Parallel Computing of Catchment Basins in
Large Digital Elevation Model

Hiep-Thuan Do*, Sébastien Limet, and Emmanuel Melin

LIFO — Univerité d’Orléans
Rue Léonard de Vinci, B.P. 6759 F-45067 ORLEANS Cedex 2
{hiep-thuan.do, sebastien.limet, emmanuel.melin}@univ-orleans.fr

Abstract. This paper presents a fast and flexible parallel implementation to com-
pute catchment basins in the large digital elevation models (DEM for short). This
algorithm aims at using all the specific properties of the problem to optimize local
computations and to avoid useless communications or synchronizations. The algo-
rithm has been implemented in MPI and the first benchmarks show the scalability
of the method.

Key words: Parallel implementation, Digital elevation model, Catchment basin,
Image Segmentation

1 Introduction

Geo-hydrology is an interdisciplinary domain dealing with the flow of water
through aquifers and other shallow porous media. This domain is a branch of
earth sciences relevant to many fields of soil science like agriculture or civil engi-
neering. To study the flow of water one method consists in computing catchment
basins only considering surface topography as if soil was impervious. The input
information consists in a Digital Elevation Model (DEM).

Computing catchment basins is a problem very close to the well known wa-
tershed transform method in the field of mathematical morphology. This is a
region-based segmentation approach widely studied in the area of Image Anal-
ysis. Image Segmentation is the process of partitioning the image into disjoint
regions that are homogeneous with respect to some property such as gray value,
altitude or texture. Indeed, a gray scale image can be viewed as a DEM where
the lengths of the gradients between pixel values are considered as the altitude of
the corresponding points. Catchment basins of the images denote the expected
homogeneous regions of the images and ridges of land that separate catchment
basins are called watersheds. As we see, the intuitive idea underlying watershed
transform method comes from geography, indeed we propose to reverse this anal-
ogy by using watershed transform methods, wildly tuned for Image Analysis, to
initial geographical catchment basin computing.

Watershed transform algorithms use two method classes based on flooding
process [8, 1] or rain falling simulation [6, 5]. These methods are sequential
and need an extensive use and a careful management of the memory. Required
memory size is a priori unknown, and the data are addressed in unstructured
manner, causing performance degradation on virtual memory.

* Hiep-Thuan Do’s PHD Thesis is funded by Conseil General of Loiret (France)



2 Hiep-Thuan Do, Sébastien Limet, and Emmanuel Melin

The parallelization of classical sequential algorithms based on an ordered
queue proposed in [2] requires strong synchronizations between the processors
maintaining local queues and repeated labeling of the same pixels performed for
appropriately labeling parts of catchment basins. To compute watershed, some
other parallel methods [3, 4] have been proved scalable, but are still computa-
tionally expensive for large images.

The quality of the results of catchment basin computing depends on the
quality of the DEM in the one hand and on the surface it covers on the other
hand. Since several years, very large high resolution DEM issued from satellite or
air plane LIDAR scanning, are available. Then it becomes crucial to focus on fast
scalable parallel methods being able to perform catchment basin computation
on very large of datasets.

The goal of this paper is to present a SPMD parallel implementation onto
MIMD architectures to efficiently computes catchment basins of large DEM.
This approach is mainly based on local data analysis. This makes possible a
very efficient parallelization. We use a dependency graph, which encapsulates
results of local computations and reduces drastically the cost of communica-
tions related to global analysis steps. This method overcomes synchronizations
and communication overheads due to no local information needed by nodes to
take local decisions. Moreover we adapt the path compression part of algorithm
Union-Find [7] in order to, first, compute connected components, and secondly,
resolve the global dependency graph. Further tests on different large DEM have
been performed to evaluate the efficiency and the scalability of the method.

The paper is organized as follows. We describe the detailed implementation
of our new algorithm in Section 2. Experimental results are sketched in Section 3.
Finally, we close with a conclusion.

2 The parallel watershed algorithms

A Digital Elevation Model (DEM) is a regular square 2D grid of vertices rep-
resenting geographic positions, with 4-connectivity or 8-connectivity where an
altitude is associated to each vertex. Formally, the grid is a triple G = (D, E, f),
where (D, F) is a graph and f is the function giving the altitude of the nodes of
D. The graph (D, E) consists of a set D C Z? of vertices (or nodes) and a set
E C D x D of pairs of vertices describing the connectivity of the grid. Each node
(x,y) represents a 2D geographic position. Each p € D has an altitude given by
the function f : D — R assigning a float value to p. Therefore f denotes the
topographic relief. We define a neighboring for each node p with respect to the
grid G, denoted by Ng(p) = {p’ € D|(p,p’) € E}. In the case of 8-connectivity
E = {((z,y), (', y)|(2,9) # (@', 3) and |z — '] <1 and |y — y/| < 1}.

Our method to delimit catchment basins of a DEM is in the class of arrowing
technique. It consists in exploring node neighborhood, choosing the lower neigh-
bor and iterate the process. We follow the path of steepest downslope through
the grid until reaching a final point that has no lower neighbor. This point is
a local minimum and is called a well. Vertices having the same final well be-
long to the same catchment basins. We formalize the steepest downslope via



Parallel Computing of Catchment Basins in Large Digital Elevation Model 3

the parent function. Each node p € D, parent(p) is the neighbor of lowest al-
titude. Note that parent(p) may be p itself if all neighbors are upper. If two
neighbors have the same altitude, we enforce an artificial strict order using the
classical lexicographical order < on pairs. This order eliminates flat zone with-
out any specific processing. The practical results show that computed catchment
basins are consistent with regard to hydro-geology. Figure 1(a) gives an example
of a DEM, the arrows between nodes represents the function parent. In this
DEM, the pixel (6,5) and (6, 6) form a flat zone. Because of lexicographic order,
parent((6,6)) = parent((6,5)) = (6,5).
Formally, the parent ¢ of the node p is the element of Ng(p) that verifies:

Vp' € Ng(p)U{p} such that p' # qeither f(q) < f(p') orf(q) = f(p') and g < p’

(b) Local labeling (c) Global result

Fig. 1. Example of DEM

We call flow graph, the graph Flow = (D, {(p,parent(p)}). This graph is
partitioned into connected components (see Figure 1(a)) that are almost trees
(to be real trees, the edges of the form (p, p) have to be removed). In Figure 1(a),
the four connected components have different backgrounds. The root of a tree
in Flow is such that parent(p) = p and corresponds to a local minimum. In
the example, the four wells are nodes (1,1), (4,5), (5,3) and (6,5). We define
a catchment basin C'B as a connected component in Flow. Then, a catchment
basin contains all nodes of D that are in the same tree of Flow. The root rp of
catchment basin CB is called primary well.

As in [4], our parallel approach maps data onto the processors of the parallel
computer. The global domain D of a grid G = (D, E, f) is partitioned into
disjoint sub-domains D;. In the example illustrated by Figure 1(a), the domain
is split into four sub-domains symbolized by the thick lines in the grid. For
example the sub-domain Dj is the set {(z,y) € Z2[1 <z <3 and 1 <y < 3}.

Each sub-domain D; is extended with a so-called extension area denoted
D, ™. The extension area consists of all neighbors of nodes belonging to D; that
are not included in D;. It is defined as follows: D;T = {p € D|p & D; and 3q €
D; such that p € Ng(g)}. In the example of Figure 1(a), D = {(4,1), (4,2),
(4,3), (4,4), (1,4), (2.4), (3, 4)}.



4 Hiep-Thuan Do, Sébastien Limet, and Emmanuel Melin

This data distribution has consequences when we want to locally compute
catchment basins since the nodes of one basin can be distributed on several sub-
domains as it can be seen in Figure 1(a). In such cases, it becomes impossible
to compute the real tree without global data access. This kind of access is time
consuming, so to avoid them our method computes a partial tree and postpones
the problem to another phase of our algorithm. Among the local wells computed
in a sub-domain, it is possible to locally detect primary wells of the global do-
main thanks to the extension area. Indeed a local well that has a parent in the
extension area is not a primary well, it is then called secondary well. In Fig-
ure 1(b), the upper right sub-domain has four local wells (1,4), (3,4), (3,5) and
(3,6), but all are secondary since their parents are in the extension area.

At this point, labels are locally given to both primary and secondary wells
in a such way that labels of each sub-domains are disjoint. The method gives
to all the nodes of each catchment basin the label of the local well. Figure 1(b)
gives the result of this phase on the DEM of Figure 1(a). Nodes labeled with
secondary well have gray background.

Until now, all computations can be performed without any communication
between processors of the parallel computer. This is optimum for scalability and
speed up. Moreover the local computations use a path compression technique
inspired of the Union-Find algorithm [7]. Tarjan had shown that the time com-
plexity of this step for an input image of size N;, is quasi O(XV;). So, in practice,
this algorithm can be regarded to run in linear time with respect to its input. It
does not need any extra memory space.

Next phase in our method leads to relabeling of secondary wells taking into
account no local informations. During this phase each secondary well is coalesced
into a primary well. We start with one to one communications in order to update
pixel labels of the extension area. After this step we locally know in which
catchment basin, pixels of the extension area belongs to. Then we introduce
the parent well notion. A well pw is called parent well of a secondary well sw
if parent(sw) belongs to the catchment basin corresponding to well pw. We
create a local dependency graph LDG; which contains dependency informations
between local catchment basins. We locally associate any secondary wells sw with
its parent parent(sw). In Figure 1(b), we get LDG1 = {5 — 10}, LDG5 = {6 —
1,7—3,8—3,9— 3}, LDG3 =0 and LDG4 = {10 — 2,11 — 2,12 — 2}.

The local dependency graphs are then broadcasted to all other processors
for building of global dependency graph GDG:Uf"b LDG;, where P,; is the
number of processors. The GDG is a graph which connected components are
trees rooted by primary wells. On each processor P;, catchment basin CB,
corresponding to secondary well sw € LDG; is merged into the catchment basin
CB,., corresponding to root well rw. This is called the union of wells. The
union of wells is then propagated on the path between the root well rw and
the secondary well sw in the GDG. This step is continuously repeated until
all secondary wells are labelled with the identifier of their their roots (primary
wells). Note that this process is parallel since each processor works on resolution



Parallel Computing of Catchment Basins in Large Digital Elevation Model 5

only for its own local secondary wells. Moreover we need only one communication
phase involving data structures much more reduced compared to initial data size.
Finally, labels of nodes in the catchment basins corresponding to secondary
well sw are replaced by label of its root well rw in GDG by the linear scan for
all nodes in sub-domain D;. This phase of our method is purely parallel without
any communications. The global labeling of DEM is illustrated in Figure 1(c).

3 Experimental results

This algorithm described in this paper has been implemented in C++ using Open
MPI. It has been tested on the MIREV platform consisting of eight nodes
linked with a gigabit ethenet network. Each node is a bi-pro with AMD Opteron
Quad-Core 2376 2.3Ghz with 16G SDRAM DDR2-PC5300 EEC 667 Mhz. We
tested up to 64 processors on different Digital Elevation Models (MNT _a with
size 3,980 x 5,710; MNT_b with size 10,086 x 14,786; and MNT _c with size 36,002
x 54,002) which are provided by the Company Géo-Hyd in Orléans, France.

Relative speedup with number of processors Relative speedup with number of processors

T T T T T

Theoretical linear speedup Theoretical linear speedup of MNT_c

MNT_a with size 3,980 x sgéy MNT_c with size 36,002 x 54,002
MNT_b with size 10,086 x 14,766 —— _|

log2(SP(Number of processors))
~
log2(SP(Number of processors))

o 1 2 3 a4 5 6 0 1 2 3 4 5 6
log2(Number of processors) log2(Number of processors)

(a) MNT_.a and MNT_b Speedup (b) MNT_c Speedup

Fig. 2. Relative speedup with number of processors

Let P,; be number of processors used. The running time T(P) is the time
elapsed between the moment that the first processor starts and the moment that
the last processor finishes. The measured times excludes data loading, distribu-
tion, coalescence, and saving. The relative speedup of the parallel algorithm is
measured by: SP(P,;) = % where T),;, is the execution time of our algo-
rithm onto one processor. Note that, due to memory size limitation, it is not
possible to run our program for MNT _c onto one sole node. In this case only,
we choose to fix T),;, as the execution time of our algorithm onto two proces-
sors. Then, in this case, the speedup linear curve start at coordinate (1,0) and
is parallel to the classical speedup linear curve (Figure 2(b)).

Looking at Figure 2(a), for MNT_a and MNT_b, we remark that the relative
speedup is close to linear speedup at the beginning of the curves. Of course, when
number of processors grows, the speedup partially decreases, since cost of com-
munications becomes more important compared to local computation gain. With



6 Hiep-Thuan Do, Sébastien Limet, and Emmanuel Melin

a larger DEM (1.9 Gpoints for MNT _c) speedup increases linearly (Figure 2(b))
and the computation takes 92 seconds using 64 processors. This illustrates the
good scalability of our approach. Note that MNT ¢ speedup is super linear. A
possible reason is the cache effect resulting from the different memory hierar-
chies.

4 Conclusion

We presented an efficient and scalable parallel algorithm to compute catchment
basins in large DEM. All computations are parallel and no complex data struc-
tures are constructed. Moreover, all data structures are distributed onto cluster
nodes. Synchronizations and communications are localized between super steps
of the algorithm to avoid time consuming during the core of the computation.

The algorithm described in this paper computes all catchment basins with
regard to the DEM. Some of them are irrelevant from the hydro-geology point
of view because they are too small or result of approximation of the elevation
values. As in the area of Image Segmentation it is possible to create a hierarchy
of catchment basins that would help to eliminate such problems.

Since principles of catchment basins computing in the field of geography is
close to watershed transform method in the field of Mathematical Morphology,
we think that our parallelizing method can be directly adapted to Image Seg-
mentation. This would speed up segmentation for high resolution images.

References

[1] S. Beucher and F. Meyer. The morphological approach to segmentation: The wa-
tershed transformation. In E.R. Dougherty, editor, Mathematical morphology in
image processing, volume 34 of Optical Engineering, chapter 12, pages 433—481.
Marcel Dekker, New York, 1993.

[2] A.N. Moga. Parallel Watershed algorithms for Image Segmentation. PhD thesis,
Tampere University Technology, February 1997.

[3] A.N. Moga, B. Cramariuc, and M. Gabbouj. Parallel watershed transformation
algorithms for image segmentation. Parallel Computing, 24(14):1981-2001, 1998.

[4] A.N. Moga and M. Gabbouj. Parallel image component labeling with watershed
transformation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(5):441-450, May 1997.

[5] S.L. Stoev. RaFSi- A Fast Watershed Algorithm Based on Rainfalling Simulation.
In WSCG, 2000.

[6] H. Sun, J. Yang, and M. Ren. A fast watershed algorithm based on chain code
and its application in image segmentation. Pattern Recogn. Lett., 26(9):1266-1274,
2005.

[7] R.E. Tarjan. Data structure and Network Algorithms. SIAM - Society for Industrial
and Applied Mathematics, 1983.

[8] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based
on immersion simulations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(6):583-598, June 1991.



