
Mapping Heterogeneous Distributed
Applications on Clusters

Sylvain Jubertie, Emmanuel Melin, Jérémie Vautard, Arnaud Lallouet

Université d’Orléans, LIFO B.P. 6759
F-45067 ORLEANS Cedex 2

{firstname.name}@univ-orleans.fr

Abstract. Performance of distributed applications largely depends on
the mapping of their components on the underlying architecture. On one
side, component-based approaches provide an abstraction suitable for
development, but on the other side, actual hardware becomes every day
more complex and heterogeneous. Despite this increasing gap, mapping
components to processors and networks is commonly done manually and
is mainly a matter of expertise. Worse, the amount of efforts required
for this task rarely allows to further consider optimal hardware use or
sensitivity analysis of data scaling. In this paper, we rely on a formal and
experimentally sound model of performance and propose a constraint
programming based framework to find consistent and efficient mappings
of an application onto an architecture. Experiments show that an optimal
mapping for a medium-sized application can be found in a few seconds.

1 Introduction

Distributed architectures can have very different levels of parallelism. For ex-
ample a cluster can be composed of an heterogeneous set of nodes where each
node owns a set of (possibly multicore) processors sharing a common memory.
These nodes can be linked to some others by multiple networks with different
topologies and characteristics (bandwidth and latency). To hide the complexity
and to foster portability, parallel programming models abstract these difficulties
by providing a uniform notion of process. Then it remains to find a suitable
placement, which is an assignment of each process to a processor.

Two common solutions are to use parallel libraries, like MPI1 and PVM2,
or process migration techniques, like openMosix3. For some applications, these
two solutions have drawbacks. The parallel libraries are not well suited for the
creation of heterogeneous applications since the resulting code also contains com-
munication and synchronization schemes. Thus the developer has to modify the
application code each time he needs to optimize the application or to take ad-
vantage of a different cluster. On the other side, the load balancing provided by

1 http://www.mpi-forum.org/
2 http://www.csm.ornl.gov/pvm/pvm home.html
3 http://openmosix.sourceforge.net

process migration techniques moves both processes and data, which may result
in poor performances for some applications.

The FlowVR framework4 [1, 2] was created to address this problem and to
ease the development of heterogeneous distributed applications (especially Vir-
tual Reality ones). To build a FlowVR application, the developer first creates the
components, called modules, which encapsulate codes, and then independently
defines a communication and synchronization scheme between them. This is a
convenient abstraction level for many applications since it provides a coarse
granularity level for the code and an explicit representation of the data-flow.

Classically, the developer has to map modules on cluster nodes and connec-
tions on network links by taking care of hardware performance to ensure an
efficient mapping. When hardware performance is far beyond the needs of the
application, this task is fairly easy to perform. But for handling larger applica-
tions, or to be able to ensure a better interaction with the user, resources become
quickly scarce and have to be used with care. Moreover, the number of possible
mappings dramatically increases when we consider large applications and clus-
ters. The result is that allocation made by human is strongly suboptimal and
cannot obtain the best result. For the same reason, it does not seem reasonable
to generate all the possible mappings and to test each one.

In this paper, we propose to automatically find a mapping from modules to
processors and from communication requirements to network links using Con-
straint Programming (CP). The optimization capabilities of CP allow to answer
questions users were asking, like:

– what is the largest data size allowed for this application on my cluster ?
– is it possible to ensure this frequency for this module on my cluster ? what

is the maximum frequency ?
– is it possible to run this application on fewer processors while ensuring the

same level of performance ?
– is is possible to deploy my application on cluster X ?

The search for a suitable allocation uses the performance model of FlowVR in-
troduced in [8]. Some general constraints are defined from the FlowVR model
and its performance model and are common to all FlowVR distributed applica-
tions. Some constraints are specific to the considered distributed application, like
synchronization scheme. Other constraints are derived from the underlying ar-
chitecture, like hardware limitations, number of processors, network bandwidths
and latencies. Finally the developer can also add his own constraints. For exam-
ple he may need a precise performance on a given application part. This can be
useful to restrict mappings to those with expected performance. We propose an
implementation in Gecode5 [9] which takes advantage of the advanced features
of the solver and the model (reified constraints, global constraints, symmetry
breaking, user-defined heuristics, branch and bound). For the medium-sized ap-
plication introduced in the experimental section, it yields a problem involving
more than 2000 variables.
4 http://flowvr.sourceforge.net
5 http://www.gecode.org/

2 Performance of FlowVR applications

The FlowVR framework is an open source middleware used to build distributed
applications. A FlowVR application consits of a set of objects which communi-
cate via messages through a data-flow network. Each message is associated with
lightweight data, called stamps, which contain information used for routing op-
erations. A FlowVR application can be viewed as a multigraph G(V,E), called
the application graph, where each vertex in V represents a FlowVR object and
each directed edge in E a point to point FIFO connection between two objects.
Objects can be of three kinds: modules, filters and synchronizers.

Modules are endless iteration which encapsulate tasks. Each module owns a
set of I/O ports. It waits until it receives one message on each of its input ports
(thus providing an implicit synchronizations between connected modules), then
it processes the messages, computes its task and produces new messages that
are put on its output ports. Operations on messages like routing, broadcasting,
merging or scattering are done by filters, while synchronization and coupling
policy are performed by synchronizers. Both filters and synchronizers are placed
on connections between modules. A synchronizer only receives stamps emitted
by filters or modules, then takes a decision according to its coupling policy and
sends new stamps to destination objects. This decision is then performed by the
destination object. With the use of synchronizers, it is possible to implement a
greedy filter, which allows its connected modules to communicate asynchronously.
In this case, the destination module always uses the last available message while
older messages are discarded. More details on FlowVR can be found in [1].

The performance of a FlowVR application can be described by a formal
model, as introduced in [8]. This model takes several inputs :

– a FlowVR application graph G(V,E)
– a cluster configuration represented by a multigraph of SMP nodes connected

to networks by network links. Each network link l has a maximum bandwidth
BWmaxl

– a mapping description : the destination node of each FlowVR object and the
network links used for each connection

– some information on each module m : its execution time T exec
m and the load

Loadm it generates when m is mapped alone on its destination processor
– the amount of data V oloi

m sent by each module m through output port oi

The goal of our model is to determine for each module its frequency Fm and the
load Loadc

m it generates on the destination processor. We also need to determine
the required bandwidths bwnl on each network link nl to detect possible network
contentions. Note that we assume that synchronizers have negligible execution
times and loads compared to module ones, and generate only stamps and we
choose to ignore them in our study. We also assume that filters generate negligible
loads on processors compared to modules since they only perform few memory
operations. However the mapping of modules modifies the amount of data sent
through network links. Thus we only consider the mapping of modules and filters
on nodes and the mapping of connections on network links.

The performance of each module in the whole application depends on syn-
chronization with other modules. We propose in [8] to study the application
graph to determine implicit synchronizations between modules. Then, we com-
pute the frequency Fm of modules according to their execution times, implicit
synchronizations and explicit ones defined with synchronizers. Note that the
processor load required for each module may vary depending on synchronization
between modules, thus, we provide in [8] an algorithm to determine for each
module the new value of its load, noted Loadc

m. At the end of each iteration,
each module m sends messages on its output ports, thus we can compute the
required bandwidths bwl for each network link l from Fm and V oloi

m. Our perfor-
mance model allows to determine performance of modules for a given mapping
but also to detect possible synchronization scheme misconfigurations or network
contentions.

In order to be executed on a target architecture, a FlowVR application has to
be mapped on available processors and network links. The technique we propose
hereafter takes advantage of this formal performance model to find automatically
sound and efficient mappings i.e. efficient homomorphisms from the application
graph into the architecture multigraph. Thus, for each module m, the developer
needs to provide the execution time T exec

m,p and the load Loadm,p it generates
when m is mapped alone on a processor p.

3 Modeling the problem using Constraint Programming

We first present the principle of Constraint Programming [3], then we show how
to use it to solve our mapping problem.

3.1 Constraint Programming

A Constraint Satisfaction Problem (CSP) is a search problem established by
giving a set of variables ranging over finite domains, and a conjunction of con-
straints i.e. logical relations, mentioning such variables. CSP formulations are
naturally suited to model real-world problems, and countless applications ex-
ist indeed. For example, given x ∈ {1, 2, 3}, y ∈ {3, 4}, and z ∈ {4, 5, 6}, the
following CSP :

x < y ∧ x + y = z ∧ z 6= 3x

is solved by selecting (if possible) one value for each variable in so as to satisfy
the three constraints at once. For example, x = 1, y = 4, z = 5 is a valid solution,
while x = 2, y = 4, z = 6 is not.

Formally, a CSP is a 3-tuple (V,D,C) where V is a set of variables v1 . . . vn,
D a set of finite domains d1 . . . dn for the variables of V, and C a set of constraints
c1 . . . cm over the variables of V . Many CSP solvers exists in the literature. The
most common way of searching CSP solution is to combine a backtracking algo-
rithm with a constraint propagation algorithm. The first will perform a tree-like
search over the domains of all the variables of the CSP since the last will reduce
these domains by reasoning on the constraints of the problem. Constraints are
generally of limited arity. However, there exist some constraints with arbitrary

large arity, called global constraints, that usually encapsulate a specific efficient
algorithm or give access to a data-structure. For example we make use of the
Element constraint [6] that links an index and its value in an array.

3.2 Problem modeling

Modeling the mapping problem into a CSP can be split in three parts : (1)
the pure module and filter placement problem, (2) taking care of the FlowVR
connection between objects, and (3) the traffic part, where the placement of
connections between objects through the available links and networks is done,
constrained by the links maximum bandwidth and network paths.

Let us describe this problem by illustrating it with a very simple example :
we consider an application composed of three modules, the first sending data to
the second, which in turn sends data to the third. We want to run it on a little
cluster composed of two dual-processor nodes linked by a single network. Note
that there are 4 processors in the cluster (2 per node).

Practically, a boolean variable is implemented as an integer variable ranging
from 0 to 1 (0 for False, 1 for True). This will be assumed in this section.

Modules and filters placement. Basically, the problem we want to solve is
a placement of modules on processors and filters on nodes since we assume that
filters generate negligible loads compared to modules. So, we begin with creating
variables Modulei for each module in G(V,E) (i going from 0 to the number
of modules the application is composed of), which value will be the number of
the processor on which the i-th is to be executed. Then we create filter variables
Filteri for each filter in G(V,E) (i going from 0 to the number of filters the
application is composed of) which value will be the number of the node on
which the i-th is to be executed. In our example, our processors are indexed
from 0 to 3, we hence have three variables Module1, Module2 and Module3

ranging on this interval.
The load Loadc

i,j put by a module Modulei on a processor pj is expressed in
percents and is determined by our performance model [8]. A first restriction is
that a processor cannot be loaded beyond 100%. This restriction can be expressed
using arithmetic constraints : first, a matrix M of auxiliary boolean variables
is created, each Mi,j being constrained to be true if module mi executes on
processor pj , and false otherwise, using reified equality constraint (Modulei =
j) ↔ Mi,j . Then, for each processor pj , the constraint

∑
i Mi,j ∗ Loadc

i,j ≤ 100
is posted. The consistency between Modulei variables and the M matrix is
ensured by this last contraint, plus a set of Element constraints enforcing, for
each module i, that Mi,Modulei

= 1. In our example, the matrix M is created
with a size of 3 ∗ 4 (three modules, four processors), as well as the Loadc

0,1 to
Loadc

3,4 variables, ranging from 0 to 100. Then, we post the following constraints
for the consistency of the model :

– M0,0 + M0,1 + M0,2 + M0,3 = 1
– M1,0 + M1,1 + M1,2 + M1,3 = 1
– M2,0 + M2,1 + M2,2 + M2,3 = 1

– M0,Module0 = 1
– M1,Module1 = 1
– M2,Module2 = 1

and the following ones to ensure a processor will not be overloaded :

– M0,0 ∗ Loadc
0,1 + M1,0 ∗ Loadc

1,1 + M2,0 ∗ Loadc
2,1 ≤ 100

– M0,1 ∗ Loadc
0,2 + M1,1 ∗ Loadc

1,2 + M2,1 ∗ Loadc
2,2 ≤ 100

– M0,2 ∗ Loadc
0,3 + M1,2 ∗ Loadc

1,3 + M2,2 ∗ Loadc
2,3 ≤ 100

– M0,3 ∗ Loadc
0,4 + M1,3 ∗ Loadc

1,4 + M2,3 ∗ Loadc
2,4 ≤ 100

Connection mapping. Several issues occur when modeling communications :
first, a connection between two objects must travel through two network links
which share the same network. Of course, these links must belong to the nodes
the modules are running on. Then, the total amount of communication going
through one given link li must not exceed its bandwidth BWmaxi.

Each FlowVR connection ci ∈ E in the graph G(V,E), is represented by
two variables cin

i and cout
i , giving respectively the index of its input and output

network link. Another variable cni indicates the network this connection is trav-
eling through. To solve the first issue, we first build a static array LoN (Links
on Network) such that LoNi is equal to the network to which is connected the
link li. Then, we post two Element constraints to ensure LoN [cin

i] = cni and
LoN [cout

i] = cni.
In the example, we have two connections (numbered 0 and 1), and therefore

create the cin
0 , cout

0 , cin
1 and cout

1 , ranging over the two existing links (one for each
node), numbered 0 and 1. Variables cn0 and cn1 can also be created, however
their domain is already reduced to value 1, as there is only one network available.
The array LoN in this case is equal to [1, 1], and we then post the Element
constraints LoN [cin

0] = cn0, LoN [cout
0] = cn0, LoN [cin

1] = cn1 and LoN [cout
1] =

cn1.

Traffic. The traffic bwi generated by a connection ci is equal to the product
of the frequency Fj of the emitter module mj and the volume emitted by this
module at each iteration V olci . This traffic really travels through a link iff the
connection is not local (in this case, the connection is ignored). For each con-
nection, V olci is a constant integer, and Fj a variable already defined, so the
variable bwi is created and the constraint bwi = Fj ∗ V olci is posted. As we will
need to know if a connection is local or not, we have to define for each connec-
tion ci a boolean variable Loci that will be true iff ci is local. This is enforced
simply by checking that cin

i and cout
i are equal i.e. posting the reified constraint

(cin
i = cout

i) ↔ Loci

In our example, we create variables bw0, bw1, Loc0 and Loc1 and simply post
the constraints bw0 = F0 ∗ V ol0 and bw1 = F1 ∗ V ol1, (cin

0 = cout
0) ↔ Loc0 and

(cin
1 = cout

1) ↔ Loc1.
The link bandwidth issue is solved like the processor maximal load one : we

create two matrices of boolean variables Cin and Cout, Cini,j (resp. Couti,j)
being constrained to be true if and only if the connection ci input (resp. output)

is made via the link lj . Then, for each link, we sum the traffic of the non-local
connections passing through it by posting the constraints

∑
i Cini,j ∗Loci∗bwi ≤

BWmaxj and
∑

i Couti,j ∗ Loci ∗ bwi ≤ BWmaxj . Note that we have two
distinct sums because the links work in full-duplex mode i.e. that they can emit
and receive at their full bandwidth at the same time.

In the example, variables Cin0,0 to Cin2,2 and Cout0,0 to Cout2,2 are created,
integers BWmax0 and BWmax1 are given, so we post the following constraints :

– Cin0,0 ∗ Loc0 ∗ bw0 + Cin1,0 ∗ Loc1 ∗ bw1 ≤ BWmax0

– Cin0,1 ∗ Loc0 ∗ bw0 + Cin1,1 ∗ Loc1 ∗ bw1 ≤ BWmax1

– Cout0,0 ∗ Loc0 ∗ bw0 + Cout1,0 ∗ Loc1 ∗ bw1 ≤ BWmax0

– Cout0,1 ∗ Loc0 ∗ bw0 + Cout1,1 ∗ Loc1 ∗ bw1 ≤ BWmax1

4 Experiments

We have implemented this framework using the constraint solver Gecode6 [9].
Given descriptions of a distributed application and of a cluster architecture,
it generates the CSP translation of the mapping problem using the techniques
presented in previous section, plus possibly some user-defined constraints.

Fig. 1. FluidParticle application graph

In the following, we use the medium-sized FlowVR application FluidParticle
to benchmark the different mappings found by the solver. We have been able
to leverage the hardware power by scaling up the application to a size that was
impossible before. The application is composed of the following parts :

– simulation : it is a parallel version [4] of the Stam’s fluid simulation [10].

6 http://www.gecode.org

– particles : it stores a set of particles and moves them according to a force
field.

– viewer : it converts particle positions into graphic primitives.
– renderer : it displays on the screen information provided by the viewer mod-

ules.
– interaction : it is an interaction module, it converts user interaction into

forces.

The graph (without synchroniszers) of our FluidParticle application is shown
in figure 1. Note that we define multiple instances of some modules to decrease
their execution time.

Our tests are performed on our VR platform, described in figure 2. We now
show the different possibilities offered by our approach by answering questions
of increasing difficulty.

Fig. 2. Our cluster platform

4.1 Validating mappings

Since our approach integrates our performance model, we can use it to validate
mappings. In this case we set the mapping of objects and connections by re-
stricting each variable domain to a given value. Then, we run the solver which
only verifies the mapping constraints.

We have validated mappings of our application [7, 8] previously obtained after
a long trial and error process.

4.2 Generating mappings

The main interest of our approach is to automatically generate mappings for a
given application on a given architecture. Depending on the application, some
constraints can be added to the problem. For example, some modules, like the
interaction or visualization ones, are hardware dependent. Consequently they
must be mapped on a given node or only on a subset of the cluster and we
can restrict the domain of the corresponding variables. In our example, we need
to map renderer modules on nodes 1 to 4 which are connected to our video
projectors, thus we add the following constraints :

renderer0 = 1, renderer1 = 2, renderer2 = 3, renderer3 = 4

Then we can use the solver to automatically generate pertinent mappings.
When running the solver, we can have two possible results : it produces

mappings as it is exploring the search domain, or it ends without giving any
mapping. We have tried out different configurations of our application and of
our architecture. For example, if we only use a single network link to connect
nodes to the gigaEthernet network, then the solver does not find a solution.
If we use the three available networks, then the solver provides thousands of
solutions. Note that the execution time of our solver may vary from seconds to
hours depending on the cluster configuration.

To improve the efficiency of our solver we can add some constraints. In our
example, we observe that some mappings are symmetric and provide the same
performance. For example, modules simulation0 and simulation1 have the same
performance and send the same amount of data. Thus, if we swap them we ob-
tain the same performance. To remove symmetries, we can add lexicographic
order constraints [5] on the corresponding modules variables, for example :
simulation0 < simulation1. We can also add constraints to restrict the mapping
of filters. Indeed, if a filter is not mapped with one of its source or destination
objects, then its input and output messages are sent through a network. Thus,
if we map a filter on the same node as one of its source or destination objects,
then we avoid a distant communication. To restrict the mapping of filters, we
use a disjunctive constraint. For example, to restrict the mapping of the greedy
filter between interaction and renderer modules, we define :

greedy = interaction||greedy = simulation0||greedy = simulation1

||greedy = simulation2||greedy = simulation3

4.3 Testing application and hardware limits

We can also use our solver to find the limits of our application. For example,
we can increase the number of particles in our application while the solver finds
a least one solution. In our default application, we define a set of 400 × 400
particles. If we now consider a set of 500 × 500 particles, our solver still gives
some solutions. But when we reach 600× 600 particles, then the solver does not
provide solutions anymore. Tests confirm these results. Indeed, if we try to run
the application with a set of 600×600 particles, then it produces a buffer overflow
due to network contention. Thus we have reached the limit of our application on
our architecture.

If we want to run our application with a set of 600 × 600 particles then we
need a more powerful cluster. Thus, we modify the current description of our
architecture by virtually adding nodes and networks. This way we can determine
which choices are to be made to run our application. If we add more nodes then
our solver does not provide solutions, but if we virtually replace the common
gigaEthernet network with a Myrinet one then we obtain some solutions.

4.4 Optimization of the cluster use

Clusters are often used by several users at the same time. However, interac-
tive applications, like the FluidParticle one, require dedicated nodes to ensure

performance. We propose to use our solver to find mappings that minimize the
number of nodes. Thus we run our solver with different cluster configurations.
Results show that it is possible to find mappings using only six nodes with two
dual-core processors on our current architecture, for example nodes 1 to 6. It is
even possible to use only four nodes if we add a Myrinet network between nodes
1 to 4.

5 Conclusion and future work

The approach presented in this paper brings to developers a very useful tool to
create and optimize mappings for heterogeneous distributed applications. Its im-
plementation allows to validate mappings and enables to automatically generate
mappings which respects constraints from our performance model and those de-
fined by the developer. It is also possible to determine the cluster configuration
required to run a given application. Moreover, we have shown that optimization
of mappings are possible. For example it is possible to reduce the number of
nodes required by distributed applications. This answers to a very important
problem since clusters are often shared by several users.

References

1. J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin, and S. Robert.
FlowVR: a Middleware for Large Scale Virtual Reality Applications. In Proceedings
of Euro-par 2004, Pisa, Italy, August 2004.

2. J. Allard, C. Ménier, E. Boyer, and B. Raffin. Running large VR applications on a
PC cluster: the FlowVR experience. In Proceedings of EGVE/IPT 05, Denmark,
October 2005.

3. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
4. R. Gaugne, S. Jubertie, and S. Robert. Distributed multigrid algorithms for inter-

active scientific simulations on clusters. In Online Proceeding of the 13th Interna-
tional Conference on Artificial Reality and Telexistence, ICAT, december 2003.

5. I.P. Gent, K.E. Petrie, and J.-F. Puget. Symmetry in constraint programming. In
F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming,
chapter 10. Elsevier, 2006.

6. Pascal Van Hentenryck and Jean-Philippe Carillon. Generality versus specificity:
An experience with ai and or techniques. In AAAI, pages 660–664, 1988.

7. S. Jubertie and E. Melin. Multiple networks for heterogeneous distributed appli-
cations. In Hamid R. Arabnia, editor, Proceedings of PDPTA’07, pages 415–424,
Las Vegas, june 2007. CSREA Press.

8. S. Jubertie and E. Melin. Performance prediction for mappings of distributed
applications on PC clusters. In Proceedings of IFIP International Conference on
Network and Parallel Computing, NPC’07, Dalian, China, september 2007.

9. Christian Schulte and Guido Tack. Views and iterators for generic constraint im-
plementations. In Recent Advances in Constraints (2005), volume 3978 of Lecture
Notes in Artificial Intelligence, pages 118–132. Springer-Verlag, 2006.

10. J. Stam. Real-time fluid dynamics for games. In Proceedings of the Game Developer
Conference, March 2003.

