with F , thus dk ⊆ CL ↓ (d, F) (the greatest
common fix-point).

In order to obtain a closure, it is not necessary to have a chaotic iteration.
Indeed, since restriction operators are constant functions, they can be apply only
once.

Lemma 2. dL∪R = CL ↓ (CL ↓ (d,R), L)

Proof. dL∪R = CL ↓ (d, L ∪R) by lemma 1 and CL ↓ (d, L ∪R) = CL ↓ (CL ↓
(d, R), L) because operators of R are constant functions.

As said above, we have considered in this section a computation in a single
branch of a labeling search tree. This formalization is extended in the next
section in order to take the whole search tree into account.

4 Search tree

A labeling on a variable can be viewed as the passage from a problem to a set
of problems. The previous section has treated the passage from this problem to
one of its sub-problems thanks to a restriction operator. In order to consider the
whole set of possible values for the labeling on a variable, restriction operators
on a same variable must be grouped together. The union of the environments
of the variable (the variable concerned by the labeling) of each sub-problem
obtained by the application of each of these operators must be a partition of the
environment of the variable in the initial problem.

7

Definition 8. A set {di | 1 ≤ i ≤ n} is a partition of d on x if:

– ∀i, 1 ≤ i ≤ n, d|V \{x} ⊆ di|V \{x},
– d|{x} ⊆ ∪1≤i≤ndi|{x},
– ∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, di|{x} ∩ dj |{x} = ∅.

In practice, environment reductions by local consistency operators and label-
ing are interleaved to be the most efficient.

A labeling on x ∈ V can be a complete enumeration (each environment of
the partition is reduced to a singleton) or a splitting. Note that the partitions
always verify: ∀i, 1 ≤ i ≤ n, di|{x} 6= ∅.

Example 4. {D|V \{PM}∪{(PM, 1)}, D|V \{PM}∪{(PM, 2)}, D|V \{PM}∪{(PM, 3)}
is a partition of D. �

Next lemma ensures that no solution is lost during a labeling step (each
solution will remain in exactly one branch of the search tree defined later).

Lemma 3. If t ⊆ d is a solution of the CSP and {di | 1 ≤ i ≤ n} is a partition
of d then t ⊆ ∪1≤i≤nCL ↓ (di, L).

Proof. straightforward.

Each node of a search tree can be characterized by a quadruple containing the
environment d (which have been computed up to now), the depth p in the tree,
the operator f (local consistency operator or restriction operator) connecting
it with its father and the restricted environment e. The restricted environment
is obtained from the initial environment when only the restricted operators are
applied.

Definition 9. A search node is a quadruple (d, e, f, p) with d, e ∈ P(D), f ∈
F ∪ {⊥} and p ∈ IN.

The depth and the restricted environment allow to localize the node in the
search tree.

There exists two kinds of transition in a search tree: those caused by a local
consistency operator which ensure the passage to one only son and the transi-
tions caused by a labeling which ensure the passage to some sons (as many as
environments in the partition).

Definition 10. A search tree is a tree for which each node is a search step
inductively defined by:

– (D, D,⊥, 0) is the root of the tree,
– if (d, e, op, p) is a non leave node then it has:
• one son: (d ∩ f(d), e, f, p + 1) with f ∈ L;
• n sons: (d∩ fi(d), e∩ fi(d), fi, p + 1) with {fi(d) | 1 ≤ i ≤ n} a partition

of d and fi ∈ R.

Definition 11. A search tree is said complete if each leaf (d, e, f, p) is such
that: d = CL ↓ (e, L).

This section has formally described the computation of solvers in terms of
search trees. Each branch is an iteration of operators.

8

5 Value withdrawal explanations

This section is devoted to value withdrawal explanations. These explanations
are defined as trees which can be extracted from a computation. First, rules
are associated with local consistency operators, restriction operators and the
labeling process. Explanations are then defined from a system of such rules [1].

From now on we consider a fixed CSP and a fixed computation. The set
of local consistency operators is denoted by L and the set of restriction opera-
tors by R. The labeling introduces a notion of context based on the restricted
environments of the search node. The following notation is used: Γ ` h with
Γ ⊆ P(D) and h ∈ D. Γ is named a context.

Intuitively, Γ ` h means ∀e ∈ Γ, h 6∈ CL ↓ (e, L ∪ R). A Γ is an union of
restricted environments, that is each e ∈ Γ corresponds to a branch of the search
tree. If an element h is removed in different branches of the search tree, then a
context for h may contain all these branches.

5.1 Rules

The definition of explanations is based on three kinds of rules. These rules explain
the removal of a value as the consequence of other value removals or as the
consequence of a labeling.

First kind of rule is associated with a local consistency operator. Indeed, such
an operator can be defined by a system of rules [1]. If the type of this operator
is (Win ,Wout), each rule explains the removal of a value in the environment of
Wout as the consequence of the lack of values in the environment of Win .

Definition 12. The set of local consistency rules associated with l ∈ L is:

Γ ` h1 . . . Γ ` hn

Rl = { | Γ ⊆ P(D),∀d ⊆ D, h1, . . . , hn 6∈ d⇒ h 6∈ l(d)}
Γ ` h

Intuitively, these rules explain the propagation mechanism. Using its nota-
tion, the definition 12 justifies the removal of h by the removals of h1, . . . , hn.

Example 5. ∀e ∈ D, the rule

{e} ` (PM, 2) {e} ` (PM, 3)

{e} ` (AM, 1)

is associated with the local consistency operator of type ({PM}, {AM}) (for the
constraint AM 6= PM). �

As said above, the context is only concerned by labeling. So, here, the rule
does not modify it. Note that if we restrict ourselves to solving by consistency
techniques alone (that is without any labeling), then the context will always be
the initial environment and can be forgotten [7].

From now on, we consider RL = ∪l∈LRl.

9

The second kind of rules is associated with restriction operators. In this case
the removal of a value is not the consequence of any other removal and so these
rules are facts.

Definition 13. The set of restriction rules associated with r ∈ R is:

Rr = { | h 6∈ r(D), d ⊆ r(D)}
{d} ` h

These rules provide the values which are removed by a restriction.

Example 6. The set of restriction rules associated with the restriction operator
r such that ∀d ∈ D, r(d) = D|V \{PM} ∪ {(PM, 1)} is:

{ , } with e1 ⊆ r(D).
{e1} ` (PM, 2) {e1} ` (PM, 3)

�

This restriction ensures the computation goes to in a branch of the search
tree and must be memorized because future removals may be true only in this
branch. The context is modified in order to remember that the computation is
in this branch.

From now on, we consider RR = ∪r∈RRr.
The last kind of rule corresponds to the reunion of information coming from

several branches of the search tree.

Definition 14. The set of labeling rules for h ∈ D is defined by:

Γ1 ` h . . . Γn ` h
Rh = { | Γ1, . . . , Γn ⊆ P(D)}

Γ1 ∪ . . . ∪ Γn ` h

Intuitively, if the value h has been removed in several branches, corresponding
to the contexts Γ1, . . . , Γn, then a unique context can be associated with h: this
context is the union of these contexts.

Example 7. For all e1, e2, e3 ∈ D,
{e1} ` (MP, 2) {e2} ` (MP, 2) {e3} ` (MP, 2)

{e1} ∪ {e2} ∪ {e3} ` (MP, 2)
is

a labeling rule.

From now on, we consider RD = ∪h∈DRh.
The system of rules RL ∪RR ∪RD can now be used to build explanations of

value withdrawal.

5.2 Proof trees

In this section, proof trees are described from the rules of the previous section.
It is proved that there exists such a proof tree for each element which is removed
during a computation. And finally, it is shown how to obtain these proof trees.

10

Definition 15. A proof tree with respect to a set of rules RL ∪ RR ∪ RD is a
finite tree such that, for each node labeled by Γ ` h, if B is the set of labels of
its children, then

B
∈ RL ∪RR ∪RD.

Γ ` h

Next theorem ensures that there exists a proof tree for each element which
is removed during a computation.

Theorem 1. Γ ` h is the root of a proof tree if and only if ∀e ∈ Γ, h 6∈ CL ↓
(e,R).

Proof. ⇒: inductively on each kind of rule:

– for local consistency rules, if ∀i, 1 ≤ i ≤ n, hi 6∈ CL ↓ (ei, R) then hi 6∈
CL ↓ (e1 ∩ . . . ∩ en, R) and so (because h ← {h1, . . . , hn} ∈ R) h 6∈ CL ↓
({e1 ∩ . . . ∩ en}, R);

– for restriction rules, h 6∈ e so h 6∈ CL ↓ (e,R);
– straightforward for labeling rules.

⇐: if ∀i, 1 ≤ i ≤ n, h 6∈ CL ↓ (ei, R) then ([6]) there exists a proof tree rooted
by h for each ei. So, with context notion, ∀i, 1 ≤ i ≤ n, {ei} ` h is the root of
a proof tree. Thus, thanks to the labeling rule, {e1, . . . , en} ` h is the root of a
proof tree.

Last part of the section is devoted to show how to obtain these trees from a
computation, that is from a search tree.

Let us recall that cons(h, T) is the tree rooted by h and with the set of
sub-trees T . The traversal of the search tree in depth first. Each branch can
then be considered separately. The descent in each branch can be viewed as an
iteration of local consistency operators and restriction operators. During this
descent, proof trees are inductively built thanks to the rules associated with
these two kind of operators (labeling rules are not necessary for the moment).
Each node being identified by its depth, the set of trees associated with the node
(dp, ep, fp, p) is denoted by Sp↓.

These sets are inductively defined as follows:

– S0↓= ∅;
– if fp+1 ∈ R then: {root(t) | t ∈ T}
Sp+1↓= Sp↓ ∪{cons({ep} ` h, T) | T ⊆ Sp↓, h ∈ dp, ∈ Rfp+1}

{ep} ` h
– if fp+1 ∈ L then:
Sp+1↓= Sp↓ ∪{cons({ep+1} ` h, ∅) | h ∈ dp, ∈ Rfp+1}

{ep+1} ` h

11

To each node (d, e, f, p) is then associated a set of proof tree denoted by
S↓ (d, e, f, p).

A second phase consists in climbing these sets to the root, grouping together
the trees rooted by a same element but with different contexts. To each node
(d, e, f, p) is associated a new set of proof trees S↑ (d, e, f, p). This set is induc-
tively defined:

– if (d, e, f, p) is a leaf then S↑ (d, e, f, p) = S↓ (d, e, f, p);
– if l ∈ L then S↑ (d, e, f, p) = S↓ (d ∪ l(d), e, l, p + 1);
– if {ri(d) | 1 ≤ i ≤ n} is a partition of d then S↑ (d, e, f, p) = S ∪ S′ with

S = ∪1≤i≤nS↑ (d ∩ ri(d), e ∩ ri(c), ri, p + 1) and
{root(t) | t ∈ T}

S′ = {cons(Γ ` h, T) | ∈ RD, T ⊆ S}.
Γ ` h

Corollary 1. If the search tree rooted by (D, D,⊥, 0) is complete then {root(t) |
t ∈ S↑ (D, D,⊥, 0)} = {Γ ` h | ∀e ∈ Γ, h 6∈ CL ↓ (e, L)}.

Proof. by theorem 1.

These proof trees are explanations for the removal of their root.

Example 8. An explanation for the withdrawal of the value 2 from the domain
of MP can be:

{e1} ` (PM, 2) {e1} ` (PM, 3)

{e1} ` (AM, 1) {e2} ` (PM, 1) {e3} ` (PM, 1)

{e1} ` (MP, 2) {e2} ` (MP, 2) {e3} ` (MP, 2)

{e1} ∪ {e2} ∪ {e3} ` (MP, 2)

with e1, e2 and e3 such that:

– e1 = D|V \{PM} ∪ {(PM, 1)}
– e2 = D|V \{PM} ∪ {(PM, 2)}
– e3 = D|V \{PM} ∪ {(PM, 3)}

This tree must be understood as follows: the restriction of the search space to
e1 eliminates the values 2 and 3 of PM. Since AM 6= PM, the value 1 is removed
of AM. And since MP > AM, the value 2 is removed of MP. In the same way,
the value 2 is also removed of MP with the restriction e2 and e3. And finally,
the root ensures that this value is removed in each of these branches. �

The size of explanations strongly depends on the consistency used, the size
of the domains and the type of constraint. Note that even if the width of expla-
nations is large, their height remains correct in general. It is important to recall
that these explanations are a theoretical tool. So, an implementation could be
more efficient.

12

6 Interest for Programming Environments

The understanding of solvers computation provided by the explanations is an in-
teresting source of information for constraint (logic) programming environments.
Moreover, explanations have already been used in several ones. The theoretical
model of value withdrawal explanation given in the paper can therefore be an
interesting tool for constraint (logic) programming environments.

The main application using explanations concerns over-constrained problems.
In these problems, the user is interesting in information about the failure, that
is to visualize the set of constraints responsible for this failure. He can therefore
relax one of them and may obtain a solution.

In the PaLM system, a constraint retraction algorithm have been imple-
mented thanks to explanations. Indeed, for each value removed from the envi-
ronment, there exists an explanation set containing the operators responsible
for the removal. So, to retract a constraint consists in two main steps: to re-
introduce the values which contain an operator associated with the retracted
constraint in their explanation, and to wake up all the operators which can re-
move a re-introduced value, that is which are defined by a rule having such a
value as head. The theoretical approach of the explanations have permitted to
prove the correctness of this algorithm based on explanations. There did not
exist any proof of it whereas the one we propose is immediate. Furthermore, this
approach have proved the correctness of a large family of constraints retraction
algorithms used in others constraints environments and not only the one based
on explanations.

The interest for explanations in debugging is growing. Indeed, to debug a
program is to look for something which is not correct in a solver computation.
So, the information about the computation given by the explanations can be
very precious.

They have already been used for failure analysis. In constraint programming,
a failure is characterized by an empty domain. A failure explanation is then a
set of explanations (one explanation for each value of the empty domain). Note
that in the PaLM system, labeling has been replaced by dynamic backtracking
based on the combination of failure explanation and constraint retraction.

An interesting perspective seems to be the use of explanations for the declar-
ative debugging of constraint programs. Indeed, when a symptom of error (a
missing solution) appears after a constraint solving, explanations can help to
find the error (the constraint responsible for the symptom). For example, if a
user expects a solution containing the value v for a variable x but does not obtain
any such solution, an explanation for the removal of (x, v) is a useful structure to
localize the error. The idea is to go up in the tree from the root (the symptom)
to a node (the minimal symptom) for which each son is correct. The error is
then the constraint which ensures the passage between the node and its sons.

The theoretical model given in the paper will, I wish, bring new ideas and
solutions for the debugging in constraint programming and other environments.

13

7 Conclusion

The paper was devoted to the definition of value withdrawal explanations. The
previous notions of explanations (theoretically described in [7]) only dealt with
domain reduction by local consistency notions. Here, the notion of labeling have
been fully integrated in the model.

A solver computation is formalized by a search tree where each branch is
an iteration of operators. These operators can be local consistency operators or
restriction operators. Each operator is defined by a set of rules describing the
removal of a value as the consequence of the removal of other values. Finally,
proof trees are built thanks to these rules. These proof trees are explanations
for the removal of a value (their root).

The interest in explanations for constraint (logic) programming environment
is undoubtedly. The theoretical model proposed here have already validate some
algorithms used in some environments and will, I wish, bring new ideas and solu-
tions for constraint (logic) programming environments, in particular debugging
of constraint programs.

References

1. P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Hand-
book of Mathematical Logic, volume 90 of Studies in Logic and the Foundations of
Mathematics, chapter C.7, pages 739–782. North-Holland Publishing Cie, 1977.

2. K. R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1–2):179–210, 1999.

3. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions
mathematical foundation. In Symposium on Artificial Intelligence and Program-
ming Languages, volume 12(8) of ACM SIGPLAN Not., pages 1–12, 1977.

4. D. Diaz and P. Codognet. The GNU-Prolog system and its implementation. In
ACM Symposium on Applied Computing, volume 2, pages 728–732, 2000.

5. F. Fages, J. Fowler, and T. Sola. A reactive constraint logic programming scheme.
In International Conference on Logic Programming. MIT Press, 1995.

6. G. Ferrand, W. Lesaint, and A. Tessier. Theoretical foundations of value with-
drawal explanations in constraints solving by domain reduction. Technical Report
2001-05, LIFO, University of Orléans, November 2001.

7. G. Ferrand, W. Lesaint, and A. Tessier. Theoretical foundations of value with-
drawal explanations for domain reduction. In M. Falaschi, editor, 11th Interna-
tional Workshop on Functional and (Constraint) Logic Programming, Grado, Italy,
June 2002.

8. N. Jussien and V. Barichard. The PaLM system: explanation-based constraint
programming. In Proceedings of TRICS: Techniques foR Implementing Constraint
programming Systems, a workshop of CP 2000, pages 118–133, 2000.

9. F. Laburthe and the OCRE project. Choco: implementing a CP kernel. In TRICS,
Techniques foR Implementing Constraint programming Systems, a post-conference
workshop of CP 2000, Technical report TRA9/00, Singapore, 2000.

10. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

