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Abstract

This paper describes a new fast and scalable parallel algorithm to compute global flow accumulation for automatic
drainage network extraction in large digital elevation models (DEM for short). Our method uses the D8 model
to compute the flow directions for all pixels in the DEM (except NODATA and oceans). A parallel spanning tree
algorithm is proposed to compute hierarchical catchment basins to model the flow of water from a sink (local minima)
moving on DEM to its outlet (ocean, NODATA, or border of DEM). And finally, based on local flow accumulation and
the hierarchical trees between sinks, we determinate entirely the global flow accumulation. From that, the drainage
networks of DEM can be extracted. Our method does not need any preprocessing like stream burning on the initial
DEM and tends to make the most of incomplete DEMs. Our algorithms are entirely parallel. Efficiency and scalability
have been tested on different large DEMs.
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1. Introduction

Digital elevation models (DEM for short) are an important source of information in GIS applications. It has been
widely used for modeling surface hydrology including the automatic delineation of catchment areas [1, 2], erosion
modeling or automatic drainage network extraction [3]. All these computations are linked to the determination of flow
direction [4] and then to the calculation of flow accumulation [5]. Moreover, flow accumulation is specially important
to understand topographic controls on water, carbon, nutrient and sediment flows within and over full watersheds.

Geo-science research deals with increasingly large datasets coming from satellite or air plane LIDAR scans. Finer
DEMs have the advantage to obtain more precise results when delimiting specific areas or running simulations. On one
hand, data increase, on the other hand, sequential means of computation can not keep pace. Moreover, Geo-scientists
need reasonable computation times compatible with an analysis loop. A solution is to parallelize these computations.
This can be achieved if the algorithms are adapted to allow a good scalability to be able to take benefits of massive
clusters available for scientists.

In this paper we propose a method able to compute in parallel the global flow accumulation for automatic extrac-
tion of drainage network from a large DEM. We use a totally parallel algorithm to compute global flow directions [6].
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(a) DEM as a raster (b) Grayscale of the raster

Figure 1: Geological and image rasters

This algorithm combines techniques used in different fields such as hydro-geology, image processing and graph the-
ory and is greatly scalable. From the resulting global flow directions, we propose another scalable parallel algorithm
to compute flow accumulation. The results of the paper allow us to offer a more complete parallel tool to extract,
modelize and interpret, hydrological information from large DEM.

This paper is organized as follows. In Section 2, we briefly present the related works for flow routing models in
geo-hydrology and the solution we use. The section 3 describes steps of a parallel algorithm those intermediary data
structure is crucial to our flow accumulation algorithm. This section is the opportunity to introduce important concepts
necessary to understand the following. On this basis, Section 4 presents how to perform a parallel computation of flow
accumulation on sinks which are homogeneous parts of the DEM. In Section 5, we present the parallel computation
of the water flow through the global DEM. Experimental results are sketched in Section 6. Finally, we close with a
conclusion.

2. Background and Previous work

Digital Elevation Model can be used to represent topography in GIS applications. Data of DEM is generally
stored in one of the following data structures: (1) regular grid structure, (2) triangular irregular network (TIN for
short) structure and (3) contour-based structure [7]. In this paper, we focus onto the grid-type DEMs i.e. 2D grids
that store elevation data for each coordinate of the terrain as illustrated in Figure 1(a). Such a 2D grid is also called a
raster, and a cell of this grid is called a pixel by analogy of the grayscale images (see Fig. 1(b)).

DEMs can be used to extract the hydrographic network making the assumption that rivers flow more probably
into thalwegs and do not cross crests. Three steps are classically used. The Step 1 determines a raster coding flow
direction for each pixel. This produces a forest of trees which root is a local minimum as in Figure 2(a). The Step 2
determines a raster coding accumulated flows i.e. a raster where the value of a pixel (x, y) represents the number of
cells of the DEM that are drained to (x, y). Finally the Step 3 determines a raster segmentation between river pixels
and other ones, classically with the use of a fixed threshold. In this paper, we focus on Step 2 since a parallel solution
for Step 1 can be found in [6] and since a parallel solution for Step 3 is straightforward.

In the first step, flow direction is the key point to perform an hydrological analysis onto DEM. It simulates the
way the outflow from a given cell will be distributed to one or more neighbouring downslope cells. In the flow routing
models, the potential flow directions are assigned to each cell. The flow directions are then used for modeling the
direction where water flows to the cells of the terrain. Several flow routing models have been proposed such as the D8
based on slope gradient [2], the Rho8 developed by [3], the FD8 in [8], the D∞ [4]. In all these cases, decisions are
taken from local informations and potential parallelism is not affected by the choice of the method.

Unfortunately real datasets are not perfect, they include many incoherences like no-data, plateaus and sinks. In
fact, raw DEMs like those provided by the United States Geological Survey(USGS for short), consist of a multitude
of small sinks and plateaus. A plateau is a flat area with at least one spill-pixel. Authors generally chose to assign
flow direction such as all pixels belonging to the plateau will flow to one spill-pixel. A sink is an area without
spill-points . In this case the problem is that water accumulates in the local minimum. In this case, it is needed to
determine the global direction of the flow and allow water to climb up the hill and to escape the sink. Since in both
cases (plateaus and sinks), flows need to be redirected, and since uphill flow is counter-intuitive, many authors choose
to modify initial datasets to obtain artifact-less raster called in image-computing lower complete [2, 9, 10, 11]. In
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hydrology, modifications of data, like stream burning [12, 13], to better reflect known hydrology can be useful but
may compromise the ability to derive catchment parameters and conduct to a second terrain analysis [14].

Once catchment basins of rivers are found, it remains to compute flow accumulation. Sequential approaches use
a recursive approach to compute accumulations onto contributing area of each cell. This method is simple but it
requires large amount of memory and is not well suited for large datasets. In [15], Wallis and al. propose to abandon
recursive functions to a queue-based approach that can work concurrently on several partition of the initial terrain.
This solution requires strong synchronizations between the processors to maintain boundary pixels shared by nodes of
the parallel architecture. Nevertheless it makes possible to use all the memory of a PC cluster and this allows scalable
flow computation for large datasets. TerraFlow offers a way to compute flow accumulation of large terrains onto a
single computer via I/O and CPU efficient algorithms [16, 17]. For such an approach, the only way to reduce the
computation time of a fixed dataset is to buy a more powerful computer since it does not take benefits from scalability
of parallel architectures.

In this paper, we show how to use a hierarchical approach to compute in parallel the global flow accumulation of
the DEM. Our algorithm is totally parallel. Pixels are not directly synchronized via communications. Instead, we only
use light weight data structure in memory and we only communicate high level representation of data between nodes
of the parallel architecture.

3. Water path computation

In this section, we briefly present the parallel watershed extraction of DEM, more details can be found in [6]. This
method consists in constructing a minimal spanning tree (MST) onto a graph that represents the global water flow
direction. The minimal spanning tree represents the easiest way to go from one sink of the DEM to the sea.

First, we introduce some definitions necessary in the following. A digital square grid G with domain D ⊆ Z2

containing values of type S where S can be any set (typically S is R for DEM) can be considered as a special kind
of graph, where the vertices are called points or pixels. The height values of each vertex v is denoted hv. G can
be endowed with a graph structure G = (V, E) by taking for V the domain D, and for E the set {((x1, y1), (x2, y2),w)|
(x1, y1) and (x2, y2) are connected and the weight of the edge w is max(h(x1,y1)h(x2,y2))}. We denote ≺ the lexicographical
order on pairs of integer, i.e (i, j) ≺ (k, l) iff ( j < l) or (( j = l) and (i < k)). The order ≺ is used to choose one minimal
edge when several are possible. The connectivity in the grid may be either 4-connectivity, or 8-connectivity. We call
this first graph G0. Notice that G0 is the DEM itself and is treated such as by our implementation since it is the most
compact representation of this graph that may contains several millions of vertices. Other graphs are represented by
classical adjacency lists.

We choose a block-distribution for vertices of G0. The figure 2(b) gives an example of distribution. The DEM is
distributed onto 6 processors which domains are delimited by the bold lines. The neighbors pixels are represented,
they do not belong to the first processor but they are distributed on it to minimize communications.

The method consists in selecting for each vertex v the lightest edge (v, v′,w) if and only if hv′ < hv. If several
edges may be selected, we choose (v, v′,w) such that hv′ is minimal (water goes down the steeper slope). If we find
several equal hv′ value then v′ is the first in the lexicographical order ≺. Selecting the lightest edge models the flooding
process, i.e. when pouring the basin represented by v it will overflow via the lowest border (represented by the weight).
Enforcing that hv′ < hv models the rain falling, i.e. when the basin overflows, the water should fall down. The first
graph, represented by the arrows of Figure 2(a), is call initial flow direction graph.

Next, the vertices are labelled to detect connected components of the graph restricted to the selected edges. This
is implemented via a parallel approach, each processor computes locally its connected components, each component
is identified by its root called sink (i.e. the minimal vertex in the component w.r.t. height values defined above).
This connected component is the catchment basin (CB) of the sink. For the sake of conciseness, when there is non
ambiguity, we name sink the catchment basin. One connected component may be distributed on several nodes. This
problem is resolved via the construction of local graphs, illustrated in Figure 2(c), and updates of data via global
exchanges phases to obtain a coherent global dependency graph distributed onto all processors.

We obtain a minor of the initial graph. Indeed, each connected component can be considered as a vertex of another
graph which is a minor of the initial graph. Finally each processor broadcasts the connectivity of the new vertices of
the minor that have external edges. In this way, each processor is able to know the whole connectivity of vertices it is
in charge of.
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(a) Flow graph onto the DEM
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Figure 2: Parallel process

(a) Graph F1 (b) Graph F2 (c) Graph F3

Figure 3: Different graphs computed at each step
.

Figure 2 illustrates the computation of one level of the hierarchy. Figure 2(a) gives the initial graph, the number in
the cells are the elevation data and the arrows represent the flow direction. Figure 2(d) gives the result i.e. a labelling
of the pixel that determine the different connected component of the graph restricted to the selected edges.

The process is repeated until obtaining a single component, this produces a hierarchy of minors of the initial
graph. The final MST is the union of the edges selected at each iteration. Browsing this MST from the lower point,
it is easy to orient it and obtain a hierarchical tree. Figure 3 illustrates the computation of the whole hierarchy (self
arrows are to be ignored) on the DEM given Figure 1(a). We remark that the sink labelled 0 (which figures the sea)
grows rapidly until encompassing the whole DEM. The resulting hierarchy does not fit our needs since we cannot
distinguish catchment basins we are looking for. This is why the hierarchy construction is driven to avoid merging of
river catchment basins. More details can be found in [6, 18].

4. Parallel computing of flow accumulation inside each sink

In this part we present our parallel algorithm to compute flow accumulation local to each sink. The result of this
step is a 2D grid FA called the flow accumulation matrix that gives for each pixel p the flow accumulation taking into
account only the internal accumulation of the sink it belongs to. More formally, given a DEM D and its initial flow
direction graph FG, the flow accumulation of a pixel p is the number of pixels p′ such that there is a path from p′ to
p in FG if p is neither nodata nor belongs to the sea.

The data distribution is the same as in Section 3. The block affected to node i is called the domain Di of i. We call
extern neighboring the set of all pixels p′ such that there exists a pixel p in the local domain and the edge (p, p′) is in
the initial flow direction graph. For a processor i, the set of pixels having extern neighbors is denoted Bi and is called
the border of Di. To optimize computations et communications, we distribute to each node its extern neighboring.
This is called the extension area.
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Algorithm 1: Computing local flow accumulation at
p ∈ Di

procedure computeFAL(p ∈ Di)1
begin2

Stack = ∅;3
p→ Stack;4
canCompute = true;5

6
while ((stack , ∅) and (canCompute)) do7

p′ ← Stack;8
if (∀ c ∈ Children(p′), FAi[c] = ∞) then9

FAi[p] = 0;10
for (∀ c ∈ Children(p′)) do11

FAi[p′] = FAi[p′] + FAi[c] + 1;12
end13

end14
else15

p′ → Stack;16
for ((∀c ∈ Children(p′) s.t. FAi[c]=∞) and17
(canCompute)) do

if (lea f (c)) then FAi[c] = 0;18
else19

if (c ∈ Di) then c→ Stack;20
else canCompute = false;21

end22
end23

end24
end25

26
if (not canCompute) then Stack = ∅;27

end28

Algorithm 2: Computing local flow accumulation in
Di

procedure computeFAL(Di)1
begin2

// Computing FAL at border Bi of Di3
repeat4

for ( ∀b ∈ Bi ) do5
if (FA[b] =∞) then6

computeFAL(b) in Algorithm 1;7
end8

end9
Global synchronization;10
Global Exchange of FA[Bi] for all processors ;11

until (FA[p] , ∞, ∀p ∈ Bi) ;12
13

// computing FAL for all other pixels q in Di14
for (∀q ∈ Di s.t. FAi[q] = ∞) do15

computeFAL(q) in Algorithm 1;16
end17

end18

Each processor initializes the flow accumulation value of all the pixels of Di to ∞. Then, they compute the
initial flow direction graph using flow routing model D8 illustrated in [2]. For each processor i, we obtain a local
flow direction graph denoted FGi, using the method described in section 3 (see also [18]). Notice that

⋃
0≤i≤n FGi

is exactly the flow direction graph of the whole DEM since all processors have all the information to determine the
direction of the flow from each pixel of its local domain. For a pixel p of D, Children(p) is the set of pixels p′ such
that p′ goes to p in FG and lea f (p) is true iff Children(p) = ∅.

As seen in previous section, the flow graph FGi is a forest of trees rooted by the sinks. Each tree being the
catchment basin of a sink. Hence, the modeling of the watercourse in each catchment basin can be based on the FGi.
The parallel implementation for local flow accumulation computation is described in Algorithm 2. Each processor
i computes the local flow accumlation of FA only for the pixels of Di (FAi denotes the corresponding part of FA).
Note that due to data distribution onto processors, the catchment basin of a sink s, denoted CBs, can be shared in
several processors i. In this case, the local data at border Bi of each processor i must be exchanged with neighbouring
processors. These exchange phases imply global barriers between all processors which may be very inefficient since
it may need several exchanges depending on shape or size of the catchment basin and the number of processors.
Therefore, in order to avoid useless waits, we do not mix computation for pixels p ∈ Bi and others one. We first
compute local flow accumulation for all pixels p ∈ Bi of subdomains Di to concentrate the communication during this
phase. After that, each processor can perform remaining flow accumulation computations using Algorithm 1 without
any exchange nor synchronization.

For Algorithm 1, the flow accumulation of p ∈ Di is determinated if and only if all its children c ∈ FGi have been
determinated. The flow accumulation of a leaf in flow graph FGi is equal to zero. The computation for all children
c is naturally recursively realized until flow accumulation of its children is determined. We used a stack of pixels,
denoted S tack, to replace recursion with iteration in the implementation. Each processor uses its own S tack for locally
computing flow accumulation for a given p. In order to compute the local flow accumulation at p in Algorithm 1,
we use a S tack. The pixel p is inserted into S tack. While flow accumulation of p is still indeterninated and can be
computed (not dependent of extern values), a pixel p′ is taken from S tack, if flow accumulation of all children of p′
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is determined, the flow accumulation at p′ can be computed as the sum of children flow accumulations. Otherwise,
p′ is inserted again into S tack. All children c (flow accumulation equal value∞) of p′ in FGi belong in one of these
three cases.

Case 1: The pixel c is a leaf in the FGi, the flow accumulation of c is deternimated by zero. Our implementation doesn’t
need to insert all leaves into S tack.

Case 2: The pixel c belongs to Di, c is then inserted into the S tack;

Case 3: The pixel c is not in Di, flow accumulation computing for p cannot be continued. In this case, the S tack is
set as empty to optimize the use of memory. This is the case when the pixel belongs to a catchment basin that
is shared by several processors. The computation for c will be considered again after the exchanging of flow
accumulation between neighbouring.

5. Global flow accumulation

In this section we describe how to obtain a global result covering all the DEM from the local computation of
Section 4. The local flow accumulation was computed in each sink. Note that this result is local to a given sink but is
not necessarily local to a processor. The main difficulty consists in determining the global flow of the entire DEM and
therefore to drive flow uphill to reach progressively the sea. A very similar problem exists when we want to determine
global catchment basins from DEM which are not lower-complete. In Section 3 we propose to construct a minimal
spaning tree (called hierarchical tree or HT) linking sinks together and representing the most probable path of water
(see also [6]). This is done taking into account the lower part of ridges between neighbor sinks. The hierarchical tree
HT obtained can be used for computing global flow accumulation. Our idea consists in computing flow accumulation
between sinks following the hierarchical tree, then, to use this information to update accumulations flow of pixels in
the entire DEM.

5.1. Flow in the hierarchical tree

We turn now to describe the flow accumulation in the hierarchical tree HT . In Figure 4(a), we can see that the sink
A is a leaf of HT , the water would flow from A into its parent B in HT . The flow accumulation of the sink A is added
to the flow accumulation of B. The flow accumulation of B is the sum of its local flow accumulation (the number of
pixels belonging to the sink B) and the sum of the flow accumulation of all sinks children of B. The propagation is
then done from sink B to its parent P in HT until we reached it root R. The difficulty is to translate the transfert of the
water accumulated in one sink to its parent in the flow accumulation matrix.

The hierarchical tree HT imposes an order for the computation of flow accumulation of sinks. For example,
consider the HT of Figure 4(a). Assume that the two sinks A and C have finished to compute their flow accumulation
and propagated it to sink B. Then, the sink B can propagate its flows into its parent sink P. In the second connected
component, sinks I, J are marked as finished, but sink L is still pending. This means that G has not enough information
to continue computation and therefore it is the same for its parent D.

In our implementation this work is performed at the same time as the step described thereafter and that consists in
updating the flow accumulation matrix to translate water transfers in this matrix.

5.2. Update of flow accumulation of pixels

We describe how we use flow accumulation at the sink level to update accumulations flow at pixels level. Let A
and B be pixel sinks (i.e. local minima) and respectively CBA and CBB their catchment basins. The HT tells that the
water would flow from A into its parent B. It remains to determine the most probable way the water would take to
flow from A to B. In the HT we have stored the lowest points of the watershed between A and B (they are denoted pS
and pD respectively (see Figure 4). Note that these two points are on either sides of the ridge between CBA and CBB.
In our algorithm, we used both flooding under the HT and flooding on the DEM based on flow directions determined
in the flow graph FGi. In our modeling, to escape from CBA the water follows the path from pS to A in FG (denoted
π[pS ,A]) in the reverse direction, then it goes from pS to pD and finally follows the path from pD to B in FG (denoted
π[pD,B]). The idea, is that the points of π[pS ,A] carry all the accumulation of A and the pixels of π[pD,B] accumulate
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Figure 4: Propagation FA from sink A to sink B

their own draining pixels plus the accumulation of A. So we have two types for propagations, called propagation ToA
(Fig. 4(b)) and propagation ToB LOC (Fig. 4(c)).

In the propagation ToA as described in Algorithm 3, the quantity Delta is used to replace for flow accumulation
of all pixels belonging to the descendant path between pS and position of sink A, denoted π[pS ,A]. This is illustrated
in Figure 4(b), where Delta, that is the flow accumulation of sink A, was determined during the steps of computing
local flow accumulation and flow accumulation into the hierarchical tree. In our parallel implementation, the domain
D of DEM is partitioned into subdomains Di that are mapped by processors i. Therefore, the descendant path π[pS ,A]
may not entirely belong to the same subdomain Di. In this case, the propagation ToA on the descendant path π[pS ,A]
is broken when it reaches a neighbor pixel postoA < Di (see Figure 4(d)). To solve this problem, for each processor i,
we use a data structure ListS endAi to communicate the propagation ToA from neighbor postoA to the subdomain D j

in which the postoA belongs to. At processor i, a pair pairA < postoA,Delta > is immediately inserted to ListS endAi.
The ListS endAi is then exchanged with others processors (see Figure 4(d)). To optimize the data exchange between
neighboring processors, each processor i only send to processor j all pairA < postoA,Delta > ∈ ListS endAi such that
the pixel postoA belongs to the subdomain D j. And after that, the propagation ToA on the descendant path π[pS ,A] can
be continued from postoA with the quantity Delta in D j in next iteration. The propagation ToA can be repeated in
several cycles local computation/global exchange, until the ListS endAi for all processors i are entirely empty.

Algorithm 3: Propapation ToA from postoA with
Delta on the path π[pS ,A) at Processor i

procedure ToA(PairA < postoA,Delta >)1
begin2

if (postoA < Di) then3
pairA = < postoA,Delta >;4
pairA ⇒ ListS endAi;5

end6
else7

mFAi[postoA] = Delta;8
parenttoA = Parenti[postoA];9
while (postoA , parenttoA) and (parenttoA ∈ Di) do10

FAi[parenttoA] = Delta;11
postoA = parenttoA;12
parenttoA = Parenti[postoA];13

end14
if (parenttoA < Di) then15

pairA = < parenttoA,Delta >;16
pairA ⇒ ListS endAi;17

end18
end19

end20

Algorithm 4: Propapation ToB LOC for postoB ∈

π[pD,B)

procedure ToB LOC(pairB < postoB, A,Delta >)1
begin2

FAi[postoB] = FAi[postoB] + Delta;3
parenttoB = Parent[postoB];4
while ((parenttoB , postoB) and (parenttoB ∈ Di)) do5

FAi[parenttoB] = FAi[parenttoB] + Delta;6
postoB = parenttoB;7
parenttoB = Parenti[postoB];8

end9
if ((parenttoB < Di)) then10

pairB = < parenttoB, A,Delta >;11
pairB ⇒ ListS endBi;12
return true;13

end14
else15

PassedSinks LOC[A] = finished;16
return false;17

end18
end19

We turn now to the propagation ToB LOC from sink A to its parent sink B. This propagation go through crossing
point pD ∈ CBB (see Figure 4(c)), the quantity Delta is used to increase for all pixels postoB belonging to the
descendant path π[pD,B]. It is described in Algorithm 4. Firstly, we begin the ToB LOC at the crossing point pD of
B. The propagation ToB LOC is continuously realized for next pixel of pD in π[pD,B]. The final step depends on the



H.-T. Do, S. Limet and E. Melin / Procedia Computer Science 00 (2011) 1–10 8

state we obtain.
One one hand, the propagation ToB LOC, < pstoB, A, Delta > has reached B. It means that the propagation

between sink A and sink B on the path π[pS ,B] is finished. The sink A is then marked as finished for propagation to its
parent B. This condition is used to decide that the propagation from sink B can be continued for propagating to its
root in HT .

One the other hand, the propagation reaches a neighbor pixel postoB ∈ π[pD,B], which does not belong to the
domain of processor i (postoB < Di). This means that the propagation from sink A into sink B is suspended, it needs a
communication. Like above, we used a data structure ListS endBi for each processor i for solving the incompletion of
the descendant path π[pD,B] in Di for propagation of flow accumulation (see Figure 4(e)). A pairB < postoB, A,Delta >
is inserted into ListS endBi. We send ListS endBi to processor j. And after that, the propagation is continued onto
processors j.

Algorithm 5: Propagation ToB GLO with Delta
from pos ∈ CBB to sinkroot R of B in HT

procedure ToB GLO(pairB < pos, A,Delta >)1
begin2

if ( ToB LOC(pairB)) then3
P = getParent(B, pS new, pDnew);4
propagable LOC = true;5
ToRoot = PropagableToRoot(B);6
while ((P , root) and (propagable LOC) and (ToRoot))7
do

newDelta = FAi[B];8
ToA(pS new, newDelta) in Algorithm 3;9
pairB = < pDnew, B, newDelta >;10
if (pDnew < Di) then11

pairB ⇒ ListS endBi;12
propagable LOC = false;13

end14
else15

if ( ToB LOC(pairB)) then16
propagable LOC = false;17

end18
else19

B = P;20
ToRoot = PropagableToRoot(B);21
P = getParent(B, pS new,pDnew);22
propagable LOC = true;23

end24
end25

end26
end27

end28

Algorithm 6: Parallel computing flow accumulation
in Di

procedure computeFAG(Di)1
begin2

for (∀ sink A ∈ HTi) | (A is leaf) do3
B = getParent(A, pS , pD);4
Delta = FAi[A];5
ToA(< pS ,Delta >) in Algorithm 3 ;6
pairB = < pD, A,Delta >;7
if (pD < Di) then8

pairB ⇒ ListS endBi;9
end10
else ToB GLO(pairB) in Algorithm 5;11

end12
allFinished = false;13
while (not allFinished) do14

Global synchronization;15
ListRecvAi = {pairA < pS ′,Delta >∈ ListeS endA j |16
pS ′ ∈ Di};
ListRecvBi = {pairB < pD′, X,Delta >∈ ListeS endB j |17
pD′ ∈ Di};
ListS endAi = ∅ ;18
ListS endBi = ∅ ;19
for (∀ pairA ∈ ListRecvAi) do20

ToA(pairA) in Algorithm 3;21
end22
ListRecvAi = ∅;23
for (∀ pairB ∈ ListRecvBi) do24

ToB GLO(pairB) in Algorithm 5;25
end26
ListRecvBi = ∅;27
allFinishedi = (ListS endAi=∅) and (ListS endBi=∅);28
Global Synchronization;29
allFinished =

∑numProcs
1 allFinishedk;30

end31
end32

The global propagation for flow accumulation ToB GLO from a pixel pos ∈ CBB into sink root of sink B is
described in Algorithm 5. The function PropagableToRoot(B) is used to verify that the sink B can be propagated
to its parent in the hierarchical tree HT , a sink B is propagable to its parent in HT if only if all its sinks children of
B are marked as finished for propagation. The parallel algorithm is finished when both ListS endAi and ListS endBi

of all processors i are empty. And, the result FAi partitioned in each processor i is the global flow accumulation of
catchment of rivers.
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(a) Result of our method (ParaFlow)
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Figure 5: Relative speedup with number of processors (Np)

6. Experimental results

The parallel algorithm described in this paper has been implemented in C++ using MPI library and tested on eight
nodes linked with a Gigabit Ethernet network. Nodes are bi-pro with AMD Opteron Quad-Core 2376 2.3GHz with
16GB SDRAM DDR2-PC5300 EEC 667 MHz, and operating system is linux. Figure 5(a) illustrates the result of our
method for the DEM c. That is the drainage networks for Loire Bretagne region in France.

First of all, we compared the quality of the results of our algorithm with those obtained with TerraFlow and the
main leader of commercial GIS software ArcGIS. The three methods gives very similar river networks (no more than
3% of pixels differ between them).

Let Np be number of processors used and T (Np) the running time. The results, given in Fig. 5(c) and in Fig. 5(d),
exclude data loading, and saving. The running time displayed for each DEM is the avarage of five runs of our program
on the DEM (The difference between several runs on the same DEM is less than 0.1%). Note that, due to memory
size limitation, it is not possible to run our program for DEM d (size 36,002×54,002) onto one sole node. In this
case only, we choose to give a speedup relative to the execution time of our algorithm onto four processors. Then the
speedup linear curve start at coordinate (2,0) and is parallel to the classical one (Fig. 5(d)). Note that this is another
important benefit of our parallel algorithm, to allow computation onto large DEM whose size does not fit into the
memory of one sole PC. Looking at Figure 5(c), for DEM a and DEM b, we remark that the relative speedup is close
to linear speedup at the beginning of the curves. With larger DEM (for example DEM d) speedup increases linearly
(Figure 5(d)). This illustrates the good scalability of our approach.

We compared in Figure 5(b), the running time of TerraFlow/GRASS(Geographic Resources Analysis Support
System) to our method to analyze hydrology of DEM b (the results, here, include times for loading and save data).
Note that TerraFlow is a sequential code so its time duration is represented by on line in Figure 5(b). Even with one
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processor our method is faster than TerraFlow on this DEM and with 8 processors our method is about ten times faster.

7. Conclusion

In this paper, we presented an efficient and scalable fully parallel algorithm to compute the global flow accumu-
lation. This method allows rapid automatic drainage network extraction in very large DEM. The method does not
use too complex data structures to alleviate memory need, moreover data are distributed onto the cluster. The method
takes into account sea and border of the DEM which may belong to catchment basin of river outside of the datasets.
The results we obtain, from hydrology point of view is very close to those computed by classical software.

We proposed a SPMD parallel implementation onto a PC cluster. We used it on a large DEM, and obtained good
speedups and computation times for huge datasets. The running time for hudge DEMs on a pretty small cluster is of
the same order than the classical GIS processing times for small datasets, with desktop computers. This shows the
interests of such methods with regard to out-of-core algorithms.

The methodology we use to compute the global flow accumulation may apply on many classical processings on
DEMs. Therefore we are working on giving a more general framework to ease implementation those processings in
parallel. We are also working on improving the scalability of our framework when the user wants to store intermediate
results. Each of these results is as big as the initial DEM and the data are distributed over the nodes of the cluster
which needs to efficiently parallelize the I/O.
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