
Net Juggler :
Running VR Juggler with Multiple Displays on a Commodity Component

Cluster

Jérémie Allard Valérie Gouranton Loı̈ck Lecointre Emmanuel Melin
Bruno Raffin

Université d’Orléans
Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)

F-45067 Orleans Cedex 2, France
gouranton@lifo.univ-orleans.fr, melin@lifo.univ-orleans.fr, raffin@lifo.univ-orleans.fr

Abstract

Net Juggler is an open source library that turns a com-
modity component cluster running the VR Juggler platform
on each node into a single VR Juggler image cluster. Appli-
cation parallelization is transparent to the user and leads to
high performance executions even with limited bandwidth
networks.

1 Introduction

Today’s virtual reality environments are mainly driven
by high-end proprietary computers, like SGI Onyx sys-
tems, but high performance commodity components are
also available to build clusters that could provide the neces-
sary computation power. Nevertheless, to use a PC cluster
with loosely coupled processors and graphics cards faces
several limitations. Data and computations must be care-
fully distributed on the different nodes to ensure communi-
cations stay below the capacity of the network. Computa-
tions must be synchronized to ensure the different projectors
display complementary parts of a large image. These tasks
should not be the responsibility of the programmer. Parallel
programming is time consuming and diverts the program-
mer from its main goal, which is to develop innovative in-
teractive graphics applications. Thus, using PC clusters for
virtual reality requires programming environments that hide
the complexity of the underlying architecture and provide
automatic and efficient parallelization schemes.
One approach proposes to parallelize the application at

the level of graphics primitives [3, 4]. The application is
executed on one or several nodes. Graphics primitives are

intercepted and broadcasted to each node controlling a dis-
play. These nodes render the scene according to their local
viewport. The amount of data to send over the network can
be important, limiting the performance. The WireGL pro-
tocol [4] integrates caching and compression techniques to
reduce the network bottleneck. But these techniques have
limiting effect for real-time applications with frequent up-
dates of the scene.

An other approach consists in duplicating the application
on each node [2, 3]. Every frame, time and input device data
are broadcasted to each copy to guaranty data coherency.
Compared to the previous approach the required network
bandwidth is limited due to the small amount of data com-
municated, ensuring high performance even for real-time
applications making frequent updates of the scene.

In this paper, we extend this approach to turn a cluster
running a VR system on each node into a single VR system
image cluster. Our work is based on the open source VR
Juggler library [1] that defines a execution platform for vir-
tual reality applications. VR Juggler provides an abstrac-
tion of the underlying system, while giving direct access
to various graphics API for maximum control over applica-
tions. The application is independent of the displays, the in-
put and output devices. System components are configured
with a set of files when launching the application. Currently
VR Juggler supports several architectures like PCs, work-
stations and Onyx systems, but it does not support cluster
configurations. We developed Net Juggler, a C++ library
that turns a cluster running VR Juggler on each node into a
single VR Juggler image cluster. Net Juggler does not mod-
ify the VR Juggler API. Running a VR Juggler application
on a Net Juggler cluster only requires to adapt the VR Jug-
gler configuration files to the cluster configuration.



2 Net Juggler

VR Juggler [1] is organized around a kernel and differ-
ent components called managers. Each manager handles a
set of specific system details, while the kernel controls the
run-time system and brokers communications between the
different managers. Every input device is controlled by the
input manager. When an application requests access to a de-
vice, it contacts a proxy. The proxy hides the actual device
and tracks the most recent data received from the device.
The draw manager gives direct access to the graphics API.
The display manager takes care of the windows and dis-
plays. The configuration manager handles a database with
configuration information, like window properties, proxy
names and associated devices. The environment manager
is the user’s entry point to exchange data with VR Juggler.
With the graphics utility called VjControl, the user can re-
configure the application at run-time or collect performance
data.
Adding cluster support to VR Juggler requires new func-

tionalities. Following VR Juggler micro-kernel organiza-
tion we implemented new managers. A Net Juggler kernel
derives from the VR Juggler kernel to handle them.
Net Juggler has to collect data from each device and

broadcast these data to each node of the cluster. VR Juggler
uses proxies to hides the actual devices. Net Juggler re-
places these proxies by client and server proxies. The node
where the device is connected runs a server proxy while the
nodes requiring the data run a client proxy. Because prox-
ies provide an abstraction of input devices, their number is
limited and should not increase significantly in the future.
VR Juggler instantiates the application according to the

execution environment with a set of configuration files or at
run-time from requests sent by the user through VjControl.
Configuration data are organized in chunks, each chunk
having information about a part of the system. The same
functionalities are available with Net Juggler. For a Net
Juggler cluster, chunks have to be modified to include a host
parameter. The host indicates the node the chunk is related
to. We also defined a new type of chunk for client/server
proxy couples. In this case, the host parameter has a dif-
ferent semantics: it points out the node that runs the server
proxy, all the other nodes having a client proxy. On each
node, a cluster configuration manager stores the chunks in
a database. The whole cluster configuration is then easily
available from any node of the cluster. Each node selects
the Net Juggler chunks it is concerned with and translates
them into VR Juggler chunks that the VR Juggler configu-
ration manager stores locally.
The classical stream paradigm is used and extended to

provide an abstraction of the actual data communications.
There is one stream by server proxy and by cluster environ-
ment server. A stream is associated to a specific node source

and can have several destination nodes. Each stream is iden-
tified by a unique id and can be created, deleted or modified
at run-time. Actual data communications take place only
once per frame. The nodes also execute a synchronization
barrier just before swapping their frames buffers to ensure
the consistency of the images displayed. Communications
are implemented with the MPI standard.
Tests show Net Juggler does no introduce a significant

overhead (less than of the overall computation time for
4 dual Pentium III 800 MHz nodes equipped with GeForce
2 graphics cards, 4 displays and a 100 Mbits/s Fast Ethernet
network). The overhead introduced by communications de-
pends on the number of nodes, the number and type of input
devices and their repartition on the different nodes, but not
on the complexity of the scene. Thus, generally the amount
of data communicated is small even for fast changing com-
plex scenes.

3 Conclusion

In this paper, we presented Net Juggler that provides
cluster support for VR Juggler. Application parallelization
is transparent to the user and ensures high performance even
for real-time applications making frequent updates of the
scene. Net Juggler instantiates the application according
to the execution environment through a set of configuration
files or at run-time from requests sent by the user through
VjControl.
The parallelization scheme adopted is based on running

a copy of the application on each node. Data are duplicated
and some computations are redundant. For some applica-
tions this can be a memory and performance bottleneck that
we will address in future works.

References

[1] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and
C. Cruz-Neira. VR Juggler: A Virtual Platform for Virtual
Reality Application Development. In IEEE VR 2001, Yoko-
hama, Japan, March 2001.

[2] M. Bues, R. Blach, S. Stegmaier, U. Häfner, H. Hoffmann,
and F. Haselberger. Towards a Scalable High Performance
Application Platform for Immersive Virtual Environements.
In J. D. B. Fröhlich and H.-J. Bullinger, editors, Immer-
sive Projection Technology and Virtual Environements 2001,
pages 165–174, Stuttgart, Germany, May 2001. Springer.

[3] H. Chen, Y. Chen, A. Finkelstein, T. Funkhouser, K. Li,
Z. Liu, R. Samanta, and G. Wallace. Data Distribution Strate-
gies for High-Resolution Displays. Computers Graphics,
Special Issue on Mixed Realities, 2001.

[4] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett,
and P. Hanrahan. WireGL: A Scalable Graphics System for
Clusters. In Proceedings of SIGGRAPH 2001, 2001.


