
Performance Prediction for Mappings of Distributed
Applications on PC Clusters

Sylvain Jubertie, Emmanuel Melin
Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)

Université d’Orléans
Email: {sylvain.jubertie| emmanuel.melin}@univ-orleans.fr

http://www.univ-orleans.fr/lifo

Abstract— Distributed applications running on clusters may be
composed of several components with very different performance re-
quirements. The FlowVR middleware allows the developer to deploy
such applications and to define communication and synchronization
schemes between components without modifying the code. While
it eases the creation of mappings, FlowVR does not come with
a performance model. Consequently the optimization of mappings
is left to the developer’s skills. It is difficult to perform this task
when the number of components and cluster nodes grow. Moreover,
the cluster may be composed of heterogeneous nodes making this
task even more complex. In this paper we propose an approach to
predicting performance of FlowVR distributed applications given a
mapping and a cluster. We also give some advice to the developer to
create efficient mappings and to avoid configurations which may lead
to unexpected performance. Since the FlowVR model is very close
to underlying models of lots of distributed codes, our approach can
be useful for all designers of such applications.

I. I NTRODUCTION

Today, clusters are theoretically able to reach the per-
formances needed by large simulations because they are
extensible. This is the most interesting property because it
does not limit the simulation complexity or the amount of
data to consider. However clusters bring new programming
problems : it is more complex to produce efficient applications
on distributed memory architectures than on shared memory
ones. Several communication libraries like MPI and PVM pro-
vide point-to-point communications and synchronisationsto
program these architectures efficiently. VR platforms werealso
ported to clusters to exploit their performances. For example
the NetJuggler [10] environment allows to drive interactive
applications with parallel simulations and a distributed render-
ing. These approaches are very interesting but are limited to
simple applications assumed to run on homogeneous clusters.
For example the model behind NetJuggler is too synchronous
because the rendering rate is too dependant of the simulation
rate [3].

Consequently we should add more asynchronism between
the different application parts. For example the interaction
codes and the simulations codes should be connected but not
synchronized if we want the application to keep an interactive
behaviour because the simulations often have lower frequen-
cies than haptic devices. In this case, we want the simulation to
receive interaction data asynchronously even if some are lost.
We also need asynchronism with the visualization. When the

user wants to change his point of view, the visualization should
change it interactively without waiting for the simulation. In
both cases each part of the application is able to communicate
without waiting for the other. We say that they are linked by
greedy communications.

Once we have described how to synchronize the different
parts of the application, then we can map these parts on the
cluster processors. Many choices are possible depending onthe
underlying nature of the cluster which may be composed of
heterogeneous nodes, peripherals and networks. This mapping
is not straightforward and may have effects on the application
performance. For example, mapping several parts on the
same node may decrease latency between them by avoiding
network communications, but it introduces concurrency which
may reduce computation times. In the case of a distributed
simulation, increasing the number of processors used may
decrease the computation time but it may increase the network
load. Consequently, we need a framework that eases mapping
operations by catching the parameters of each application
part and abstracting the architecture. This framework should
also be associated with a performance model to tune efficient
mappings on distributed architectures.

The FlowVR library[2][4] was created to ease the devel-
opment of interactive applications and permit greedy commu-
nications. The main goal is to abstract the application from
a specific communication and synchronisation scheme. Con-
sequently, the FlowVR framework enables also the building
of interactive applications independently of the underlying
architecture.

But this framework doesn’t offer a way to obtain the best
application mapping on a given cluster nor any kind of per-
formance information. Without such information the developer
should use his experiments and test several configurations to
find a good mapping. But this task may become too complex
for applications with many modules on heterogeneous clusters
such as the application presented in [4] which integrates 5000
different objects.

We have shown in [11] a simple performance analysis
adapted to multi network clusters. Indeed the network is
the main limitating factor for performance on distributed
architectures. Our experiment have shown that we also need
to take into account synchronization and concurrency in this



kind of applications and especially in interactive applications.
We propose in this paper a unified approach to analyse

at the same time synchronization, concurrency and network
constraint. With this approach the developer is to associate
performance information to his mappings. For example we
can determine information like the frequency of each module,
the load of each module on each processor and communica-
tion times for each connection in the mapping. From these
informations the developer could determine if its mapping
is well suited and could run on the cluster. Otherwise our
approach is able to detect and point out network bottlenecks
and modules with performance drop due to concurrency. Then
the developer can detect parts of the application to optimize
and can consequently change its mapping.

II. PERFORMANCE MODELS FOR PARALLEL

PROGRAMMING

We examine the existing parallel models associated with
cost models.

A. PRAM : Parallel Random Access Machine

The PRAM model defines a synchronous multi-processor
machine accessing a shared memory. Each step in computa-
tion is made synchronously by each processor which reads
or writes data in the shared memory. A communication or
computation step is assumed to take one unit time.

On distributed memory architectures, such as clusters, this
model is unrealistic because it assumes that all processors
work synchronously and it doesn’t account for the communica-
tion cost, which is not negligible compared with the computa-
tion cost. Moreover, for distributed Virtual Reality applications
we need heterogeneous and asynchronous computations on
the different nodes of the cluster and the PRAM is not well
adapted for it.

B. BSP : Bulk Synchronous Parallel

In the BSP model [16] a computation is defined by a
sequence of supersteps : asynchronous computation followed
by a global communication step, and a synchronisation barrier.
The cost of a BSP algorithm is defined by the input size and
by several architectural parameters. This model has interesting
properties : it is architecture independent and the performance
of a BSP program is predictable for a given architecture.

But this model requires writing programs following a par-
ticular scheme : supersteps, which do not fit the heterogeneous
nature of VR applications. Each superstep must wait for the
longest one to complete before entering the global barrier.This
leads to inefficiency for applications with not well balanced
supersteps and more specifically for the VR applications.

The BSPWB model[14], a BSP Without Barrier, proposes
a generalisation of the superstep to a Message step (M-
step) : a local computation followed by a data emission and
reception. Global barriers are removed because processors
may be in different M-steps at the same time. But two M-
steps can only communicate if they are adjacent which limits
the possible asynchronism between M-steps. Moreover greedy
communications are not possible in this model.

C. LogP

The logP model [7] was developed specifically for dis-
tributed memory architectures with point-to-point connections.
The goal is to obtain a more realistic cost than the PRAM
model by taking into account the communication cost. This
model is asynchronous to reflect the intrinsic nature of dis-
tributed memory architectures and to obtain better perfor-
mances than the BSP model without the need of expensive
global synchronizations.

The LogP model uses four parameters to catch the princi-
pal characteristics of distributed memory architectures :the
communication delay, the communication overhead for the
management of the network interface, the communication
bandwidth and the number of processors.

A distributed computation is represented in LogP by a di-
rected acyclic graph, each node represents a local computation
on a processor and each edge a point-to-point communication.
Two local computations are asynchronous if there is no path
between them. The execution follows the communication
scheme of the dependency graph. Performances are obtained
by computing the longest path in the graph.

This model allows to obtain optimal algorithms for simple
problems [7] but it is not well adapted to more complex
applications [12]. VR applications also require asynchronism
even if a dependency (a path in the LogP graph) exists between
two computations. For example, even if a simulation provides
data at a low frequency, the rendering operations should not
be tightly synchronized to it. In this case we need a greedy
communication which is not available in LogP. This model
also assumes that the cluster nodes are identical and does not
account for heterogeneous configurations.

D. Athapascan

Athapascan [6] is a C++ library designed for explicit parallel
programming using threads. The parallelism is expressed inthe
code by explicit remote procedure calls to threads which are
synchronized and communicate through a shared memory. The
dependencies between threads are expressed by a graph which
is built by following the sequentially structure of the code.
Each node represents a different task, and each path a data
dependency between two tasks. When a task is created then
a node is added to the graph. If this task contains a reference
to a variable shared by a previous task in the graph then it
is linked to this task. As in the LogP model, the cost of an
execution is defined by the length of the longest path in the
dependency graph.

In the general case, the graph is built at the beginning of
the execution. But for VR applications which include infinite
loops the graph has an infinite size and cannot be built. In this
case it is possible to limit the graph construction to a certain
size. For example [8] presents a cloth simulation using the
Athapscan library in which each simulation step is associated
to a new graph. The tasks are then mapped on the different
processors by a scheduler following a mapping policy based
on heuristics.



This model does not allow asynchronous communications
between two threads because they are executed following the
sequential structure of the code and synchronized by their
access to a shared variable. If we consider the heterogeneous
nature of VR applications and of architectures, then it seems
difficult to find an efficient mapping policy.

E. Performance model for the SCP language

SCP [13] is an SPMD language based on structured
dependencies directed by the syntax order. An SCP program
can be viewed as a directed acyclic graph built by following
the sequential instructions order. Each path in the graph
represents a possible execution of the program. The cost of
an SCP program corresponds to the longest path in the graph
depending of an initial context.

In this model the syntax gives the synchronization scheme
and the order between the different application parts, while in
VR applications we want to define the synchronization scheme
independently of the syntax. Moreover an SCP application is
seen as a single code while a VR application is built from
heterogeneous codes.

III. T HE FLOWVR FRAMEWORK

A. FlowVR

FlowVR is an open source middleware dedicated to dis-
tributed interactive applications and currently ported onLinux
and Mac OS X for the IA32, IA64, Opteron, and Power-PC
platforms. The FlowVR library is written in C++ and provides
tools to build and deploy distributed applications over a cluster.
More details can be found in [2]. We now present its main
features.

A FlowVR application is composed of two main parts : a set
of modules, and a data-flow network ensuring data exchange
between modules. The user has to create modules, compose a
network and map modules on clusters hosts.

1) Modules: Modules encapsulate tasks and define a list
of input and output ports. A module is an endless iteration
reading input data from its input ports and writing new result
messages on its output ports. Messages are also associated
with lightweight data calledstampsthat identify the message
and allow routing operations. A module uses three main
methods:

• The wait function defines the beginning of a new itera-
tion. It is a blocking call ensuring that each connected
input port holds a new message.

• The get function obtains the message available on a
port. This is a non-blocking call since thewait function
guarantees that a new message is available on each
module port.

• The put function writes a message on an output port.
Only one new message can be written per port and per
iteration. This is a non-blocking call, thus allowing the
overlapping of computations and communications.

Note that a module does not explicitly address any other
FlowVR component. The only way to gain access to other
modules are ports. This feature enforces possibility to reuse

modules in other contexts since their execution does not induce
side-effect. An exception is made forparallel modules(like
MPI executables) which are deployed via duplicated modules.
They exchange data outside FlowVR ports, for example via
the MPI library, but they can be understood as a single logical
module. Therefore parallel modules do not break the FlowVR
model.

2) The FlowVR Network:The FlowVR networkis a data
flow graph which specifies connections between modules
ports. A connection is a FIFO channel with one source and one
destination. This synchronous coupling scheme may introduce
latency due to message bufferization between modules which
could induce buffer overflows. To prevent this, interactive
applications classically use a”greedy” pattern, where the
consumer uses the most recent data produced, all older data
being discarded. This is relevant for example when a program
just needs to know the most recent mouse position. In this case
older positions are useless. FlowVR enables to implement such
complex message handling tasks without having to recompile
modules. To perform these tasks FlowVR introduces a new
network component called afilter. Filters are placed between
modules and have a total access to incoming messages. They
have the freedom to select, combine, create or discard mes-
sages. For example thegatherandscatterfilters respectively
combine and split messages, thebroadcastfilter duplicates
message and thegreedyfilter selects the last message available.

A special class of filters, calledsynchronizers, implements
coupling policies. They only receive, handle and send stamps
from other filters or modules to take a decision that will be
executed by other filters. These detached components make
possible a centralised decision to be broadcasted to several
filters in order to synchronize their policies. For example,a
greedy filter is connected to a synchronizer which selects inits
incoming buffer the newest stamp available and sends it to the
greedy filter. This filter then forwards the message associated
with this stamp to the downstream module.

The FlowVR network is implemented by a daemon running
on each host. A module sends a message on the FlowVR
network by allocating a buffer in a shared memory segment
managed by the local daemon. If the message has to be
forwarded to a module running on the same host, the daemon
only forwards a pointer to the message to the destination
module that can directly read the message. If the message
has to be forwarded to a module running on a distant host,
the daemon sends it to the daemon of the distant host. Using
a shared memory makes it possible to reduce data copies for
improved performances. Moreover a filter does not run in its
own process. It is a plugin loaded by FlowVR daemons. The
goal is to favor performance by limiting the required numberof
context switches. As a consequence, the CPU load generated
by the FlowVR network management can be considered as
negligible compared to module load.

IV. PERFORMANCE PREDICTION

We now present our approach to compute performance
informations for a FlowVR application mapping on a cluster.



Our goal is to provide information such as the frequency of
the different modules, the CPU load on the different nodes or
the volume of communications on each network link. Then
the developer will be able to determine if his application runs
as expected or to compare several mappings to find the best
one.

A. Model inputs

A mapping is a FlowVR network enriched with information
on the location of modules in the cluster, and on networks
used for communication. A cluster is defined as a set of nodes
Nodes and a set of networksNetworks. To deal with SMP
nodes, each noden ∈ Nodes has a list of CPUs given by
the functionCPUs(n). A node can also have several network
adapters connected to different networks. Thus each noden is
associated to a list of networksNets(n) ⊂ Networks. Each
network net ∈ Networks has a bandwidthBW (net) and
a latencyL(net). This allows communication schemes using
multiple heterogeneous networks. We assume cluster networks
with point-to-point connections in full-duplex, and commu-
nications handled by dedicated network controller without
CPU overload. We also assume that communication between
objects mapped on the same processor are costless. Indeed,
in this case, messages are stored in the shared memory and a
pointer to the message is given to the receiving object. The
FlowVR network is a graphG composed of a set of vertices
V and a set of directed edgesE. A vertex v ∈ V represents
a FlowVR object which can be a module, a filter or a
synchronizer. An edgee ∈ E represents a connection between
a source objectssrc(e) and a destination objectdest(e) with
src(e), dest(e) ∈ V . To build a mapping the developer binds
objects and connections of the FlowVR network respectively
to cluster nodes and networks. We denote the location of
an objectv ∈ V by the functionnode(m) which gives a
node n ∈ Nodes. The developer has to map modules on
nodes. The mapping of modules on processors is done by the
operating system scheduler. The network used by a connection
e is given by the functionNet(e) which returns a network
net ∈ Networks. If two connected objects are on the same
nodes the connection is local :Net(e) = local. Otherwise the
connection is associated to a networknet ∈ Networks such
asNet(e) = net.

Our approach implies that the developer must give extra
information on modules to compute performances. For each
modulem ∈ V we need to know its execution timeTexec(m)
and its loadLD(m) on the host processor. The execution
time Texec(m) is the time needed by a modulem to perform
one iteration whenm is not synchronized with other modules
and have no concurrent modules. The loadLD(m) is the
percentage of the execution time the modulem really uses the
CPU. The rest of the execution time is used for I/O operations.
For each edgee ∈ E we need to know the volume of data
V ol(e) sent bysrc(e) throughe during one sole iteration. If
src(e) is a module thenV ol(e) is equal to the amount of data
sent byv through the output port connected toe. For example,
if we consider a module computing a physical simulation we

know that the size of its output depends on the size of the
simulation domain. Ifsrc(e) is a filter thenV ol(e) depends on
the filter characteristics. For example agreedyor a broadcast
filter sends the same amount of data it receives. Another
example is themerge filter which sends only one message
built from all messages it receives. Ifsrc(e) is a synchronizer
then for the sake of simplicity we assume thatV ol(e) = 0.
Indeed messages sent and received by synchronizers contain
only stamps. Consequently their message sizes are negligible
compared to the amount of data sent by modules. We also
assume for the sake of simplicity that filters and synchronizers
have a negligible load compared to module loads. Indeed they
only perform memory operations on messages.

The value ofV ol(e) is independent on the hardware and is
statically determined from the module characteristics. Values
of Texec(m) andLD(m) can be determined by different ways.
For example the developer can measure them by running each
module separately on the target node. On the other hand, since
FlowVR allows to reuse modules from other applications,
Texec(m) andLD(m) may be already available.

B. Determining performance

Performance of the modules depend on synchronization
and concurrency between them. Consequently we need to
determine for each modulem its iteration timeTit(m) and its
concurrent execution timeTcexec(m). We define the iteration
time Tit(m) as the time between two consecutive calls to the
FlowVR wait function. This definition characterizes the real
frequencyF (m) of a module execution for a given mapping :

F (m) =
1

Tit(m)
(1)

We define the concurrent execution timeTcexec(m) as the
time needed for the execution of one iteration ofm when
several modules are running on the same node. Indeed, the
execution of concurrent modules are interleaved by the OS
scheduler and we have consequentlyTcexec(m) ≥ Texec(m).
The concurrent execution time is determined according to a
scheduler policy, but this policy strongly depends on the time
a modulem waits for I/O operations and is blocked in the
FlowVR wait function. If m has no concurrent modules then
we have :

Tcexec(m) = Texec(m) (2)

We first study the effects of synchronization on perfor-
mances. Then we will evaluate how the concurrency between
modules affects their performances.

1) DeterminingTit from synchronization:In this section
we examine how synchronization between modules affect their
iteration time. For a modulem we define its input modules as
the set of modulesIM(m) with edges connected tom. We dis-
tinguish two subsets ofIM(m) : IMs(m) andIMa(m) such
asIMs(m)∪ IMa(m) = IM(m) andIMs(m)∩ IMa(m) =
∅. The subsetsIMs(m) and IMa(m) contain respectively
the modules connected tom synchronously through FIFO
connections and asynchronously throughgreedyfilters.



We first consider the influence ofgreedyconnections on
performance. A modulem receiving data throughgreedy
filters does not wait for messages from modules inIMa(m).
Indeed agreedy filter always provide a message which is
the last one available. This means thatTit(m) does not
depend on synchronizations with input modules inIMa(m).
Consequently the modulem is like a module with only FIFO
connections. Moreover ifIMs(m) = ∅ then its iteration time
only depends on concurrency with other modules :

Tit(m) = Tcexec(m) (3)

Thus to study the effect of synchronization on performance
it is possible to removegreedyfilters from the graphG. We
obtain a new graph calledGsync. We note thatGsync may not
be connected anymore and may be split into several compo-
nents. Each component consists of FlowVR objects connected
synchronously with FIFO connections. Since components are
not linked we can study each one independently.

We now consider each modulem in a componentC ∈
Gsync. If IMs(m) 6= ∅ thenm is synchronized with its input
modules. To begin its iteration,m must receive messages from
each module inIMs(m). Thusm should wait for the slowest
module inIMs(m) and this module determines the iteration
time of m :

Tit(m) = max(max(Tit(i), ∀i ∈ IMs(m)), Tcexec(m)) (4)

We note that if m is slower than its input modules then
Tit(m) = Tcexec(m). If IMs(m) = ∅ then m is not
synchronized with other modules. We called these modules
predecessors and we definepreds(C) as the set of predecessor
modules in a componentC. Their iteration time is given
by equation 3 because they are not synchronized. It is also
possible to havepreds(C) = ∅. Indeed modules inC can be
organized in a synchronous cycle. If there is no predecessor
in C then it means that we have a predecessor cycleGpc,
which is a synchronous cycle such as for each modulem

in Gpc, IMs(m) ∈ Gpc. Note that we may have both
predecessor modules and predecessor cycles inGpc. Modules
in a synchronous cycle have the same iteration time. In the
case of a predecessor cycleGpc, each modulem ∈ Gpc waits
only for other modules inGpc. ConsequentlyTit(m) depends
on the concurrent execution time of other modules in the cycle.
We should also consider the time needed for communications
between modules inGpc. For each modulemc ∈ Gpc we have
:

Tit(mc) =
∑

m∈Gpc

Tcexec(m)

+
∑

e∈Gpc

Net(e) 6=local

(
V ol(e)

BW (Net(e))
+ L(Net(e)))

(5)

According to equations 3, 4 and 5 to determineTit(m) we
needTcexec(m) for eachm.

2) DeterminingTcexec for concurrent modules:We turn to
study consequences on concurrency on modules performances
to compute their concurrent computation time.

The behaviour of concurrent modules on a noden is
determined by the scheduler of the operating system. Our
approach is based on the Linux scheduler policy [1][5] which
gives priority to a module over others according to the time
each concurrent module waits. In this case the more a module
waits, the higher priority it gets. Therefore to determine for
each modulem its Tcexec(m) we first need to determine the
waiting time. This time depends on the time a modulem waits
for I/O operations and stays in the FlowVRwait function.

Predecessor modules are not synchronized. They only wait
for I/O operations according to their execution times and their
loads. For each predecessor modulepm, we defineTI/O(pm)
as follow :

TI/O(pm) = Texec(pm) × (1 − LD(pm)) (6)

If a modulem is synchronized with its input modules then
we can also define the timem waits as the time not used for
the computation during an iteration. Consequently we define
TI/O(m) as follow :

TI/O(m) =max(Texec(m), Tit(i), ∀i ∈ IMs(m))

− Texec(m) × LD(m)
(7)

With TI/O(m) we can sort modules on each noden in a
list l(n) from the module with the highest value ofTI/O(m)
to the one with the lowest value. Then we allocate a CPU in
CPUs(n) and a load on this CPU to each modulem in l(n).
We consider modules in the list order. Each module is set to
the most available CPU, that is the CPU with the lowest load.
We defineCPULD(cpu) as the load of a CPU. It is equal
to the sum of the module loads on the CPU. A module then
receives a concurrent loadLDc(m) on this CPU according to
its loadLD(m). Then we use the ratio betweenLD(m) and
LDc(m) to evaluateTcexec(m). This process is implemented
by the following algorithm :

for all cpu ∈ CPUs(n) do
CPULD(cpu) = 0

end for
while l(n) 6= ∅ do

m = head(l(n))
l(n) = tail(l(n))
load = 1
for all cpu ∈ CPUs(n) do

if CPULD(cpu) < load then
p = cpu

load = CPULD(cpu)
end if

end for
LDc(m) = (1 − CPULD(p))) × LD(m)
CPULD(p) = CPULD(p) + LDc(m)

Tcexec(m) = Texec(m) × LD(m)
LDc(m)

end while



In this approachTI/O(m), and consequentlyTcexec(m), is
determined fromTit(i), i ∈ IMs(m) from equation 7. But
Tit(i) may depend onTcexec(i) according to equations 3, 4
and 5. For example ifi is a predecessor module,IMs(i)) = ∅,
then Tit(i) depends onTcexec(i) from equation 3. Then if
m and i are mapped on the same node we can not compute
Tcexec(i) if we have not yet determinedTI/O(m) andTI/O(i).
Consequently, in this example we have an interdependency
between equations 3 and 7.

To detect interdependencies we first modifyGsync to rep-
resent concurrency between modules. Therefore we add bidi-
rected edges between concurrent modules inGsync. We obtain
a new graphGdep were each edge represents a dependency due
to synchronizations (directed edges) or concurrency between
modules (bidirected edges). If we detect a cycle in the graph
then we can have an interdependency between modules in the
cycle. We define a cycle as a path between a module and itself
such as this path is not empty. Note that a cycle can contain
the same bidirected edge twice but not the same directed edge
twice. For example two modules connected with a bidirected
edge constitute a cycle.

We turn to present how to determineTcexec(m) andTit(m)
for each modulem in Gdep. Note that Gdep may not be
connected, in this caseGdep has several components. Since
there is no dependencies between components ofGdep we can
study separately each one. For each modulem in a component
Cdep ⊆ Gdep we defineIMdep(m) as the set of modules with
directed or bidirected edges connected tom.

A componentCdep can contain cycles of different nature
and Directed Acyclic Graphs. We propose to remove cycles
in Cdep. We obtain a setDdep of DAGs. We then study cycles
and DAGs inDdep independently.

If we consider a DAGd in Ddep then we have no concur-
rency between modules because we have no bidirected edges
between them. Thus from equation 2 we haveTcexec(m) =
Texec for each modulem ∈ Ddep. If d contains a predecessor
modulepm then from equations 2 and 3 we can determine
Tit(pm). Then we propagate this value to each modulem

such asIMs(m) = pm to determineTit(m) from equations 2
and 4. If, for a modulem we haveIMs(m) 6⊂ d then it means
that it is dependant of a module in a cycle. Consequently
we must first study this cycle to computeTit(m). We now
consider cycles inCdep.

Different kinds of cycles may be present inCdep. We first
consider a cycleCcycle ⊂ Cdep with only bidirected edges.
In this case all modules inCcycle are mapped on the same
node and are from different components. IfCcycle contains
only predecessor modules then we can determineTI/O(pm)
for eachpm ∈ Ccycle according to equation 6. Otherwise if
we have at least one module which is not a predecessor then
we use equation 7. But we need to first study the parts of the
graph which containIMs(m).

If Ccycle contains only directed edges thenCcycle is a syn-
chronous cycle. Moreover each modulem within Ccycle has
no concurrent modules. Consequently we haveTcexec(m) =
Texec(m) from 2. If Ccycle is a predecessor cycle then we

are able to determineTit(m) according to equations 2 and 5.
Otherwise for each modulem in Ccycle with input modules
not in Ccycle we first need to study parts of the graph which
contain modules inIMs(m). Then we can apply equation 4
to modules inCcycle.

We finally consider cycles with both directed and bidirected
edges. If we detect a cycleCcycle of this kind then we
have an interdependency and we can not sort modules. To
solve this problem we propose to choose an order between
modules. For example we can consider that modules in the
same synchronous componentC have the same iteration time.
Indeed if there is a modulem ∈ C such asTcexec(m) >

Tit(i), i ∈ IMs(m) then m is slower thani. Consequently
messages fromi are accumulated in the FlowVR shared
memory until it is full. In this case we have a buffer overflow.
Thus our hypothesis seems appropriate and desirable for the
developer. But this single iteration time is not determined.
We are nonetheless able to compare concurrent modules in
the same componentC. Indeed if we consider two modules
m1, m2 in C and inCcycle with node(m1) = node(m2) = n

we haveTit(m1) = Tit(m2) according our hypothesis. Then
if m1 and m2 are not predecessors ofC we have from
equation 7 :

TI/O(m1) − TI/O(m2) =

Texec(m2) × LD(m2) − Texec(m1) × LD(m1))
(8)

Consequently it comes to compare the time each module
effectively uses the CPU. For each modulem we already have
its Texec(m) and itsLD(m). But if we have inC a predecessor
modulepm, or a modulem from a different synchronous com-
ponent, then we are not able to compare them. Consequently
we distinguish two possible configurations. In the first one
we have only modules from the same component on a node
n. Then according to our hypothesis we are able to compare
them and to sort them. Thus, this solves the interdependency.

On the other hand if we have a predecessor modulepm,
or a modulem from a different component inCcycle, then
our hypothesis does not allow to compare them. In this case
we propose to setTcexec(m) = Texec(m) for each m ∈
Ccycle, just to define an order. Then we are able to determine
Tcexec(m) for each modulem and thenTit(m). At this step
we can verify the order. If the order has changed we repeat
the process. But we can not guarantee that this process always
converge. In this case our tests show oscillations of the execu-
tion time due to modifications in the order between modules.
This behaviour does not correspond to the one we expect for
performances and especially for interactive applicationswhich
performance has to be stable. Moreover this dynamic variation
of performances due to the scheduling can be very difficult
for the programmer to detect and to analyse. Our method
makes possible to detect when this behavior may occur and to
precisely point out modules in these configurations. With this
information the developer can change its mapping or can tune
the scheduler to sort modules statically.

We now construct theCdep from these different parts.
We first consider parts which are not dependent of others.



Indeed the graph contains such parts because if this is not the
case then we have a cycle between parts and consequently
we can consider them as a single part. For each modulem

in these “predecessor parts” we have determinedTcexec(m)
and Tit(m). Then we merge parts which depends on these
“predecessor parts”. Thus we can computeTcexec(m) and
Tit(m) for each modulem in these parts. We repeat the
process for the other parts until we have completely built the
graph.

Once we have determinedTcexec(m) andTit(m) for each
modulem ∈ Gsync we verify thatTcexec(m) ≤ Tit(i), i ∈
IMsm. If this is not the case thenm is slower than its input
modules and a buffer overflow will occur onnode(m). The
developer can remove the buffer overflow in different ways.
For example he can distributem on several nodes to decrease
Texec(m) and consequentlyTcexec(m). If is also possible to
map concurrent modules ofm on other nodes to decrease
Tcexec(m).

We are now able to determine module performances for a
given mapping. We also provide to the developer a way to
detect incorrect mappings. In this case our analysis point out
modules which generates errors and propose a mean to solve
them.

We now study communications between modules to deter-
mine network performances.

3) Networking: We now consider the communications de-
fined by an application mapping between the different FlowVR
objects.

We begin our study with a traversal of the application graph
to determine the frequencyF (f) each filterf , and the volume
of data on its output ports. We start our traversal with starting
modules and follow the message flow in the graph. When
we consider a filterf then we assign it a frequencyF (f)
according to its behaviour. For example a greedy filterfgreedy

sends a message only when the receiving modulemdest asks
it for a new data. Thus we haveF (fgreedy) = F (mdest).
A broadcast filterfbroadcast processes messages at the same
frequency of its input modulemsrc. In this case we have
Fbroadcast = Fmsrc

.

Then we add additional edges to represent communication
out of the FlowVR communication scheme, for example
communication between several instances of a MPI module.
For each iteration we add output edges and input edges
respectively to and from other MPI instances.

Then we are able to compute the bandwidthbws needed by
a cluster noden to send its data on a networknet :

bws(n, net) =
∑

∀e∈E,
Net(e)=net,

node(src(e))=n

V ol(e) × F (src(e)) (9)

This represents the total quantity of data send in a second by
modules on a noden through a networknet. We can also
determine the bandwidthBWr needed by a cluster noden to

receive its data :

bwr(n, net) =
∑

∀e∈E,
Net(e)=net,

node(dest(e))=n

V ol(e) × F (src(e)) (10)

If for a node n we havebws(n, net) > BW (net) then
messages are accumulated in the shared memory because the
daemon is not able to send them all. Consequently we can
detect a buffer overflow on the noden. If bwr(n, net) >

BW (net) then there is too much data sent to the same node,
leading to contention. In this case a buffer overflow occurs
on nodes sending data to noden through networknet. Our
method gives the developer the ability to point out network
bottlenecks in his mappings. Then it is possible to remove
them for example by reducing the number of modules on the
same node, by modifying the communication scheme, or by
using other networks.

We now study thelatencybetween modules. It represents
the time an information needs to be processed by modules and
transported through the mapping. In VR applications the la-
tency is critical between interaction and visualization modules
: the consequence of a user input should be visualized within
the shortest possible delay to keep an interactive feeling.

We determine the latency between two modulesm1 andm2

from the pathP between them. The pathP is provided by
the developer and contains a set of FlowVR objects and edges
between them. The latency is obtained by adding the iteration
time Tit(m) of each modulem and the network latency
L(Net(e)) for each edgee between two distinct nodes :

L(P ) =
∑

m∈P

Tit(m)

+
∑

∀e∈P
Net(e) 6=local

V (e)

BW (Net(e))
+ L(Net(e))

(11)

With this information the developer is able to detect whether
the latency of a path corresponds to its requirements. For
example he can verify that the latency between modules is
low enough for interactivity. If the latency is too high, the
developer can minimize it by mapping several modules on
the same node to decrease communications latencies. It is
also possible to create more instances of parallel modules to
decrease their iteration times or to use a network with a higher
bandwidth and a lower latency.

V. TESTS

In this section we present several tests to validate our perfor-
mance prediction model on simple FlowVR applications. Then
we apply our method to a real application. Tests are performed
on a cluster composed of two sets of eight nodes linked
with a gigabit Ethernet network. The first set is composed of
nodes with dual Pentium4 Xeon processors also linked with
a Myrinet network. The second one is composed of nodes
with two Opteron processors, each one with two cores, also
networked with a second gigabit Ethernet network.



A. Test application

We first verify each aspect of our model with simple
FlowVR applications. These applications are based on a
generic FlowVR module which can simulate different kinds
of modules. We first determine for each modulem in an
applicationTexec(m) by running independently each module
on the destination host. Then we run the application on the
cluster. Finally we compare predictions to results.

1) Synchronizations:We first consider a greedy synchro-
nization between two modulesm1, m2 mapped on different
nodes.

Module Nodes Prediction Measure
LD Texec Tit Tit

m1 1 1 37 37 37
m2 2 0.5 18 18 18

TABLE I

(T IMES ARE GIVEN IN MS)

Results are shown in table . This test confirms that greedy
connections do not affect module performances.

We now replace the greedy connection betweenm1 andm2

by a FIFO connection.

Module Nodes Prediction Measure
LD Texec Tit Tit

m1 1 1 37 37 37
m2 2 0.5 18 37 37

TABLE II

(T IMES ARE GIVEN IN MS)

We now invert the FIFO connection betweenm1 and
m2. In this case we predict a buffer overflow because we
have Tit(m1) = Texec(m1) and consequentlyTexec(m2) >

Tit(m1). This test confirms that a buffer overflow occurs when
Texec(m) > Tit(i), i ∈ IMs(m). Indeed the shared memory
is full and and the application exists with an error.

We turn to consider three modules organized in a syn-
chronous cycle. Since each module in the cycle waits for the
others we can not have two modules running at the same time.
Thus we predict that the execution time does not change when
modules are mapped on the same node. On the other hand we
should see a variation of the iteration time when modules are
not mapped on the same node since we have to take into
account communications in equation 5.

We first map modules on different nodes. Each node sends a
message of 5MB per iteration through a gigabit network with a
bandwidth of 100MB/s. Thus we expect each communication
will take around 50ms. We assume that the network latency
is negligible compared to this communication time. We have
three communications in the cycle so we add 150ms to the
execution times in equation 5. Predictions and results are
shown in table III.

Results in table III are really closed to our predictions even
with a simple estimation of the network parameters.

Module Nodes Prediction Measure
LD Texec Tit Tit

m1 1 1 37 234 240
m2 2 0.5 26 234 240
m3 3 0.5 21 234 240

TABLE III

(T IMES ARE GIVEN IN MS)

Then we map modules on the same node. In this case we
only sum the execution times to obtain the iteration time of
modules in the cycle from equation 5. The table IV shows our
predictions and results.

Module Nodes Prediction Measure
LD Texec Tit Tit

m1 1 1 37 84 84
m2 1 0.5 26 84 84
m3 1 0.5 21 84 84

TABLE IV

(T IMES ARE GIVEN IN MS)

Results show that the iteration time is equal to the sum of
the execution times as predicted by our approach. Moreover
we note that communication through the shared memory does
not add extra latency. Thus our hypothesis is verified.

We turn to consider concurrency between modules.

2) Concurrency: To study concurrency we map several
modules on the same SMP node with two processors. Then we
apply our approach to determine for each concurrent module
m its Tcexec.

In this test we consider four different modulesm1, m2, m3

andm4 mapped on a dual processor node. These modules are
not synchronized to avoid interdependencies since we want to
validate our scheduling policy. We first run independently each
module on the host to determine its load and its execution time.
Then we determine their concurrent execution time according
to our approach.

Prediction Measure

M
od

ul
e

N
od

e

LD Tex Tcexec LDc Tcexec LDc

m1 1 1.00 20 38 0.42 36 0.55
m2 1 0.30 16 32 0.15 26 0.20
m3 1 0.50 10 10 0.50 16 0.44
m4 1 0.58 51 51 0.58 60 0.52

TABLE V

(T IMES ARE GIVEN IN MS)

Results in table V are close to our predictions. Nonetheless
we note that the scheduler gives the maximum priority to
modulesm1 and m2 but does not give them the necessary
load.

3) Communications:We turn to study communications
between modules.



We verify that if a module is slower than its input module
then it generates a buffer overflow. Therefore we use two
modulesm1 and m2 with a FIFO connection betweenm1

and m2. We setTit(m2) such asTit(m2) > Tit(m1). Tests
show that the buffer overflow error occurs few iterations after
we launch the application.

A complete and more complex example of performance
prediction and optimization using multiple networks can be
found in our previous paper [11].

B. The FluidParticle application

We now apply our approach on a real FlowVR application.
The FluidParticle application consists of a flow simulation
which produces a velocity field. This field is then used to
advect particles. Particles are displayed on a display wall
of four projectors using a point sprite representation. This
application is used to observe typical fluid phenomena like
vortices. Our goal is to provide the highest performance for
the simulation and to provide an interactive visualization. In
this section we focus our study on effects of synchronization
and concurrency between modules since a complete example
of performance analysis focused on networks can be found
in [11].

The application is composed of the following modules :

• fluid : this is a parallel version of the Stam’s fluid
simulation [15] based on the MPI library [9].

• particles : this is a parallel module. Each instance stores
a set of particles and moves them according to forces
provided by the fluid simulation. The particle set is then
sent on the output port.

• viewer : it converts the particles positions received on its
input port into graphical data which are then sent through
its scene output port.

• renderer: it displays informations provided by the viewer
modules. There is one renderer per screen. We want to
visualize the particles on a display wall of four projec-
tors. Renderer modules are synchronized together with a
swaplock to provide a coherent result on the display.

• joypad: it is the interaction module which allow the user
to interact with the fluid by adding forces.

We determine for each module its execution time and
its load. Results are shown in table VI. We note that the
joypadmodule has load under 1%. It is an interaction module
and it is always connected to other modules throughgreedy
filters. Indeed this allows to interact asynchronously withthe
simulation. Consequently it can not involve penalties and we
choose to ignore it.

We now describe the communication and synchronization
scheme between modules. Thefluid module is connected
synchronously with theparticles module. Then theparti-
cles module is also connected with theviewer module syn-
chronously. Finally theviewer and therenderermodules are
connected through agreedy filter. This allows to change the
user point of view and to update data from the viewer module
asynchronously.

The graph can be splitted into two synchronous components
if we remove greedy connections between theviewer and
the renderermodules. The first component contains thefluid,
the particlesand therenderermodules while the second one
only contains therenderermodules. We note that we have no
synchronous cycle in our application.

We turn to study synchronization and concurrency between
modules for three possible mappings. We first propose a map-
ping with the simulation, the particle system and the renderer
modules on the same dual processor nodes. In this case we
detect an interdependency between the three modules. Indeed
we have a cycle which contains a directed edge between
the fluid and theparticles, and a bidirected edge between
renderer and fluid. The particules module is synchronized
with the fluid module and have a lower execution time. The
renderermodule is the single module in its component and is
consequently a predecessor module. Since both therenderer
and thefluid modules have a load of 97%, theparticlesmodule
always have the highest priority. Consequentlyrenderer or
the fluid module may be mapped with theparticles module
on the same processor. But we can not order these two
modules. Thus the scheduler may change their mapping on
the two processor dynamically. Indeed our tests show that their
concurrent execution time vary. We now propose a different
mapping.

If we map theparticles, theviewerand therenderermodules
on the same node with two processors then we also detect
a cycle with both directed and bidirected edges. Thus we
also have an interdependency between modules and we can
not sort them. Indeed we have two modules from the same
synchronous component and a predecessor module from a
different component. In this case we suppose that the iteration
time is the same for each module in the component. Then
we can compare theparticles and theviewer modules from
equation 8. We obtain that theparticlesmodule has a higher
priority thanviewermodule. But we could not compare them
with the renderermodule. To solve the interdependency we
propose to setTcexec(m) = Texec(m) for each modulem to
try to set an order between these modules. In this case the mod-
ule with the highest priority isparticles, thenviewerand then
renderer. Consequently the first two modules are mapped on
different processors, then therenderermodule is mapped with
theparticles. If we apply this process one more time we obtain
the same order and the same iteration times and concurrent
execution times for each module. Consequently we converge.
Thus we can predict that therenderermodule may be mapped
with the particles module on the same processor and that it
will be allocated a load of 78%. Our tests show that the frame
rate of therenderermodule is around 23% slower which drops
from 18 to around 13 frames per second. Consequently this
mapping does not offer an interactive visualization.

To obtain an interactive visualization we should map the
renderer module on a dedicated node. We also need to
avoid concurrency with thefluid module to obtain the fastest
simulation. Thus we propose to map modules as described
in table VI. In this mapping we use node 11 to 18 for the



Module Node Prediction Measure
LD Texec Tcexec Tit LDc Tcexec Tit LDc

fluid 11, 12, ..., 18 0.97 70 70 70 0.97 73 73 0.97
particles 5, 6, 7, 8 0.97 20 20 70 0.28 21 73 0.30
viewer 5, 6, 7, 8 0.97 28 28 70 0.40 28 73 0.38
renderer 1, 2, 3, 4 0.97 57 57 57 0.97 60 60 0.97
joypad 1 < 0.01 < 1 0 0 0 0 0 0

TABLE VI

(T IMES ARE GIVEN IN MS)

simulation and we distribute four modules on each one to
take advantage of the four processors. Then we map the
renderermodule on four nodes connected to four projectors
to visualize the simulation on our display wall. Four nodes,
with two processor on each one, are still available for the
particlesandviewermodules. Consequently we distribute each
one on these four nodes to reduce their execution time. In
this last case we have a cycle with only modules from the
same synchronous component on each one of these nodes.
Moreover we do not have a predecessor module mapped with
them. Consequently we are able to determine their iteration
time. Results of this mapping are shown in table VI. We note
that it confirms the performance predicted by our approach.
We also note that we avoid concurrency between theparticles
and theviewer module. Indeed we haveTexec(particles) +
Texec(viewer) < Tit(fluid). This means that each message
from the fluid module is processed by theparticles module
which then sends a message to theviewerand waits for a new
message. Then the message is processed by theviewermodule
which then waits for a new message from theparticlesmodule.
But a new message is not yet available from the simulation.
Consequently, since thefluid and therenderermodules have
no concurrent modules we have for each modulem in the
applicationTcexec(m) = Texec(m). Thus we have a mapping
which optimizes the execution times.

We have applied successfully our approach on our interac-
tive simulation. In each case we are able to take into account
synchronization and concurrency to determine performances
of modules. We also have detected mappings with poor
performances.

VI. CONCLUSION

We have shown in this paper that our approach is able to
predict performances for distributed FlowVR applications. For
each module we provide its iteration time which characterizes
its frequency. Thus the developer can determine if its mapping
offers for each module the frequency he expected. He can also
compare the execution time of a module to the concurrent
execution time and then observe the effects of concurrency
between modules. For each node we are able to compute
the load of each processor. If the developer needs more
performances our approach allows to point out modules which
could be optimized. Then he can choose to map modules on
nodes with lower processor loads or to distribute a module on
several nodes. But this can generates more communications
on the network. Nevertheless our method allow to determine

consequences of such choices. Moreover we also provide a
way to detect errors mappings. We can point out modules
which generates buffer overflow due to synchronizations. We
can also locate bottlenecks on network links.

This approach brings to the FlowVR model a way to ab-
stract the performance prediction from the code. Nevertheless
our approach is not limited to FlowVR applications and is
sufficiently general to consider applications developed with
other distributed middleware.

The next step in our approach is to enhance the scheduling
of concurrent modules to improve performances. Indeed the
default policy of the scheduler does not guarantee optimal
performances for our applications. We also plan to provide
automated tools based on our model to assist the developer in
his mapping creation and optimization.

REFERENCES

[1] J. Aas. Understanding the linux 2.6.8.1 cpu scheduler.
http://citeseer.ist.psu.edu/aas05understanding.html.

[2] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin,
and S. Robert. Flowvr: a middleware for large scale virtual reality
applications. InProceedings of Euro-par 2004, Pisa, Italia, August 2004.

[3] J. Allard, V. Gouranton, E. Melin, and B. Raffin. Parallelizing pre-
rendering computations on a net juggler pc cluster. InProceedings of
the IPT 2002, Orlando, Florida, USA, March 2002.

[4] J. Allard, C. Ménier, E. Boyer, and B. Raffin. Running large vr
applications on a pc cluster: the flowvr experience. InProceedings
of EGVE/IPT 05, Denmark, October 2005.

[5] D. P. Bovet and M. Cesati.Understanding the Linux Kernel, Third
Edition, chapter 7. Oreilly, 2005.

[6] G. Cavalheiro, F. Galilee, and J.-L. Roch. Athapascan-1: Parallel
programming with asynchronous tasks. InProceedings of the Yale
Multithreaded Programming Workshop, Yale, June 1998.

[7] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorstenvon
Eicken. LogP: towards a realistic model of parallel computation. In
PPOPP ’93: Proceedings of the fourth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 1–12, New York,
NY, USA, 1993. ACM Press.

[8] J.M.Vincent F. Zara, F. Faure. Physical cloth simulation on a pc cluster.
In Eurographics Workshop on Parallel Graphics and Visualization, 2002.

[9] R. Gaugne, S. Jubertie, and S. Robert. Distributed multigrid algorithms
for interactive scientific simulations on clusters. InICAT, 2003.

[10] E. Melin J. Allard, V. Gouranton and B. Raffin. Parallelizing pre-
rendering computations on a Net Juggler PC cluster. InIPTS 2002,
2002.

[11] S. Jubertie and E. Melin. Multiple networks for heterogeneous dis-
tributed applications. InProceedings of PDPTA’07, Las Vegas, 2007.
To appear.

[12] G. Loh. A critical assessment of logp: Towards a realistic model of
parallel computation. http://citeseer.ist.psu.edu/330639.html.

[13] X. Rebeuf. Un modèle de coût symbolique pour les programmes
paralléles asynchrones à dépendances structurées. Thèse de Doctorat
d’Université, Université d’Orléans, décembre 2000.



[14] José L. Roda, Casiano Rodrı́guez, Daniel González-Morales, and Fran-
cisco Almeida. Predicting the execution time of message passing models.
Concurrency - Practice and Experience, 11(9):461–477, 1999.

[15] J. Stam. Real-time fluid dynamics for games. InProceedings of the
Game Developer Conference, March 2003.

[16] Leslie G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, 1990.


