
Parallel Computing of Catchment Basin of Rivers in
Large Digital Elevation Model

Hiep-Thuan Do
LIFO - Université d’Orléans

Rue Léonard de Vinci, BP 6759
F-45067 ORLEANS Cedex 2, FRANCE

Email: hiep-thuan.do@univ-orleans.fr

Sébastien Limet
LIFO - Université d’Orléans

Rue Léonard de Vinci, BP 6759
F-45067 ORLEANS Cedex 2, FRANCE
Email: sebastien.limet@univ-orleans.fr

Emmanuel Melin
LIFO - Université d’Orléans

Rue Léonard de Vinci, BP 6759
F-45067 ORLEANS Cedex 2, FRANCE
Email: emmanuel.melin@univ-orleans.fr

Abstract—This paper describes a new fast and scalable parallel
algorithm to automatically determine catchment basin of rivers
in large digital elevation models (DEM for short). This algorithms
is based on the construction of a minimal spanning tree, via a
hierarchy of graphs, modeling the water route on the DEM. It
does not need any preprocessing like stream burning on the initial
DEM and tends to make the most of incomplete DEM. Efficiency
and scalability have been tested on very large DEM.

I. INTRODUCTION

Geo-science reseach usually deals with very large datasets
issued from satellite or air plane imagery now. Their interest is
twofold, of course they can be directly used for visualization,
but one can also extract informations from initial data, and
then visualize outcomes and, if necessary, repeat the process
to refine the results or obtain new ones. This analysis loop is
convenient when each iteration is performed in a reasonable
time i.e duration comparable to those usually observed on
desktop computer for restricted datasets. A solution can be
found with parallelism since one can use distant clusters to per-
form heavy computations and download results on its desktop.
We propose to illustrate this scheme with an important issue in
geo-hydrology: the catchment basin determination from digital
elevation models (DEM for short).

In this paper we propose a method able to determine catch-
ment basins of rivers from a DEM. This method combines
the techniques used in different fields such as hydro-geology,
image processing and graph theory in order to obtain an
algorithm that both gives the most accurate results in term
of geo-morphology and is efficient and scalable. Our method
does not need any preprocessing like stream burning [1] on the
initial DEM and we tend to exploit the most of DEM and avoid
misleading inconsistencies they contain to extract catchment
basins. Moreover we propose criterions to determine the most
probable partition of catchment basin taking into account sea
and border of the DEM which may belong to catchment
basin of river outside of the datasets. This method is entirely
parallel and scalable, it is a SPMD parallel implementation
onto MIMD architecture, therefore it is possible to run it on
a PC cluster to achieve reasonable computation time for very
large DEM.

The paper is organized as follows. Section II presents the
related work in geo-hydrology and we discuss analogy with

(a) Example of DEM with a raster
dataset

(b) Grayscale corresponding to the
raster dataset

Fig. 1. Geological and image rasters

similar problems issued from image segmentation including
both sequential and parallel approaches. Section III describes
our parallel algorithm. Experimental results are sketched in
Section IV. Finally, we close with a conclusion.

II. CATCHMENT BASINS FROM DIFFERENT POINTS OF
VIEW

Topography is often narrow linked to hydrology for example
even before numerical era, geographers infer water presence
from study of contour lines indicated onto maps. Numerical
information greatly facilitates such analysis and a lot of
methods have been proposed. The raster is a classical way
to represent topography, it is a matrix of numerical values
corresponding to heights of discrete points regularly positioned
onto the terrain (Fig.1(a)). This relief map can be viewed as
a digital gray scale image where the gray level of a pixel
represents the altitude of that pixel (Fig.1(b)).

This information can be used to extract the hydrographic
network making the assumption that rivers flow more prob-
ably into thalwegs and do not cross crests. Three steps are
classically used:

1) Definition of a raster coding flow direction for each
pixel. This produces a forest of disjoin trees those root
is a local minimum (Fig. 2(a)).

2) Definition of a raster coding accumulated flows. This
can be computed via the rain falling method.

3) Raster segmentation between river pixels and other ones,
classically with the use of a fixed threshold.



(a) Raster flows of the DEM Fig. 1(a) (b) Catchment basins labeling of
DEM of Fig. 1(a)

Fig. 2. Catchment basins

From this computation it is also possible to extract catch-
ment basins corresponding to rivers in the form of a partition
of the entire DEM where areas are separated by watershed
lines (see Fig. 2(b)). Watershed lines are ridges of land that
separate catchment basins. In each catchment basin any cell
has a path in the raster flow to a given cell belonging to a
river.

In this paper we focus on catchment basins computation
based on the first step of hydrographic network computation.

To obtain a raster coding flow direction for each pixel, two
approaches are possible : mono-direction and multi-direction.
In mono-direction approaches, the water flows from one pixel
to one sole pixel on principle of steepest descent. Two algo-
rithms are used according to connectivity choices, D4 for a
perpendicular connectivity and D8 if we add oblique neigh-
borhood [2]. In multi-direction approaches, water is distributed
to several pixels with lower height according to geometrical
considerations. In both cases, decisions are taken from local
informations and potential parallelism is not affected by the
choice of the method. Unfortunately real datasets are not
perfect, they include many incoherences like no-data, plateaus
and sinks. In fact, raw DEM like those provided by the USGS,
consist of a multitude of small sinks and plateaus.

A plateau is a flat area with at least one spill-pixel (see
Fig. 1(a)). Authors generally chose to assign flow direction
such as all pixels belonging to the plateau will flow to the
spill-pixel. A sink is an area without spill-points (see Fig. 1(a)).
In this case the problem is that water will accumulate in one
pixel called the pixel sink. In this case we have to choose a
global direction allowing water to climb the hill and to escape
the sink. Since in both cases, flow needs to be redirected, and
since uphill flow is counter-intuitive, many authors [2], [3], [4]
choose to modify initial datasets to obtain artifact-less raster
called in image-computing lower complete [5]. In hydrology,
modifications of data, like stream burning [1], to better reflect
known hydrology can be useful but may compromise the
ability to derive catchment parameters and conduct to a second
terrain analysis [6].

A better choice may be keeping data unmodified and forcing
flow direction uphill. In [7], the authors propose to compute
flow direction locally to find sinks or plateaus, this can be
done in O(N) time. They propose a GIS framework allowing

to handle very large DEM via an out of core method to fit
capacity of a desktop computer. With this aim in view, they
work on efficient I/O accesses but not, as far as we know,
on parallel computing. They manage plateaus and sinks via a
flooding algorithm onto the terrain [8]. This approach mixes
flooding and rain-falling methods, indeed it first uniformly
pours water onto cells, progressively all sinks or plateaus in
the terrain are filled, merged until a steady-state is reached. At
this point every drip will flow outside sinks and plateaus to
the border of the DEM. In [7], authors show that this intuitive
point of view can be formalized in a flow routing problem
between cells. Moreover it is possible to transpose this al-
gorithm from pixels to watersheds, this resolves the problem
much more faster since this uses a much more lightweight
data-structure compare to entire large DEM. They build a
watershed graph, an undirected weighted graph with a node
for each watershed and edges between adjacent watersheds.
Each edge has a label with the lowest elevation that occurs
along the boundary between the two watersheds. They add a
virtual watershed to the graph, called the outside watershed,
representing the outside of the terrain. Secondly they build a
flow graph between watersheds taking into account adjacency
and labels. Finally, they search a path from each watershed
to the outside watershed. This approach may construct cycles
which must be removed at the price of expensive computations
[8], [9]. In [7], the authors propose a solution by simulating
the way terrain flooding occurs in real-life if level of the sea
rise. The water gradually fills watersheds enforcing an order
to the discover of paths from the outside watershed to inner
watersheds. This approach is typically sequential.

We have shown that the key element of flow computation
algorithms is the partitioning of the terrain into watersheds.
Indeed it is a problem very close to the well known watershed
transform method in the field of mathematical morphology.
This is a region-based segmentation approach widely studied
in the area of Image Analysis. Image Segmentation is the
process of partitioning the image into disjoint regions that
are homogeneous with respect to some property such as gray
value, altitude or texture. Indeed, a gray scale image can
be viewed as a DEM where the lengths of the gradients
between pixel values are considered as the altitude of the
corresponding points. Catchment basins of the images denote
the expected homogeneous regions of the images and ridges
of land that separate catchment basins are called watersheds.
As we see, the intuitive idea underlying watershed transform
method comes from geography, indeed we propose to reverse
this analogy by using watershed transform methods, wildly
tuned for Image Analysis, to initial geographical catchment
basin computing.

Watershed transform algorithms use methods based on ei-
ther flooding process [10], [11] or rain falling simulation [12],
[13]. These methods are sequential and classically may need
an extensive use and a careful management of the memory.
Required memory size is a priori unknown, and the data
are addressed in unstructured manner, causing performance
degradation on virtual memory. In [10] authors describe a



hierarchical segmentation of images. This method prevents
over-segmentation into too many watersheds, which is very
detrimental for the quality of image analysis. This work tries to
suppress the irrelevant boundaries on the watershed transform.
In [14], Meyer claims that diverse hierarchies can be produced
via flooding algorithms in order to offer the best scale of
contours, favoring the contrast of the regions, their color,
or their size. He notes that through tailored flooding, it is
possible to favor some regions considered most important
than others. In [15] is presented an efficient algorithm based
on minimum spanning tree (MST) implementing a waterfall
algorithm constructing a hierarchical segmentation approach.
In one hand, this work emphasizes the efficiency of algorithms
storing information in a very condensed structure like MST or
graphs but on another hand the structure of the information
and the flooding algorithm seems to be quite intrinsically
sequential.

The parallelization of classical sequential algorithms flood-
ing based on an ordered queue proposed in [16] requires
strong synchronizations between the processors maintaining
local queues and repeated labeling of the same pixels per-
formed for appropriately labeling parts of catchment basins.
Fortunately, making some assumptions, for example giving
up to detect watershed pixels, makes watershed transform a
local concept. Therefore, it is possible to compute watershed
with scalable parallel methods [17], [18], [19]. They break
the sequentiality of the watershed transformation solving the
problem independently on all sub-domains distributed onto
processors. If it is impossible to rule about boundary data, local
informations are computed and they are solved during another
sequential step on a master processor. Moreover, it is possible
to use path-compression from the union-find algorithm due
to Tarjan [20] to accelerate the computation of connected
components in images whether it is pixels or basins [21]. Note
that these parallel approaches have a sequential part and do
not compute hierarchical watersheds.

As in [15], we modelize our concrete hydrology problem
as the computation of a particular MST. Research in graph
theory has wildly explored minimum spanning tree computa-
tion problem.The best algorithm [22] known for MST has a
quasi-linear complexity but it uses a tree structure that have
to be parsed in specific order which is intrinsically sequential.
Borůvka MST algorithm has a complexity of m× log(n) (m
and n being respectively the number of edges and vertices of
the graph) but it has the nice properties to built a hierarchical
decomposition of the and to allow nice speed-up for parallel
architecture [23], [24].

In this paper, we present a SPMD parallel implementation
onto MIMD architectures to efficiently computes catchment
basins of large DEM. This algorithm is a parallelization of
Borůvka MST algorithm that directs the hierarchical construc-
tion in a such way that the second to last level gives exactly
the catchment basins of the rivers in the DEM. This approach
makes a connection between algorithms issued from hydrology
and those issued from image analysis.

Our algorithm is mainly based on local data analysis. This

Fig. 3. Details of small catchment basins belonging to surrounded global
catchment basins at the border of the DEM

makes possible a very efficient parallelization. All steps of the
method are computed in parallel.

From hydrology:

• We evaluate a raster coding flow direction for each pixel
with a D8 connectivity.

• We chose to solve plateaus with a simple lexicographic
order which is a quick and good approximation when
searching catchment basins in large DEM. More sophis-
ticated approximations are also possible.

• We do not modify the dataset and we interpret sinks as
watersheds partition of the datasets.

• We use a rain-falling approach onto pixels and onto
watersheds to find flow direction

• We use a watershed graph enriched with a outside water-
shed to directs the merging of basins in a such way that
catchment basins of each major rivers are isolated.

From Image Analysis:

• We use a hierarchical segmentation which construction
is driven with the aim to build levels corresponding
to catchment basins semantically consistent related to
hydrology.

• We adapt the best parallel method using path-
compression to build our hierarchy of catchment basins.
For each level of the hierarchy we use the same parallel
scheme.

From the Graph theory Point of view, we implement a
parallel Borůvka MST algorithm. This kind of algorithm is
based on a heriarchical construction of the MST using minors
of the intial graph. The classical Borůvka algorithm may
construct different hierarchies depending on some choices that
are “don’t care”. In our method, we enforce the computation
of one specific hierarchy where merged vertice are always
included into global extension of a major river catchment basin
to keep a hydrologic semantics. In this way, we obtain at the
penultimate stage of the hierachy all the global extensions
of major rivers of the DEM. This very desirable property
for hydrologists does not break the correctness of the MST
algorithm. The theoretical parallel runtime of our algorithm is
in O(n/p) where p is the number of processors and n the size
of the DEM which garantees a good speed up for large DEM
and the amount of communication is in O(

√
n/p).



III. THE PARALLEL WATERSHED ALGORITHM

In this section, we first present the classic sequential
Borůvka algorithm and its parallelization. Then we give some
details on our implementation.

A. Sequential Borůvka algorithm

The graphs we deal with are weighted graphs. Let S be a
set, possibly infinite, of values. A weighted graph G of type S
consists of a set of vertice denoted V (G) and a set of weighted
edges, denoted E(G), such that E(G) ⊆ V (G)× V (G)× S.
For an edge (v1, v2, w) of E(G), w denotes the weight of
the edge. The neighborhood of a vertex v of G is the set
NG(v) = {v′ ∈ V (G)|∃(v, v′, w) or (v′, v, w) ∈ E(G)}.
A graph H is a minor of the graph G if it is isomorphic
to a graph obtained by zero or more edge contractions on a
subgraph of G. An edge contraction removes an edge while
simultaneously merging together the two vertices it used to
connect. In our context, we are only interested in minors
obtained by edge contractions on the graph G (and not a
subgraph of G). To define, more formally the class of minors
we deal with, let us introduce some few definitions. Let G
be a graph, V a partition of V (G). The set of weights of
edges connecting v1 and v2, two elements of V , is defined as
wG,V (v1, v2) = {w|(v1, v2) ∈ V × V and ∃v1 ∈ v1, v2 ∈
v2 and (v1, v2, w) ∈ E(G)}. The minimal weight connecting
two components v1 and v2 of V is wMinG,V (v1, v2) =
Min(wG,V (v1, v2)) (we consider Min(∅) = ∞). The wMin-
minor of G based on V is the graph which vertice are V and
edges are the set {(v1, v2, w)|(v1, v2) ∈ V × V , v1 6= v2,
wMinG,V (v1, v2) = w and w 6= ∞} i.e. all the vertice of
a component of V are contracted and only the minimal edge
between two components is preserved in the minor.

Given a graph G, the Minimum Spanning Tree (MST for
short) problem simply consists in finding a spanning tree
that minimizes the sum of weights of its edges. Borůvka’s
MST algorithm builds progressively a hierarchy of minors
of the initial graph. It is based on the property that given
two connected components of a graph G, the lightest edge
connecting these two component belongs to the MST of G.
Step 1: For each vertex of G, select one of the lightest edges
incident on it. To avoid cycle, if a minimal edge of a vertex
is already selected while visiting another vertex, no new edge
is selected.

Step 2: Compute the connected components of the graph
restricted to the selected edges (e.g. by labelling vertice).

Step 3: Construct the wMin-minor based of G on the con-
nected components of Step 2.
The minor graph obtained after this iteration is the input of

the next one. The algorithm finishes when the minor is reduced
to one unique vertex. The final MST is the union of the edges
selected in Step 1 at each iteration. Note that the Step 1 chooses
randomly the vertices from which it find the lightest edge.
The hierarchy of minors may be very different according to
implementation choices but the complexity remains the same
i.e. O(mlog(n)) where m is the number of edges in the graph.

B. Parallel Borůvka algorithm

The preceding section leads one to assume that Borůvka
algorithm is a good candidate for parallel computing. We give
the principles of the method used for example in [24].
Step 1: For each vertex, choose the lightest edge incident on
it. This step may be carried out locally if each participat-
ing process owns all edges associated to its local vertices.
Avoiding cycles locally is possible using a total order on the
vertices.

Step 2: Compute the connected components of the graph
restricted to the selected edges. During this step each com-
ponent is affected to one process. This step classically needs
communications between processes.

Step 3.1: Each process computes locally the wMin-minor
based on the connected components of Step 2 of sub-graph
it owns. This step is purely local.

Step 3.2: Each process collects the edges incident to one of
the components it has been assigned.

C. Parallel Borůvka algorithm adapted to catchment basin
computation in DEM

A digital square grid G with domain D ⊆ Z2 containing
values of type S where S can be any set (typically S is
R for DEM) can be considered as a special kind of graph,
where the vertices are called points or pixels. The heigth
values of each vertex v is denoted hv . G can be endowed
with a graph structure G = (V,E) by taking for V the
domain D, and for E the set {((x1, y1), (x2, y2), w)| (x1, y1)
and (x2, y2) are connected and the weight of the edge w is
max(h(x1,y1)h(x2,y2))}. The connectivity in the grid may be
either 4-connectivity, or 8-connectivity. We call this first graph
G0.

We denote ≺ the lexicographical order on pairs of integer,
i.e (i, j) ≺ (k, l) iff (j < l) or ((j = l) and (i < k)).

The order ≺ is used to choose one minimal edge when
several are possible. This refers to the plateau problem de-
scribed Section II. Our version of Parallel Borůvka algorithm
distributes vertice amoung nodes of the parallel machine.

We choose a block-distribution for vertice of G0. Note
that this distribution minimizes the number of extern edges
connecting two vertice belonging to different nodes. In a bloc
of size i vertice we have O(i) edges and only O(

√
i) extern

edges. To minimize computations we add to each bloc the
vertice of extern edges. The block affected to node p is called
the domain of p and the vertice of extern edges, the extention
aera.

Our implementation of Step 1 consists in selecting for each
vertex v the lightest edge (v, v′, w) if and only if hv′ ≺ hv .
If several edges may be selected, we choose (v, v′, w) such
that hv′ is minimal (the water goes down the deeper slope).
If we find several equal hv′ value then v′ is the first in the
lexicographical order (the lexicographical makes sense even
for vertice of minors since they are all labelled with one pixel
of the initial DEM) . Note that our first step does not need
communications to guarantee that we do not construct cycles
since we impose hv′ ≺ hv .



The selected edges are considered as oriented for the Step
2. Selecting the lightest edge models the flooding process, i.e.
when pouring the basin represented by v it will overflow via
the lowest border (represented by the weight). Imposing that
hv′ ≺ hv models the rain falling, i.e. when the basin overflows,
the water should fall down.

Step 2 consists in labelling the vertice to detect connected
components of the graph restricted to the selected edges. This
is implemented in three steps.

• First, each process computes locally its connected com-
ponents, each component is identified by its root called
well (i.e. the minimal vertex in the component w.r.t.
height values defined above). This is done using a method
inspired from the Union-Find algorithm of [20] where
Tarjan proposes a Path Compression technique to opti-
mize this task. Unfortunately, a connected component of
the whole graph may be distributed on several nodes. So
each processor distinguishes primary wells (i.e. wells that
are in its domain) and secondary wells (i.e. wells that are
in its extention aera).

• Exchange the labels of the vertice of extension
• Compute a local dependency graph LDG which vertice

are labels and which oriented edges are of the form
(l1, l2) where l1 is the label of a secondary well. Such
an edge indicates that the component of l1 and l2
belongs to the same component of the whole graph.
Each processor broadcasts its LDG to the others. Af-
ter this communication phase, each processor constructs
the global dependency graph GDG by merging all the
LDGs. One can remark that GDG is a forest which
roots are primary wells. Using for the second time Path
Compression technique, each node computes the final
label of their secondary wells.

• The final phase is purely parallel. It consists in a local
linear scan of all vertice which label is a secondary well.
We replace their label by the one found thanks to the
GDG.

Step 3 is implemented as described in Section III-B. Each
processor broadcasts the connectivity of the new vertice that
have external edges. In this way, each processor is able to
know the whole connectivity of vertice it is in charge of. In this
phase, only the smallest edge between two vertice is kept. Note
that we only broadcast one edge for a connectivity between
new vertice and not all possible edges as in [24].

Notice that the initial graph G0 is the DEM itself and is
treated such as by our implementation since it is the most
compact representation of this graph that may contains several
millions of vertice. Other graphs are represented by classical
adjacency lists.

Figure 4 illustrates the computation of one level of the
hierarchy. Figure 4(a) gives the initial graph, the number in
the cells are the elevation data. The DEM is distributed on 4
processors which domains are delimited by the bold lines. The
extention aera of the first processor is given Figure 4(b). On the
same figure are drawn the select edges and their orientation.
The vertice of this domain belongs to two different connected

(a) DEM (b) Local Domain

(c) Local labeling (d) Result

Fig. 4. Parallel process

components of the whole graph. The node detects that the
vertex (1, 1) is a primary well, while (4, 4) is a secondary
one since it is in its extension aera. After exchanging labels
of vertice of the extention aera, each processor computes the
following local dependancy graphs. LDG1 = {5 → 10},
LDG2 = {6 → 1, 7 → 3, 8 → 3, 9 → 3}, LDG3 = ∅ and
LDG4 = {10 → 2, 11 → 2, 12 → 2}. The global dependency
graph allows to know the primary well of each secondary well,
in particular that 5 → 2. Figure 4(d) gives the result after the
relabeling of secondary wells. The connectivity of the resulting
graph is represented by the lines. Notice that the domain of the
first processor is now the vertex labelled 1 and its extention
aera is vertice 2 and 3.

Figure 5 illustrates the computation of the whole hierarchy
(self arrows are to be ignored) on the DEM given Figure 1(a).
One can remark the well labelled 0 (which figures the sea)
grows rapidely until uncompassing the whole DEM. The
resulting hierarchy does not fit our needs since we cannot
distinguish catchment bassins we are looking for. This is
why we introduce next section new rules in the hierarchy
construction to avoid merging of river catchment basins.

D. A tailored hierarchy construction

Since we rarely compute the global catchment basins at
a continent scale, datasets involving major river catchment
basins necessarily include part of seas, no-data and part of
incomplete catchment basins corresponding to surrounding
major river outside of the dataset (see Fig. 3). The hierarchical
method must be driven to avoid misinterpretation of these
secondary catchment basins.

Our hierarchical method states that basins are merged if
they belongs to the same connected components of the graph
of Step 1. This guarantees that these basins belong to a



(a) Graph F1 (b) Graph G2

(c) Graph F2 (d) Graph G3

(e) Graph F3 (f) Graph G4

Fig. 5. Different graphs computed at each step
.

hydrological unit since they have common frontiers and they
all flow to the same local minimum. A problem may arise
when a basin is at the border of the DEM since no information
about its neigborhood outside the DEM is known. Without
any special treatments, such basins will be integrated at a
certain level to a basin inside the DEM which is wrong when
their natural spill-point is not in the dataset. To overcome this
problem, as in [7], we introduce an outside watershed called
Ω. Intuitively it represents the last final sink were all rivers
flow, that is sea in real life. One just have to decide that all
pixels under 0 meter (or another arbitrary value) belong to Ω
as well as virtual pixels in the neighborhood of the DEM. All
these pixels receive a height value less than each pixel of the
DEM. With this rule, a connected component at the border of
the DEM has Ω component as neighbor so it can flow to Ω.

Figure 6 represents the partition graph with the outside
watershed Ω. Pixels with height 0 belongs to Ω and all vertices
at the border of the dataset are connected to Ω.

Ω may avoid a problematic merge of distinct hydrologic
basins but it introduces a new problem. Indeed, since Ω is the
lowest point of the DEM, the neighborhood of Ω tends to fuse
to Ω at every level of hierarchy which is also unwanted since Ω

Fig. 6. First derived Connectivity Graph with outside watershed Ω with
dataset of Fig. 1(a).

does not really belong to the DEM. This is why instead of the
fusion to Ω, basins that should select an edge to Ω, do not but
are marked. Such vertex is said ω marked or ωm. In the Step
1 of the algorithm, ωm-vertice do not select any edges since
it is known that the minimal one goes to Ω. When computing
the minor graph, vertice of the new graph containing an ωm

vertex of the old graph is ωm. With this simple rule, we direct
the construction of the minimal spanning tree in such way that
its root is Ω and its first children are the basins which spill
points are Ω, i.e. either basins that really goes to the sea, or
are at the border of the DEM. We compare the flow graph
obtained with this rule (Fig. 7(a)) and without (Fig. 5(a)). In
Figure 7(a), vertice 0, 1, 2, 6, 8, 7 and 3 are not merged with
Ω since they are ωm.

This method may lead to configurations, where a basin ωm

is surrounded by basins higher than it. Usually this happens
near quasi flat zones. In this case it is enough to impose that
such an isolated basin selects the minimal edge to one ωm

neighbor. In our example, it happens for vertex 4 (Fig. 7(a)).
Its height is 10 and its outlet to vertex 3 is 16 high and to
vertex 5 is 17 high (see Fig. 1(a)). Vertex 3 is upper than vertex
4 and vertex 5 is lower than vertex 4. Figure 7(a) illustrates
that we enforce the flow upper from vertex 4 to vertex 3 in
this configuration. Finally, we find global coherent basins just
before the upper stage in the hierarchy. In Figure 7(e) we
obtain at the final stage the fusion of catchment 3, 4 and 5.
Vertices 0, 6, 8, 7 are borders of this catchment basin. A part of
a real case is presented in Figure 3, we have small catchment
basins at the border of the DEM. In Fig. 8(a), we have the
big catchment basin of the Loire River well distinguished, in
purple, from other basins directly connected to the Atlantic
ocean or at the border of the DEM. This catchment basin
extracted from DEM, totally fits with the real catchment basin
displayed in Figure 8(b)

Notice that these new rules do neither change the complexity
of the algorithm nor break its parallelism.

IV. EXPERIMENTAL RESULTS

This parallel algorithm described in this paper has been
implemented in C++ using Open MPI. It has been tested on



(a) (b)

(c) (d)

(e) (f)

Fig. 7. Ω filtering

the MIREV platform consisting of eight nodes linked with
a gigabit ethenet network. Each node is a bi-pro with AMD
Opteron Quad-Core 2376 2.3Ghz with 16G SDRAM DDR2-
PC5300 EEC 667 Mhz. We tested up to 64 processors on
different Digital Elevation Models (MNT a with size 3,980 x
5,701; MNT b with size 10,086 x 14,786; and MNT c with
size 36,002 x 54,002) which are provided by the Company
Géo-Hyd in Orléans, France.

Let numProcs be number of processors used. The running
time T (numProcs) is the time elapsed between the moment
that the first processor starts and the moment that the last pro-
cessor finishes. The measured times with number of processors
are tabulated in Table 1. It excludes data loading, and saving.
The relative speedup of the parallel algorithm is measured by:
P (numProcs) = Tmin

T (numProcs) where Tmin is the execution
time of our algorithm onto one processor. Note that, due to
memory size limitation, it is not possible to run our program
for MNT c onto one sole node. In this case only, we choose
to fix Tmin as the execution time of our algorithm onto four
processors. Then, in this case, the speedup linear curve start at
coordinate (2,0) and is parallel to the classical speedup linear
curve (Fig. 9).

Looking at Fig. 9, for MNT a and MNT b, we remark that

(a) Result of the method

(b) Real catchment basin

Fig. 8. Catchment basin of the Loire river (France)

TABLE I
PARALLEL COMPUTATION EXECUTION TIME (IN SECONDS)

MNT a MNT b MNT c
3,980 x 5,701 10,086 x 14,086 36,002 x 54,002

10 iterations 11 iterations 24 iterations
1 135.965 878.653
2 70.591 508.436
4 49.719 315.471 7,976.360
8 31.780 194.659 3,673.627

16 17.555 105.894 2,212.034
32 11.423 59.235 1,481.186
64 14.905 47.255 1,266.618

the relative speedup is close to linear speedup at the beginning
of the curves. Of course, when number of processors grows,
the speedup partially decreases, since cost of communications
becomes more important compared to local computation gain,
such as MNT a for 64 processors. With a larger DEM (1.9
Gpoints for MNT c) speedup increases linearly (Fig. 9). This
illustrates the good scalability of our approach. Note that
MNT c speedup is super linear at the beginning of the curve.
A possible reason is the cache effect resulting from the
different memory hierarchies.



Fig. 9. Relative speedup with number of processors

V. CONCLUSION

We propose a formal definition of a parallel framework to
construct a watershed hierarchy dedicated to DEM analysis.
Of course, the method applies concepts derived from geo-
hydrology, from image segmentation and from graph theory.
The method tries to use the better of these areas and is fully
parallel and does not use too complex data structures to alle-
viate memory need. We show that the hierarchy construction
is generic. For example we propose parameters which allow
to adapt the method to determine catchment basin of major
rivers, taking into account sea and border of the DEM which
may belong to catchment basin of river outside of the datasets.

This algorithm is scalable. We propose a SPMD parallel
implementation onto a PC cluster. We use it on a large DEM
and we obtain good speedup and time computations for huge
datasets compatible with classical GIS processing times for
small datasets, with desktop computers.

We plan to use theses results to imagine a parallel computa-
tion of hydrographic networks from DEM datasets. We think
that this framework might be useful in all situations where a
hierarchical analysis is relevant to extract information from a
GIS.

ACKNOWLEDGMENT

The authors would like to tkanks the town of Orleans
Conseil General du Loiret, the Region Centre who granted
this work.

REFERENCES

[1] M. F. Hutchinson, “A new procedure for gridding elevation and stream
line data with automatic removal of spurious pits,” Journal of Hydrology,
vol. 106 (3-4), pp. 211–232, 1989.

[2] J. F. O’callaghan and D. M. Mark, “The extraction of drainage net-
worksfrom digital elevation data,” Computer Vision, Graphics and Image
Processing, vol. 28, pp. 328–344, 1984.

[3] G. J. and L. W. Martz, “The assignment of drainage direction over flat
surfaces in raster digital elevation models,” Journal of Hydrology, vol.
193, pp. 204–213, 1997.

[4] T. A., “Automated recognition of valley lines and drainage networks
from grid digital elevation models: a review and a new method,” Journal
of Hydrology, vol. 139, pp. 263–293, 1992.

[5] J. B. T. M. Roerdink and A. Meijster, “The watershed transform:
Definitions, algorithms and parallelization strategies,” vol. 41, no. 6,
pp. 187–228, January 2001.

[6] K. P. V. N. John Nikolaus Callow and G. S. Boggs, “How does
modifying a dem to reflect known hydrology affect subsequent terrain
analysis?” Journal of Hydrology, vol. 332, no. 1-2, pp. 30–39, January
2007.

[7] L. Arge, J. S. Chase, P. Halpin, L. Toma, J. S. Vitter, D. Urban,
and R. Wickremesinghe, “Flow computation on massive grid terrains,”
GeoInformatica, vol. 7, p. 2003, 2001.

[8] S. Jenson and J. Domingue, “Extracting topographic structure from
digital elevation data for geographic information system analysis.”
Photogrammetric Engineering and Remote Sensing, vol. 54(11), pp.
1593–1600, 1988.

[9] S. D. Peckham, “River network extraction from large dems,” Ph.D.
dissertation, 1995.

[10] S. Beucher and F. Meyer, “The morphological approach to segmentation:
The watershed transformation,” in Mathematical morphology in image
processing, ser. Optical Engineering, E. Dougherty, Ed. New York:
Marcel Dekker, 1993, vol. 34, ch. 12, pp. 433–481.

[11] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient
algorithm based on immersion simulations,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 583–598,
June 1991.

[12] S. L. Stoev, “RaFSi - A Fast Watershed Algorithm Based on Rainfalling
Simulation,” in WSCG, 2000.

[13] H. Sun, J. Yang, and M. Ren, “A fast watershed algorithm based on
chain code and its application in image segmentation,” Pattern Recogn.
Lett., vol. 26, no. 9, pp. 1266–1274, 2005.

[14] F. Meyer, “Hierarchies of partitions and morphological segmentation,”
in Scale-Space ’01: Proceedings of the Third International Conference
on Scale-Space and Morphology in Computer Vision. London, UK:
Springer-Verlag, 2001, pp. 161–182.

[15] S. Beucher and B. Marcotegui, “Fast implementation of waterfall
based on graphs,” ser. Computational Imaging and Vision, C. Ronse,
L. Najman, and E. Decencire, Eds. Dordrecht: Springer-Verlag, 2005,
vol. 30, pp. 177–186.

[16] A. N. Moga, “Parallel watershed algorithms for image segmentation,”
Ph.D. dissertation, Tampere University Technology, February 1997.

[17] A. N. Moga and M. Gabbouj, “A parallel marker based watershed
transformation,” in Proceedings International Conference on Image
Processing, vol. 2. Lausanne, Switzerland: IEEE Computer Society
Press, September 1996, pp. 137–140.

[18] A. Bieniek, H. Burkhardt, H. Marschner, and M. Nöelle, “A parallel
watershed algorithm,” in Proceedings of 10th Scandinavian Conference
on Image Analysis, Lappeenranta, Finland, June 1997, pp. 237–244.

[19] A. N. Moga and M. Gabbouj, “Parallel image component labeling with
watershed transformation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, no. 5, pp. 441–450, May 1997. [Online].
Available: citeseer.ist.psu.edu/moga97parallel.html

[20] R. E. Tarjan, Data structure and Network Algorithms. SIAM - Society
for Industrial and Applied Mathematics, 1983.

[21] A. Meijster and J. B. T. M. Roerdink, “A disjoint set algorithm for the
watershed transform,” in Proceedings IX European Signal Processing
Conference (EUSIPCO’98), S. Theodoridis, I. A. Stouraitis, and N.
Kalouptsidis, Eds., Rhodes, Greece, 08- 11 September 1998, pp. 1665–
1668.

[22] B. Chazelle, “A minimum spanning tree algorithm with inverse-
ackermann type complexity,” J. ACM, vol. 47, no. 6, pp. 1028–1047,
2000.

[23] F. K. H. A. Dehne and S. Götz, “Practical parallel algorithms for
minimum spanning trees,” in SRDS, 1998, pp. 366–371.

[24] S. Chung and A. Condon, “Parallel implementation of borvka’s mini-
mum spanning tree algorithm,” in IPPS ’96: Proceedings of the 10th
International Parallel Processing Symposium. Washington, DC, USA:
IEEE Computer Society, 1996, pp. 302–308.


