
Parallelizing Pre-rendering Computations on a Net Juggler PC Cluster

Jérémie Allard Valérie Gouranton Emmanuel Melin
Bruno Raffin

Université d’Orléans
Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)

F-45067 Orleans Cedex 2, France
gouranton@lifo.univ-orleans.fr, melin@lifo.univ-orleans.fr, raffin@lifo.univ-orleans.fr

Abstract

Net Juggler, an open source library developed at LIFO,
turns a commodity component cluster running the VR Jug-
gler platform on each node into a single VR Juggler image
cluster. Net Juggler parallelizes rendering computations for
immersive projection environments but pre-rendering com-
putations are redundant. In this paper, we present how a
classical parallelization of the pre-rendering computations
can be deployed and controlled with Net Juggler. This ap-
proach is demonstrated with an interactive fluid flow simu-
lation.

1 Introduction

Today, large computers built with PCs and a gigabit net-
work are powerful enough to run high performance scien-
tific applications. Such cluster architectures are now not
unusual in the supercomputer top 500 [1]. Recent software
developments ease the use of PC clusters equipped with
graphics cards to power immersive projection environments
where multiple video projectors form a high resolution and
large surface display [12, 10, 15, 4]. It is then possible to
consider a large PC cluster with most of the nodes dedicated
to computations while the other nodes have graphics cards
to power an immersive projection environment. Such archi-
tecture would offer scientists the possibility to visualize and
control (in real-time) large-scale simulations.
Computations can be divided in two classes : pre-

rendering computations and rendering computations. Ren-
dering computations depend on the viewport while pre-
rendering computations are independent from the viewport
data. For example, in a fluid dynamics simulation the res-
olution of the Navier-Stokes equations is part of the pre-
rendering computations while the image rasterization is part

of the rendering computations. Libraries like Net Jug-
gler [4], sizygy [18] or WireGL [15] provide automatic
parallelization schemes for rendering computations. Pre-
rendering computations go from ”simple” scene graph man-
agement for walk-through applications to highly complex
simulations of earth models for example. This diversity
makes it difficult to develop a general approach for auto-
matic parallelization of pre-rendering computations. Dif-
ferent tools are available, providing different levels of ab-
straction and different performances. Message passing li-
braries (MPI [14]) provide communication primitives for
inter-process communications. Multi-thread programming
requires appropriate mechanisms to hide the distributed
memory of the PC cluster (OpenMP [11]). Distributed
object computing with middlewares like Corba needs spe-
cific software architectures to allow remote method invo-
cations. Higher-level tools are also available for special
purposes, like parallel equation solvers (ScaLAPACK [9]
or PEMCS [6]). For distributing, coupling and controlling
pre-rendering and rendering parallel computations running
on a PC cluster, the user faces a lack of adapted platforms.
In this paper, we present how a classical parallelization ap-
proach for pre-rendering can be coupled and controlled with
rendering using the Net Juggler platform.
Net Juggler [4, 2], an open source software developed

at LIFO, turns a graphics cluster running the VR Juggler
platform [8, 3] on each node into a single VR Juggler
image cluster. In a transparent way for the user, Net
Juggler duplicates the VR Juggler application on each
node and broadcasts input events to guaranty data co-
herency between each copy. The required network band-
width is limited due to the small amount of data com-
municated, ensuring high performance even for complex
and fast changing real-time applications. VR Juggler
applications are independent from the execution environ-
ment. When launching the application, the user provides
configuration files containing data to instantiate the ap-

Vj Kernel

Application VjControl

Configuration Manager

Display Manager

Configuration Manager
Cluster

Stream Manager

Environment Server
Cluster

Environment Manager

Net Kernel

Client and Server Proxies

Draw Manager

Communication Manager

Input Manager

Figure 1. VR Juggler (thin lines) and Net Juggler (thick lines)

plication according to the target execution environment.

To broadcast input device data, Net Juggler maintains
a MPI [14] environment between the different VR Juggler
kernels running on each node. We reuse this MPI environ-
ment to run a MPI based parallelization of pre-rendering
computations. The user is responsible for parallelizing the
pre-rendering computations directly with MPI or any MPI
based high-level parallel library. Once the pre-rendering
computations are parallelized, Net Juggler provides a con-
venient way to take advantage of the computing power a
cluster can offer. Extra nodes that do not have graphics
cards can be used for pre-rendering computations. When
launching the application, the user has to set the configura-
tion files so that Net Juggler runs a copy of the application
on these nodes only activating the pre-rendering computa-
tions. It is then possible to have pre-rendering computations
executed on a large number of nodes, while rendering is run
on the nodes driving the projectors of the immersive envi-
ronment.
We first give a quick overview of Net Juggler and VR

Juggler architectures in section 2. Section 3 exposes Net
juggler contribution to pre-rendering and rendering paral-
lel computation coupling. We present a parallel fluid flow
interactive simulation and performance results in section 4
before to conclude.

2 VR Juggler and Net Juggler

We first present VR Juggler main concepts and archi-
tecture before to expose Net Juggler and how it allows VR
Juggler to support clusters.

2.1 VR Juggler

The open source VR Juggler library [8] defines a exe-
cution platform for virtual reality applications. VR Juggler

provides an abstraction of the underlying system, while giv-
ing direct access to various graphics API for maximum con-
trol over applications. The application is independent of
the displays, the input and output devices. System compo-
nents are configured with a set of files when launching the
application. VR Juggler [8] is organized around a kernel
and different components called managers (Fig. 1). Each
manager handles a set of specific system details, while the
kernel controls the run-time system and brokers communi-
cations between the different managers. Every input device
is controlled by the input manager. When an application
requests access to a device, it contacts a proxy. The proxy
hides the actual device and tracks the most recent data re-
ceived from the device. The draw manager gives direct ac-
cess to the graphics API. The display manager takes care of
the windows and displays. The configuration manager han-
dles a database with configuration information, like window
properties, proxy names and associated devices. The envi-
ronment manager is the user’s entry point to exchange data
with VR Juggler. With the graphics utility called VjCon-
trol, the user can reconfigure the application at run-time or
collect performance data.

2.2 Net Juggler

To add cluster support to VR Juggler requires
new functionalities. Following VR Juggler micro-
kernel organization we implemented new managers
(Fig. 1). The Net Juggler kernel, deriving from
the VR Juggler kernel, controls these managers.

parallel pre-rendering code
including

VR Juggler application

Configuration files

Net Juggler

PC PC PC

Parallel pre-rendering

PC PC PC

ProjectorProjector

Projector

Parallel rendering

Figure 2. Pre-rendering and rendering parallel computations on a Net Juggler PC Cluster

Net Juggler has to collect data from each device and
broadcast them to each node of the cluster. VR Juggler uses
proxies to hides the actual devices. Net Juggler replaces
these proxies by client and server proxies. The node where
the device is connected runs a server proxy while the nodes
requiring the data run a client proxy.
VR Juggler instantiates the application according to the

execution environment with a set of configuration files. The
user can also request reconfigurations at run-time with Vj-
Control. Configuration data are organized in chunks, each
chunk having information about a part of the system. The
same functionalities are available with Net Juggler. For a
Net Juggler cluster, chunks have to be modified to include
a host parameter. The host indicates the node the chunk is
related to. On each node, a cluster configuration manager
stores the chunks in a database. The whole cluster configu-
ration is then easily available from any node of the cluster.
Each node selects the Net Juggler chunks it is concerned
with and translates them into VR Juggler chunks. These
chunks are then processed to instantiate the code running
on that node.
The classical stream paradigm is used and extended to

provide an abstraction of the actual data communications.
There is one stream by server proxy and by cluster environ-
ment server. A stream is associated to a specific node source
and can have several destination nodes. Each stream can be
created, deleted or modified at run-time. Actual data com-
munications take place only once per frame. The nodes also
execute a synchronization barrier just before swapping their
frame buffers to ensure the consistency of the displayed im-
ages. Communications are implemented with the MPI stan-
dard [14].

3 Pre-rendering Parallelization

In a transparent way for the user, Net Juggler parallelizes
rendering computations. Because the application is du-
plicated on each node, pre-rendering computations are re-
peated on each node. Thus, the computation power avail-
able for pre-rendering is at most the computation power of
one node. We expect this to be sufficient for a broad range
of applications. For other applications, a parallelization is
required to distribute the pre-rendering computations on dif-
ferent nodes and thus to obtain a computation power that is
(in the best case) the sum of the power of the nodes.
Today, no satisfactory solution exists to automatically

and efficiently parallelize any sequential code. Pre-
rendering covers a wide range of applications and unless we
restrict ourselves to a well-defined class of pre-rendering
computations, it seems unrealistic to develop a generic
and high performance parallelization scheme. Therefore,
we expect the user to provide the parallelization that best
fits its pre-rendering computation requirements. Once pre-
rendering computations are parallelized, difficulties remain
for coupling pre-rendering and rendering parallelizations.
We show in this paper how Net Juggler can conveniently
help the user to achieve this goal and how VR/Net Juggler
configuration files are used to distribute the computations
on the cluster nodes.
Net Juggler communicates input events and configura-

tion data between nodes using MPI [14]. MPI is a message

Figure 3. The NjFluid Application.

passing standard that has been ported to a wide range of
platforms from Cray T3Es to Linux and Windows PC clus-
ters. On top of user-level protocols [7, 16, 13] for gigabit
networks like Myrinet, some MPI implementations reach
performance levels that compete with proprietary super-
computers [17]. The message passing programming model
does not generate an important uncontrolled network traffic,
in opposite to virtually shared memory implementations for
example. This is essential to achieve high performance on a
PC cluster where nodes are loosely coupled. Because MPI
has been used for several years, many programmers have
MPI skills, many scientific codes are parallelized with MPI
and several libraries on top of MPI implement highly opti-
mized parallel algorithms (ScaLAPACK [9] or PEMCS [6]
for example). In this context, MPI appears as a good candi-
date to parallelize pre-rendering computations on PC clus-
ters.
Once pre-rendering computations are parallelized di-

rectly with MPI or any MPI based high-level parallel li-
brary, the code is inserted in the VR Juggler rendering loop
like we would do with any sequential pre-rendering code.
When the application is launched, each node should iden-
tify its role in the computation (pre-rendering, rendering
or both). To include the name of the nodes and their role
in the code would compromise scalability and portability.
Net Juggler architecture provides an elegant solution to that
problem. Each node runs a Net Juggler cluster configura-
tion manager storing the whole cluster configuration. Thus,
each node can access locally this database to know what it
has to do. This database is also useful to identify the role
of the other nodes. Because some data are distributed by
the pre-rendering parallelization, pre-rendering nodes have
to send some data to rendering nodes. The target rendering
nodes are identified by the data stored in the cluster config-
uration manager.
The application is launched like any VR juggler appli-

cation including only sequential pre-rendering code. The
role of the different nodes is specified in the configuration

files (Fig. 2).
VR Juggler tools are still available. VjControl can be

used to modify the cluster configuration at run-time. Vj-
Control can also be used to retrieve performance data from
any given node.

4 The NjFluid Application

To test our approach we developed an interactive fluid
flow simulation. When the application starts, no fluid is
present in the simulation space. As time goes, a blue fluid
and a red fluid are ejected from two different sources. These
fluids spread, collide and mingle with each other. The
user can interactively move a virtual stick to mix the flu-
ids (Fig 3). To simulate fluids we implemented the Navier-
Stokes equation solver proposed by Stam in [19, 20]. The
primary goal of this solver is to exhibit all the visual charac-
teristics of a real fluid, such as swirling flows around bodies.
The speed of the simulator is crucial too, since we want a
real time feedback in a virtual environment. This solver is
a typical example of intensive pre-rendering computations.
To reach the required performance level we implemented a
parallel version of this solver that we integrated in a VR Jug-
gler application. Executed with Net juggler on a PC cluster,
the solver is parallelized on some nodes, while rendering
computations are distributed on graphics nodes to power an
immersive projection environment.
Stam’s solver operates on a grid of cells discretizing the

space where the fluid can flow. Each cell holds a fluid veloc-
ity vector and a scalar fluid density. These data characterize
the fluid present in a given cell. Stam’s solver updates the
fluid velocity and next the density. These computations re-
quire simple matrix computations, a conjugate gradient and
a Poisson solver. For more details refer to [19, 20].
To implement a parallel version of Stam’s solver we

used the PETSc [6, 5] parallel library. This library includes

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8
Fr

am
es

 p
er

 s
ec

on
de

Nodes

One rendering node
Four rendering nodes

Figure 4. Performance results for the NjFluid application.

parallel linear and nonlinear equation solvers, support for
distributed arrays, parallel matrix and vector assembly rou-
tines. PETSc is based on MPI, thus it naturally fits our MPI
based approach. Using PETSc we avoid managing explic-
itly data distribution and data communications.
Our application uses one velocity field and two density

fields, one for each fluid. A 2D grid discretizes the horizon-
tal plane where the fluids flow. This 2D grid is divided in
2D blocks of cells that PETSc distributes on a 2D array of
processes. Stam’s solver requires each cell to know the data
of its four neighbors. For the parallel version of the solver
this implies communications between neighbors’ blocks to
exchange the data of their border cells. These communica-
tions are handled by PETCs. The only communication the
user has to explicit is to send the density values computed
on the pre-rendering nodes to the rendering nodes. The cells
are then colored according to their density. Because render-
ing computations are limited and mainly executed on the
graphics cards, we favored a more balanced CPU usage hav-
ing rendering nodes to execute pre-rendering computations
too.
NjFluid was tested with 6 dual Pentium III 800 MHz

nodes connected with a 100 Mbit/s Fast Ethernet network.
Four nodes were equipped with GeForce 2 GTS 64 MB
DDR graphics cards. On each node we installed a Man-
drake 7.2 linux distribution. Fluids flowed on a
grid (Fig 4). NjFluid was first tested with one rendering
node driving a single display. The frame rate increases with
the number of pre-rendering nodes to reach 23 frames per
second. In this case, there is no rendering parallelization
(only one display). The performance improvement is only
due to the pre-rendering parallelization. NjFluid was next
tested with four rendering nodes driving four displays. Net
Juggler synchronizes the four displays that show comple-

mentary parts of the scene. Because each rendering node
also executes pre-rendering computations, the frame rate is
close to 20 frames per seconds, only one frame less than
with one rendering node and three pre-rendering nodes.
With a sequential version of the solver where each rendering
node would execute all the pre-rendering computations, the
frame rate would be close to 8 frames per second instead of
20. Adding two pre-rendering nodes does not significantly
increase the frame rate. At this point, the performance is
close to the maximum available with this configuration. The
communication overhead becomes too important.
From our point of view, the development of this appli-

cation was not significantly more difficult than to develop a
sequential version that would only run on a single PC. Most
of the parallelism is hidden either by PETCs or by Net Jug-
gler. The resulting application is scalable and portable. It
leads to efficient executions on a PC cluster.

5 Conclusion

Today, PCs are assembled to build low cost supercom-
puters. Such PC clusters can run intensive applications that
the user can control in real-time through an immersive pro-
jection environment also powered by some nodes of the
cluster. To favor application scalability and portability it
is desirable to have software platforms that define an ab-
straction of the execution environment and that allow high
performance executions.
To achieve this goal we propose to use VR Juggler, Net

Juggler and MPI. In this paper, we presented our early ex-
periences in using these libraries to combine high perfor-
mance pre-rendering and rendering parallel executions on a
PC cluster. For pre-rendering parallelization, the user can

elect any MPI based tool that fits his computation require-
ments. VR Juggler and Net Juggler ensure the paralleliza-
tion of rendering computations, pre-rendering and render-
ing code coupling, and the control of the roles of the nodes.
The resulting application is scalable and portable. We in-
troduced an example where a parallel Navier-Stokes solver
was implemented on top of the PETCs library. The applica-
tion was easily and efficiently executed on different cluster
configurations.
Because pre-rendering computations are triggered by the

VR Juggler rendering loop, they are synchronized with the
frame rate, i.e. a new frame cannot be rendered if a new
pre-rendering computation step has not ended. Slow pre-
rendering computations can limit the frame rate and impact
the immersion illusion. Future research works will focus on
extending Net Juggler to define a programming and execu-
tion model to handle asynchronism between pre-rendering
and rendering computations and more generally between
tasks executed on different nodes.

References

[1] Top 500 Supercomputers, www.top500.org.
[2] Net Juggler. netjuggler.sourceforge.net.
[3] VR Juggler. www.vrjuggler.org.
[4] J. Allard, V. Gouranton, L. Lecointre, E. Melin, and B. Raf-

fin. Net Juggler: Running VR Juggler with Multiple Dis-
plays on a Commodity Component Cluster. In IEEE VR
2002, Orlando, USA, March 2001.

[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith.
PETSc Web page. www.mcs.anl.gov/petsc.

[6] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith.
PETSc 2.0 Users Manual. Technical Report ANL-95/11 -
Revision 2.0.29, Argonne National Laboratory, Nov. 2000.

[7] R. A. Bhoedjang, T. Rühl, and H. E. Bal. User-Level Net-
work Interface Protocols. IEEE Computer, 31(11):53–60,
November 1998.

[8] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and
C. Cruz-Neira. VR Juggler: A Virtual Platform for Virtual
Reality Application Development. In IEEE VR 2001, Yoko-
hama, Japan, March 2001.

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. SIAM, 1997.

[10] M. Bues, R. Blach, S. Stegmaier, U. Häfner, H. Hoffmann,
and F. Haselberger. Towards a Scalable High Performance
Application Platform for Immersive Virtual Environements.
In J. D. B. Fröhlich and H.-J. Bullinger, editors, Immer-
sive Projection Technology and Virtual Environements 2001,
pages 165–174, Stuttgart, Germany, May 2001. Springer.

[11] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and
J. McDonald. Parallel Programming in OpenMP. Morgan
Kaufmann Publishers, 2000.

[12] Y. Chen, H. Chen, D. W. Clark, Z. Liu, G. Wallace, and
K. Li. Software Environments for Cluster-based Display
Systems. www.cs.princeton.edu/omnimedia/papers.html,
2001.

[13] P. Geoffray, L. Prylli, and B. Tourancheau. BIP-SMP: High
Performance Message Passing over a Cluster of Commod-
ity SMPs. In Proceedings of Super Computing 99, Portland,
USA, November 1999.

[14] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message-Passing Interface.
Scientific and Engeneering Computation Series. The MIT
Press, 1994.

[15] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett,
and P. Hanrahan. WireGL: A Scalable Graphics System for
Clusters. In Proceedings of SIGGRAPH 2001, 2001.

[16] M. Lauria and A. A. Chien. MPI-FM: High Performance
MPI on Workstation Clusters. Journal of Parallel and Dis-
tributed Computing, 40(1):4–18, 1997.

[17] G. R. Luecke, B. Raffin, and J. J. Coyle. Comparing the
Communication Performance and Scalability of a Linux and
a NT Cluster of PCs, a Cray Origin 2000, an IBM SP and
a Cray T3E-600. In Proceedings of the IEEE International
Workshop on Cluster Computing (IWCC’99), pages 26–35,
Melbourne, Australia, December 1999.

[18] B. Schaeffer. A Software System for
Inexpensive VR via Graphics Clusters.
www.isl.uiuc.edu/ClusteredVR/ClusteredVR.htm.

[19] J. Stam. Stable Fluids. In SIGGRAPH 99 Conference Pro-
ceedings, pages 121–128, August 1999.

[20] J. Stam. Interacting with smoke and fire in real time. Com-
munications of the ACM, 43(7):76–83, 2000.

