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University of Orléans, France
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Abstract. Some works in progress on finite domain constraint solvers
concern the implementation of a XML trace of the computation ac-
cording to the OADymPPaC DTD (for example in GNU-Prolog, Palm,
Chip). Because of the large size of traces, even for small toy problems,
some tools are needed to understand this trace. Explanations of value
withdrawal (or nogoods) during domain reduction are used by some
solvers in finite domain constraint programming. In this paper, we use
a formalization of explanations by proof trees in a fixpoint framework
based on iteration of monotonic local consistency operators. Proof trees
provide a declarative view of the computations by constraint propaga-
tion. We show how explanations may be naturally extracted from the
OADymPPaC trace format. Explanations allow a better understanding
of the domain reductions in the trace.

1 Introduction

For some years, constraint programming over finite domains [1, 2] has proved its
ability efficiency to solve difficult problems. It combines declarativity of relational
style and efficiency of finite domain constraint solvers. These solvers are mainly
based on domain reduction by consistency notions. It consists in eliminating,
from the current domains of some variables, some values which cannot belong
to a solution according to the constraints and the current domains of some
other variables. These removed values are characterized by a notion of local
consistency.

Several works [3–5] formalize domain reduction thanks to operators. These
operators reduce the variable domains. In practice, operators are applied along
an iteration according to different strategies. Chaotic iterations [6] have been
used in order to describe domain reduction from a theoretical general point of
? This work is partially supported by the French RNTL through the OADymPPaC
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view. It ensures confluence, that is to obtain the same reduced domain whatever
the order of application of the operators is. In this framework, domain reduction
can be described with notions of fixpoints and closures.

Other works in the constraint community concerns explanations3 [7] (or no-
goods). The interest of explanations in this paradigm of constraint program-
ming over finite domains is growing. The idea of explanations is to memorize
information about the removals of values. They have successfully been used for
dynamic constraint satisfaction problems [7], dynamic backtracking [8], configu-
ration problems [9, 10], constraint retraction [11], failure analysis [12], or declar-
ative diagnosis [13].

[14] is an attempt to lay a theoretical foundation of value withdrawal expla-
nations in the above-mentioned framework of chaotic iteration. To each local
consistency operator is associated its dual operator. Each dual operator may be
defined by a set of rules in the sense of inductive definitions [15]. A rule expresses
a value removal as a consequence of other value removals. In this framework, an
explanation is formalized by a proof tree using these sets of rules. The expla-
nations defined provide us with a declarative view of the computation. Note
that the single role of a solver is to remove values. In this paper, explanations
are proofs of these removals. Explanations may be considered as the essence of
domain reduction.

Some works in progress on finite domains constraint solvers concern the im-
plementation of a XML [16] trace [17] of the computation according to the
OADymPPaC4 DTD (already implemented in GNU-Prolog [18, 19], Palm [20]
and Chip [21]). Because of their large size, even for toy problems, some tools
are needed to understand traces. Since explanations only provide the necessary
information explaining a value removal, they are a good way to answer this issue
and particularly to understand the domain reductions described in a trace. The
main contribution of this paper is to show how explanations can be naturally
extracted from the OADymPPaC trace format.

The paper is organized as follows: Section 2 (Preliminaries) briefly provides
a formalism for domain reduction well-suited to define explanations for the basic
events which are the withdrawal of a value from a domain. Section 3 (Expla-
nations) is dedicated to the notion of explanation. It defines explanations as
proof trees built from sets of rules defining the dual operators of local consis-
tency operators. Section 4 (Computed Explanations) first describes quickly the
OADymPPaC XML trace format focusing on the parts which concern domain
reduction. Next it shows how explanations can be extracted from a given trace.

2 Preliminaries

Our framework uses families instead of cartesian products because it leads to
lighter notations. Indeed, the notion of monotonic operators and least or greatest
3 See http://www.e-constraints.net/ for more details on explanations.
4 http://contraintes.inria.fr/OADymPPaC/index en.html (OADymPPaC is a
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fixpoints are easier in a set theoretical framework where the order is the set
inclusion.

2.1 Some Notations

Let us assume fixed:

– a finite set of variable symbols V ;
– a family (Dx)x∈V where each Dx is a finite non empty set, Dx is the domain

of the variable x.

We are going to consider various families f = (fi)i∈I . Such a family can be
identified with the function i 7→ fi, itself identified with the set {(i, fi) | i ∈ I}.

In order to define monotonic operators on a power-set, we consider the do-
main D =

⋃
x∈V ({x} × Dx), i.e. D is the set of all possible pairs of a variable

and its value.
A subset d of D is called an environment. We denote by d|W the restriction

of d to a set of variables W ⊆ V , that is, d|W = {(x, e) ∈ d | x ∈W}. Note that,
with d, d′ ⊆ D, d =

⋃
x∈V d|{x}, and (d ⊆ d′)⇔ (∀x ∈ V, d|{x} ⊆ d′|{x}). d|{x} is

called the environment of the variable x (in the environment d).
A tuple (or valuation) t is a particular environment such that each variable

appears only once: t ⊆ D and ∀x ∈ V,∃e ∈ Dx, t|{x} = {(x, e)}. A tuple t on a set
of variables W ⊆ V , is defined by t ⊆ D|W and ∀x ∈W,∃e ∈ Dx, t|{x} = {(x, e)}.

2.2 Constraint Satisfaction Problem and Solutions

A Constraint Satisfaction Problem (CSP) on (V, D) is made of:

– a finite set of constraint symbols C;
– a function var : C → P(V ), which associates with each constraint symbol

the set of variables of the constraint;
– a family (Tc)c∈C such that: for each c ∈ C, Tc is a set of tuples on var(c), Tc

is the set of solutions of c.

From now on, we assume fixed a CSP (C, var, (Tc)c∈C) on (V, D).

Definition 1. A tuple t is a solution of the CSP if ∀c ∈ C, t|var(c) ∈ Tc. We
denote by Sol the set of the solutions of the CSP.

2.3 Program and Closure

A program is used to solve a CSP, (i.e to find the solutions) thanks to domain
reduction techniques and labeling. Here we focus on domain reduction. In this
paper, we are interested in only one branch of the search tree. In this context,
labeling can be considered as additional constraints. It could be possible to
distinguish these two kinds of constraints, this leads to no conceptual difficulties
and is not really necessary here. It complicates the formalism and is omitted.
[22] shows how to introduce labeling in the formalism.



The main idea of domain reduction is to remove from the current environ-
ment some values which cannot participate to any solution of some constraints,
thus which cannot participate to any solution of the CSP. These removals are
closely related to a notion of local consistency. This can be formalized by local
consistency operators.

Definition 2. A local consistency operator r is a monotonic function

r : P(D)→ P(D)

Note that even global constraints can be formalized by these operators.
As we want a contracting operator to reduce the environment (i.e. r(d) ⊆ d),

next we will also consider d 7→ d ∩ r(d) called a reduction operator . But in
general, the local consistency operators are not contracting functions, as shown
later to define their dual operators.

A program R on (V, D) is a set of local consistency operators.
From now on, we assume fixed a program R on (V, D).
We are interested in particular environments: the common fix-points of the

reduction operators d 7→ d∩ r(d), r ∈ R. Such an environment d verifies ∀r ∈ R,
d = d ∩ r(d), that is no value cannot be removed according to the operators.

Definition 3. Let r ∈ R. We say an environment d is r-consistent if d ⊆ r(d).
We say an environment d is R-consistent if ∀r ∈ R, d is r-consistent.

Domain reduction from an environment d by R amounts to compute the
greatest common fix-point included in d of the reduction operators d 7→ d∩r(d),
r ∈ R.

Definition 4. The downward closure of d by R, denoted by CL↓(d, R), is the
greatest d′ ⊆ d such that d′ is R-consistent.

In general, we are interested in the closure of D by R (the computation
starts from D), but sometimes we would like to express closures of subset of D,
for example to take into account dynamic aspects or labeling.

By Definition 4, since d ⊆ D:

Lemma 1. If d is R-consistent then d ⊆ CL↓(D, R).

2.4 Links between CSP and Program

Of course, the program is linked to the CSP. The operators are chosen to “imple-
ment” the CSP. In practice, this correspondence is expressed by the fact that the
program is able to test any valuation. That is, if all the variables are bounded, the
program should be able to answer to the question: “is this valuation a solution
of the CSP?”.

Definition 5. A local consistency operator r preserves the solutions of a set of
constraints C ′ if, for each tuple t, (∀c ∈ C ′, t|var(c) ∈ Tc)⇒ t is r-consistent.



If C ′ ⊆ C ′′ and if r preserves the solutions of C ′ then r preserves the solutions
of C ′′. In particular, considering C ′′ = C, we have r preserves the solutions of
the CSP.

For example, in the well-known case of (hyper) arc-consistency, each con-
straint c of the CSP is implemented by a set of local consistency operators Rc.
Of course, each r ∈ Rc preserves the solutions of {c}.

To preserve solutions is a correction property of operators. A notion of com-
pleteness is used to choose the set of operators “implementing” the CSP. It en-
sures to reject valuations which are not solutions of constraints. But this notion
is not necessary for our purpose.

In the following lemmas, we consider S ⊆ Sol, that is S a set of solutions of
the CSP and

⋃
S (=

⋃
t∈S t) its projection on D.

Lemma 2. Let S ⊆ Sol, if r preserves the solutions of the CSP then
⋃

S is
r-consistent.

Proof. ∀t ∈ S, t ⊆ r(t) so
⋃

S ⊆
⋃

t∈S r(t). Now, ∀t ∈ S, t ⊆
⋃

S so ∀t ∈
S, r(t) ⊆ r(

⋃
S). ut

From now on, we consider that the set of local consistency operators of the
fixed program R preserves the solutions of the fixed CSP.

Lemma 3. If S ⊆ Sol then
⋃

S ⊆ CL↓(D, R).

Proof. by Lemmas 1 and 2. ut

Finally, the following corollary emphasizes the link between the CSP and the
program.

Corollary 1.
⋃

Sol ⊆ CL↓(D, R).

The downward closure is a superset (an “approximation”) of
⋃

Sol which is
itself the projection (an “approximation”) of Sol. But the downward closure is
the most accurate set which can be computed using a set of local consistency
operators in the framework of domain reduction without splitting the domain
(without search tree).

3 Explanations

An explanation is a proof tree of a value removal ([14] provides more details
about explanations).

3.1 Dual View of Domain Reduction

First we need some notations. Let d = D \ d. In order to help understanding,
we always use the notation d for a subset of D if intuitively it denotes a set of
removed values.



Definition 6. Let r be an operator, we denote by r̃ the dual of r defined by:
∀d ⊆ D, r̃(d) = r(d) (see [15]).

Definition 6 provides a dual view of domain reduction: instead of speaking
about values that are kept in the environments this dual view consider the values
removed from the environments.

We consider the set of dual operators of R: let R̃ = {r̃ | r ∈ R}.

Definition 7. The upward closure of d by R̃, denoted by CL↑(d, R̃) exists and
is the least d′ such that d ⊆ d′ and ∀r ∈ R, r̃(d′) ⊆ d′.

Next lemma establishes the correspondence between downward closure of
local consistency operators and upward closure of their duals.

Lemma 4. CL↑(d, R̃) = CL↓(d, R).

Proof. CL↑(d, R̃) = min{d′ | d ⊆ d′,∀r̃ ∈ R̃, r̃(d′) ⊆ d′}
= min{d′ | d ⊆ d′,∀r ∈ R, d′ ⊆ r(d′)}
= max{d′ | d′ ⊆ d,∀r ∈ R, d′ ⊆ r(d′)}

ut

In particular, CL↑(∅, R̃) = CL↓(D, R) is the set of values removed by the
program during the computation.

3.2 Deduction Rules and Explanations

Now, we associate rules in the sense of [15] with these dual operators. These
rules are well suited to provide proof trees of value removals.

Definition 8. A deduction rule is a rule h← B such that h ∈ D and B ⊆ D.

Intuitively, a deduction rule h ← B can be understood as follows: if all the
elements of B are removed from the environment, then h can be removed.

A very simple case is arc-consistency where B corresponds to the well-known
notion of support of h. But in general (even for hyper arc-consistency) the rules
are more intricate.

Note that the whole set of rules is only a theoretical tool to define explana-
tions. But in practice, this set does not need to be given. The rules are hidden
in the algorithms which implement the solver.

For each operator r ∈ R, we denote by Rr the set of deduction rules Rr =
{h ← B | h ∈ r̃(B)}. This set defines r̃, that is, Rr is such that: r̃(d) = {h ∈
D | ∃B ⊆ d, h← B ∈ Rr}. Rr contains a lot of redundant rules. There possibly
exists many other sets of rules defining r̃. For classical notions of local consistency
one is always smaller and natural [14]. But here it is easier to consider Rr. Note
that deduction rules clearly appear inside the algorithms of the solver.

In [23] the proposed solver is directly something similar to the set of rules
(it is not exactly a set of deduction rules because the heads of the rules do not
have the same shape that the elements of the body).



With the deduction rules, we have a notion of proof tree [15]. We consider
the set of all deduction rules for all local consistency operators of R: let R =⋃

r∈RRr.
We denote by cons(h, T ) the tree defined by: h is the label of its root and T

the set of its sub-trees. The label of the root of a tree t is denoted by root(t).

Definition 9. An explanation is a proof tree cons(h, T ) with respect to R; it is
inductively defined by: T is a set of explanations with respect to R and (h ←
{root(t) | t ∈ T}) ∈ R.

Finally we prove that the elements removed from the domain are the roots
of the explanations.

Theorem 1. CL↓(D, R) is the set of the roots of explanations with respect to
R.

Proof. Let E be the set of the roots of explanations wrt R. By induction on
explanations E ⊆ min{d | ∀r̃ ∈ R̃, r̃(d) ⊆ d}. It is easy to check that r̃(E) ⊆ E.
Hence, min{d | ∀r̃ ∈ R̃, r̃(d) ⊆ d} ⊆ E. So E = CL↑(∅, R̃). ut

In [14] there is a more general result which establishes the link between the
closure of an environment d and the roots of explanations of R∪{h← ∅ | h ∈ d}.
But here, to be lighter, the previous theorem is sufficient because we do not
consider dynamic aspects. All the results are easily adaptable when the starting
environment is d ⊂ D.

It is interesting to note that explanations are defined by rules associated with
the dual operators and that the dual operators are duals of local consistency
operators, they are not duals of reduction operators.

4 Computed Explanations

The solver computes CL↓(D, R) by chaotic iterations (introduced in [3]) of local
consistency operators. The principle of a chaotic iteration [24] is to apply the
reduction operators one after the other in a fair way, that is such that no operator
is forgotten. In practice this is often implemented thanks to a propagation queue.
In our framework, the reduction operator associated with a local consistency
operator r is the contracting operator d 7→ d∩r(d). That is, at each step the solver
chooses a local consistency operator r and removes from the current environment
d the values which are not in r(d).

The well-known result of confluence [6, 3] ensures that the limit of every
chaotic iteration of the set of local consistency operators R is the downward
closure of D by R. Since ⊆ is a well-founded ordering (because D is a finite set),
every chaotic iteration is stationary. So in practice the computation ends when
a common fix-point is reached (or when an environment of a variable becomes
empty). Moreover, implementations of solvers use various strategies in order to
determine the order of invocation of the operators. These strategies are used to
optimize the computation.



4.1 The OADymPPaC XML Trace Format

Some works in progress on finite domain constraint solvers concern the descrip-
tion of a trace format of the computation. The trace is intended to facilitate
adaptation of visualization tools and debugging tools on different finite domain
solvers. It enables these tools to be defined almost independently from finite do-
main solvers, and conversely, tracers to be built independently from these tools.
The trace format is a description of the trace events that tracers should generate
when tracing execution of a finite domain solver.

Traces are encoded in an XML format using the OADymPPaC DTD. It
describes all the events of the solver [17]. This trace format is already tested in
GNU-Prolog, Palm and Chip. The purpose of the trace format is to fully define
the communications between solvers and tools ensuring full compatibility of all
the tools with all the solvers.

In general, traces are very large with thousands of events. Thus they are
neither understandable nor readable by a human. Explanations are a good ab-
straction (visualization) of the trace to understand domain reduction and to
understand why a value has been removed from a domain. Each event of the
solver [17] is described by an XML element in the trace. The event correspond-
ing to a domain reduction by the solver is described by the <reduce> element
in the XML trace. Since it is the only interesting element to extract explana-
tions from the trace, we will only describe the part of the OADymPPaC DTD
concerning this element. The other elements are not presented in this paper.

Note that, in the trace, the search tree is described by the two elements
<choicepoint> and <back-to>. Since we only focus on one branch of the search
tree, we do not need to consider all the <reduce> elements of the trace but only
those included in this branch. Thanks to the <choicepoint> and <back-to>
elements, it is easy to filter the <reduce> corresponding to the concerned branch
but this is not in the scope of this paper.

<!ELEMENT reduce ( update?, explanation*, state? ) >
<!ATTLIST reduce

%eventAttributes;
cident CDATA #IMPLIED
vident CDATA #IMPLIED
algo CDATA #IMPLIED >

The %eventAttributes of the <reduce> element is a set of optional at-
tributes except the chrono attribute which is an integer indicating the event
number in the trace. The algo attribute provides the name of the algorithm used
to reduce the environment. This corresponds exactly to the notion of local con-
sistency operator of our framework. In the arc-consistency case, the constraint
and the variable whose environment is reduced are sufficient to know this lo-
cal consistency operator and this attribute is rather used for global constraints,
for example in Chip. The cident attribute identifies a constraint. The local
consistency operator (algo attribute) comes from this constraint. The vident
attribute identifies the variable whose environment is reduced. The <reduce>



element may contain an <update> element, a list of <explanation> elements
and a <state> element.

The <state> element is not useful here and is not described.

<!ELEMENT update %valueList; >
<!ATTLIST update

vident CDATA #REQUIRED
type (ground | any | min | max |

minmax | empty | val | nothing ) #IMPLIED >

The vident attribute of the <update> element identifies the variable whose
environment is reduced. Note that this attribute is redundant with the vident
optional attribute of the <reduce> element. The optional type attribute is not
useful here. The <update> element may contain some %valueList elements
which provide the values removed from the environment.

<!ELEMENT explanation ( valueList, (cause)*, constraints? ) >

The <explanation> element has no attribute. It contains some %valueList
elements, a list of <cause> elements and it may contain a <constraints> ele-
ment. The <constraints> element is not useful here. The <explanation> el-
ement explains the removal of the %valueList elements (the %valueList is a
subset of the %valueList given in the <update> element). The list of <cause>
elements provide the reason why the values of the %valueList have been re-
moved.

<!ELEMENT cause %valueList; >
<!ATTLIST cause

vident CDATA #REQUIRED
type (ground | any | min | max |

minmax | empty | val ) #IMPLIED >

The type attribute is not useful here. The vident attribute identifies a vari-
able and the %valueList elements provide a set of values removed from the
environment of the vident variable. The values in the %valueList elements
of the <explanation> element have been removed from the environment of the
vident variable of the <update> element because, for each <cause> element, the
values in the %valueList elements have been removed from the environment of
the vident variable. Next, an example, together with deduction rules, will clear
up the semantics of these elements.

<!ENTITY % valueList "( values | range )*" >

<!ELEMENT values (#PCDATA) >

<!ELEMENT range EMPTY>
<!ATTLIST range

from CDATA #REQUIRED
to CDATA #REQUIRED >

The %valueList entity is a sequence of <values> and <range> elements.



4.2 Extraction of Explanations from a Trace

In order to facilitate understanding, let us consider the XML trace of Fig. 1
([...] indicates some removed parts of the trace).

The <new-variable> element declares a variable x2 whose environment con-
tains the integer values from 0 to 10. The <new-constraint> element declares
a constraint c3(x7, x4, x2). The <post> element corresponds to the addition of
the constraint c3(x7, x4, x2) to the store.

Deduction rules can be extracted from the <reduce> element using the infor-
mation provided by the <explanation> and <cause> elements. As said before,
<explanation> elements express the cause of value removals. A set of values A
is removed from the environment by a local consistency operator r because other
values B were removed, that is A ⊆ r̃(B).

For example, from the <reduce> element of the trace given by the figure, it
can be concluded that (where r5 is the local consistency operator used to reduce
the environment, and d is the environment before the reduction):

{(x4, 0), (x4, 1), (x4, 2)} ⊆ r̃5

({
(x2, 0), (x2, 1), (x2, 2), (x7, 3),

(x7, 4), (x7, 5), (x7, 6), (x7, 7), (x7, 8)

})
{(x4, 3), (x4, 7), (x4, 9), (x4, 10)} ⊆ r̃5

({
(x2, 2), (x2, 3), (x2, 4), (x2, 4),
(x2, 5), (x2, 6), (x2, 7), (x2, 8)

})
{(x4, 4)} ⊆ r̃5(∅)
{(x4, 5)} ⊆ r̃5(D|{x2,x7} \ (d|{x2} ∪ d|{x7}))

Note that for the value (x4, 4), there is no <cause> element in the <explanation>
element. When no <explanation> element is given for a removed value, for
example (x4, 5), the meaning is different. In the trace format, it is not mandatory
to give an explanation for each removed value. If there is no <explanation> for a
value h, it is always true that h 6∈ r(d), where r is the local consistency operator
used by the <reduce> and d is the environment just before this reduction. That
is to say h ∈ r̃(d). In the example, as r5 comes from the constraint c3(x7, x4, x2)
and reduces the environment of the variable x4, it only depends on the current
environment of the variables x7 and x2. Thus we have (x4, 5) ∈ r̃5(D|{x2,x7} \
(d|{x2} ∪ d|{x7})), where d is the environment before the <reduce>.

An inclusion A ⊆ r̃(B) provides the set of deduction rules: {h← B | h ∈ A}.
Note that these rules are members of Rr. In the example, this provides the
following deduction rules of Rr5 :

(x4, 0) ← {(x2, 0), (x2, 1), (x2, 2), (x7, 3), (x7, 4), (x7, 5), (x7, 6), (x7, 7), (x7, 8)}
(x4, 1) ← {(x2, 0), (x2, 1), (x2, 2), (x7, 3), (x7, 4), (x7, 5), (x7, 6), (x7, 7), (x7, 8)}
(x4, 2) ← {(x2, 0), (x2, 1), (x2, 2), (x7, 3), (x7, 4), (x7, 5), (x7, 6), (x7, 7), (x7, 8)}
(x4, 3) ← {(x2, 2), (x2, 3), (x2, 4), (x2, 4), (x2, 5), (x2, 6), (x2, 7), (x2, 8)}
(x4, 7) ← {(x2, 2), (x2, 3), (x2, 4), (x2, 4), (x2, 5), (x2, 6), (x2, 7), (x2, 8)}
(x4, 9) ← {(x2, 2), (x2, 3), (x2, 4), (x2, 4), (x2, 5), (x2, 6), (x2, 7), (x2, 8)}
(x4, 10)← {(x2, 2), (x2, 3), (x2, 4), (x2, 4), (x2, 5), (x2, 6), (x2, 7), (x2, 8)}
(x4, 4) ← ∅
(x4, 5) ← D|{x2,x7} \ (d|{x2} ∪ d|{x7})



<oadymppac xmlns="http://contraintes.inria.fr/OADymPPaC">

[...]

<new-variable chrono="15" vident="x_2">

<range from="0" to="10">

</new-variable>

[...]

<new-constraint chrono="73" cident="c_3(x_7,x_4,x_2)">

</new-constraint>

[...]

<post chrono="82" cident="c_3(x_7,x_4,x_2)">

</post>

[...]

<reduce chrono="735" cident="c_3(x_7,x_4,x_2)" algo="r_5">

<update vident="x_4">

<range from="0" to="5"/><values>7 9 10</values>

</update>

<explanation>

<range from="0" to="2"/>

<cause vident="x_2">

<values>0 1 2</values>

</cause>

<cause vident="x_7">

<values>7 6 8</values><range from="3" to="5"/>

</cause>

</explanation>

<explanation>

<values>3 7</values><range from="9" to="10"/>

<cause vident="x_2">

<range from="2" to="8"/>

</cause>

</explanation>

<explanation>

<values>4</values>

</explanation>

</reduce>

[...]

</oadymppac>

Fig. 1. An extract of a XML trace



As said before we only consider a branch of the search tree. Let us consider the
sequence of <reduce> elements corresponding to this branch. They are ordered
by the number of the chrono attribute.

The set of computed explanations extracted from the trace is defined induc-
tively as follows:

Let n be the chrono of a <reduce> element, the set of computed explanations
extracted at the step n is Sn:

Sn =

cons(h, T )

∥∥∥∥∥∥∥∥∥∥
h← {root(t) | t ∈ T} is a deduction rule associated

with the <reduce> element
of chrono n

and
T ⊆

⋃
m<n Sm


where

⋃
m<n Sm denotes the set of all the computed explanations extracted

from the <reduce> elements of chrono m, m < n (it is also possible to consider
Sm = ∅ when m is the chrono of an element different from a reduce).

Theorem 2. Let n be the chrono of a <reduce> element, let dn be the environ-
ment at the step n:

dn =
⋃

m≤n

{root(t) | t ∈ Sm}

Proof. By induction on n. ut

Let k be the chrono of the last <reduce> element of the considered branch
of the search tree, it is important to note that:

⋃
m≤k Sm denotes the set of

all the computed explanations extracted from the trace. Each t ∈
⋃

m≤k Sm

declaratively explains the withdrawal of root(t).
The link between the set of explanations

⋃
m≤k Sm and the closure CL↓(D, R)

is given by:

– if CL↓(D, R) 6= ∅ then we have

CL↓(D, R) =
⋃

m≤k

{root(t) | t ∈ Sm}

– if CL↓(D, R) = ∅ then there exists x ∈ V such that

D|{x} ⊆
⋃

m≤k

{root(t) | t ∈ Sm}

This result is similar to (and can be seen as an adaptation of) a result in [14]
which shows the equality between CL↓(D, R) and the set of root of explanations
computed at the limit of every chaotic iteration.



5 Conclusion

This paper shows how to extract explanations from a constraint program trace
(using the OADymPPaC trace format). The deduction rules used to build ex-
planations can be obtained thanks to the <explanation> element in the trace.
The linking of these rules allows to build an explanation for each element which
is removed during the computation.

It is important to note that if a tracer is not able to provide the <explanation>
element, explanations can nevertheless be obtained. Indeed, the <reduce> ele-
ment indicates the domains of variables used by the operator at this step. The
body of the deduction rule used can then be replaced (with a loss of information
of course) by all the elements which have been removed of theses domains during
the computation.

Explanations provide us with a declarative view of the trace and domain
reduction. They can be used for debugging: in [13], an adaptation of algorithmic
debugging [25] for constraint programs is proposed. This adaptation is based on
explanations and their tree structure. It will be possible to provide a declarative
debugging tool, using explanations and algorithmic debugging, to locate errors
in a constraint program from a trace of a computation giving an erroneous
result. As the tool will use in input an OADymPPaC XML trace, it could be
plugged in all the solvers that use this trace format (actually GNU-Prolog, Palm,
Chip). It is also possible to adapt existing tools based on explanations to use
the OADymPPaC trace format.

This paper does not take into account the search tree of the labeling. In
the OADymPPaC trace format, the search tree is coded by the two elements:
<choicepoint> and <back-to>. A <choicepoint> element defines a node of the
search tree and a <back-to> element indicates the start of a new branch from a
node previously defined by a <choicepoint> element. It is sufficient to remove
explanations built between a <choicepoint> and a <back-to> referencing the
same node in order to compute the explanations of a new branch.
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