Performance Prediction for Mappings of Distributec
Applications on PC Clusters

Sylvain Jubertie, Emmanuel Melin
Laboratoire d'Informatique Fondamentale d’'Orléans Q)F
Université d’Orleans
Email: {sylvain.jubertie] emmanuel.melih@univ-orleans.fr

http://ww. univ-orleans.fr/lifo

Abstract— Distributed applications running on clusters may beiser wants to change his point of view, the visualizatiorugtho
composed of several components with very different peréowe re- change it interactively without waiting for the simulatioim
quirements. The FlowVR middleware allows the developereplay 1,1 cases each part of the application is able to communicat

such applications and to define communication and syncreition . " .
schemes between components without modifying the code.IeWhYV'thOUt waiting for the other. We say that they are linked by

it eases the creation of mappings, FlowVR does not come wigheedy communications
a performance model. Consequently the optimization of rimggp Once we have described how to synchronize the different

is left to the developer’s skills. It is difficult to performhis task parts of the application, then we can map these parts on the
when the number of components and cluster nodes grow. Me”eov%uster processors. Many choices are possible dependitiggon

the cluster may be composed of heterogeneous nodes making derlvi t f the clust hich b d of
task even more complex. In this paper we propose an appraach f'0€ryINg nature ot the cluster which may beé composed 0

predicting performance of FlowVR distributed applicatogiven a heterogeneous nodes, peripherals and networks. This ngappi
mapping and a cluster. We also give some advice to the desetop is not straightforward and may have effects on the appbaoati

create efficient mappings and to avoid configurations whiely tead performance. For example, mapping several parts on the
to unexpected performance. Since the FlowVR model is vergecl g5 6 node may decrease latency between them by avoiding
to underlying models of lots of distributed codes, our apptocan L .. .
be usefui for all designers of such applications. network communlcano_ns, b_ut it introduces concurrenf:yo_hhl
may reduce computation times. In the case of a distributed
l. INTRODUCTION simulation, increasing the number of processors used may
Today, clusters are theoretically able to reach the peatecrease the computation time but it may increase the nletwor
formances needed by large simulations because they k&d. Consequently, we need a framework that eases mapping
extensible. This is the most interesting property becatiseoperations by catching the parameters of each application
does not limit the simulation complexity or the amount opart and abstracting the architecture. This framework hou
data to consider. However clusters bring new programmimadso be associated with a performance model to tune efficient
problems : it is more complex to produce efficient appliaasio mappings on distributed architectures.
on distributed memory architectures than on shared memoryrhe FlowVR library[2][4] was created to ease the devel-
ones. Several communication libraries like MPl and PVM pr@pment of interactive applications and permit greedy commu
vide point-to-point communications and synchronisatitms nications. The main goal is to abstract the application from
program these architectures efficiently. VR platforms vedse a specific communication and synchronisation scheme. Con
ported to clusters to exploit their performances. For eXamsequently, the FlowVR framework enables also the building
the NetJuggler [10] environment allows to drive interagtivof interactive applications independently of the undedyi
applications with parallel simulations and a distributedder- architecture.
ing. These approaches are very interesting but are lim@ed t But this framework doesn't offer a way to obtain the best
simple applications assumed to run on homogeneous clusteygplication mapping on a given cluster nor any kind of per-
For example the model behind NetJuggler is too synchrondesmance information. Without such information the deyso
because the rendering rate is too dependant of the simulatéimould use his experiments and test several configurations t
rate [3]. find a good mapping. But this task may become too complex
Consequently we should add more asynchronism betweden applications with many modules on heterogeneous alsiste
the different application parts. For example the intemacti such as the application presented in [4] which integrat€950
codes and the simulations codes should be connected but different objects.
synchronized if we want the application to keep an intevacti We have shown in [11] a simple performance analysis
behaviour because the simulations often have lower frequalapted to multi network clusters. Indeed the network is
cies than haptic devices. In this case, we want the simulébio the main limitating factor for performance on distributed
receive interaction data asynchronously even if some ate laarchitectures. Our experiment have shown that we also need
We also need asynchronism with the visualization. When the take into account synchronization and concurrency ia thi

kind of applications and especially in interactive apgimas. C. LogP

We propose in this paper a unified approach to analyse.l.
at the same _time ;ynchronization, concurrency and netw.qnbuted memory architectures with point-to-point cortitats.
constraint. W'.th this "?‘Pproach the deyeloper IS to assacl he goal is to obtain a more realistic cost than the PRAM
performanc_e m_formatlo_n tq his mappings. For example WHodel by taking into account the communication cost. This
can determine information like the frequency of each modul

the load of h modul h d fhodel is asynchronous to reflect the intrinsic nature of dis-
he load of each module on €ach processor and Communifgy 1o 4 memory architectures and to obtain better perfor-
tion times for each connection in the mapping. From the

inf i the devel Id determine if it . mances than the BSP model without the need of expensive
informations the developer could determine if its mapping ., synchronizations.

is well suited and could run on the cluster. Otherwise our o
: . The LogP model uses four parameters to catch the princi-
approach is able to detect and point out network bottlenecks o L :)
. al characteristics of distributed memory architecturdke:
and modules with performance drop due to concurrency. Then o o
o ._.communication delay, the communication overhead for the
the developer can detect parts of the application to op&miz . o
.) management of the network interface, the communication

and can consequently change its mapping.

bandwidth and the number of processors.

he logP model [7] was developed specifically for dis-

Il. PERFORMANCE MODELS FOR PARALLEL A distributed computation is represented in LogP by a di-
PROGRAMMING rected acyclic graph, each node represents a local congrutat
We examine the existing parallel models associated wii & processor and each edge a point-to-point communication
cost models. Two local computations are asynchronous if there is no path

. between them. The execution follows the communication

A. PRAM : Parallel Random Access Machine scheme of the dependency graph. Performances are obtained

The PRAM model defines a synchronous multi-processpy computing the longest path in the graph.
machine accessing a shared memory. Each step in computarhjs model allows to obtain optimal algorithms for simple
tion is made synchronously by each processor which reagigblems [7] but it is not well adapted to more complex
or writes data in the shared memory. A communication @pplications [12]. VR applications also require asyncison
computation step is assumed to take one unit time. even if a dependency (a path in the LogP graph) exists between

On distributed memory architectures, such as clusters, thjo computations. For example, even if a simulation proside
model is unrealistic because it assumes that all processg@ssa at a low frequency, the rendering operations should not
work synchronously and it doesn’t account for the communicge tightly synchronized to it. In this case we need a greedy
tion cost, which is not negligible compared with the computgommunication which is not available in LogP. This model

tion cost. Moreover, for distributed Virtual Reality apitions a1so assumes that the cluster nodes are identical and dbes no
we need heterogeneous and asynchronous computationsa@bunt for heterogeneous configurations.

the different nodes of the cluster and the PRAM is not well
adapted for it. D. Athapascan

B. BSP : Bulk Synchronous Parallel Athapascan [6] is a C++ library designed for explicit pahll

In the BSP model [16] a computation is defined by grogramming using threads. The parallelism is expresstigtin
sequence of supersteps : asynchronous computation fallovg@de by explicit remote procedure calls to threads which are
by a global communication step, and a synchronisationdrarrisynchronized and communicate through a shared memory. The
The cost of a BSP algorithm is defined by the input size agi¢pendencies between threads are expressed by a graph which
by several architectural parameters. This model has stiage is built by following the sequentially structure of the code
properties : it is architecture independent and the perdoce Each node represents a different task, and each path a data
of a BSP program is predictable for a given architecture. dependency between two tasks. When a task is created then

But this model requires writing programs following a para node is added to the graph. If this task contains a reference
ticular scheme : supersteps, which do not fit the heterogeneto a variable shared by a previous task in the graph then it
nature of VR applications. Each superstep must wait for tfie linked to this task. As in the LogP model, the cost of an
longest one to complete before entering the global baifflés execution is defined by the length of the longest path in the
leads to inefficiency for applications with not well baladcedependency graph.
supersteps and more specifically for the VR applications. In the general case, the graph is built at the beginning of

The BSPWB model[14], a BSP Without Barrier, proposethe execution. But for VR applications which include infanit
a generalisation of the superstep to a Message step (Meps the graph has an infinite size and cannot be built. & thi
step) : a local computation followed by a data emission am@se it is possible to limit the graph construction to a @erta
reception. Global barriers are removed because processure. For example [8] presents a cloth simulation using the
may be in different M-steps at the same time. But two MAthapscan library in which each simulation step is assediat
steps can only communicate if they are adjacent which limits a new graph. The tasks are then mapped on the different
the possible asynchronism between M-steps. Moreover gregaocessors by a scheduler following a mapping policy based
communications are not possible in this model. on heuristics.

This model does not allow asynchronous communicationgodules in other contexts since their execution does noiciad
between two threads because they are executed following #ige-effect. An exception is made fparallel modules(like
sequential structure of the code and synchronized by th#&iP| executables) which are deployed via duplicated modules
access to a shared variable. If we consider the heterogenebliey exchange data outside FlowVR ports, for example via
nature of VR applications and of architectures, then it seerthe MPI library, but they can be understood as a single logica
difficult to find an efficient mapping policy. module. Therefore parallel modules do not break the FlowVR
model.

) 2) The FlowVR Network:The FlowVR networkis a data

SCP [13] is an SPMD language based on structurgdy graph which specifies connections between modules
dependencies directed by the syntax order. An SCP progrggts. A connection is a FIFO channel with one source and one
can be viewed as a directed acyclic graph built by followingestination. This synchronous coupling scheme may intredu
the sequential instructions order. Each path in the grapflency due to message bufferization between modules which
represents a possible execution of the program. The costegfyid induce buffer overflows. To prevent this, interactive
an SCP program corresponds to the longest path in the grapfpjications classically use *greedy” pattern, where the
depending of an initial context. o consumer uses the most recent data produced, all older data

In this model the syntax gives the synchronization schemging discarded. This is relevant for example when a program
and the order between the different application parts,ennil st needs to know the most recent mouse position. In this cas
VR applications we want to define the synchronization scherggyer positions are useless. FlowVR enables to implemetit su
independently of the syntax. Moreover an SCP application dgmplex message handling tasks without having to recompile
seen as a single code while a VR application is built fromogules. To perform these tasks FlowVR introduces a new

E. Performance model for the SCP language

heterogeneous codes. network component called fiter. Filters are placed between
1. THE FLOWVR FRAMEWORK modules and have a total access to incoming messages. They
A FlowVR have the freedom to select, combine, create or discard mes-

. .] sages. For example thgatherand scatterfilters respectively
FlowVR is an open source middleware dedicated to digombpine and split messages, theoadcastfilter duplicates
tributed interactive applications and currently ported@mux message and thgreedyfilter selects the last message available.
and Mac OS X for the 1A32, IA64, Opteron, and Power-PC A special class of filters, callesynchronizersimplements
platforms. The FlowVR library is written in C++ and provide%oup”ng policies. They only receive, handle and send ssamp
tools to build and deploy distributed applications Overnstr. from other filters or modules to take a decision that will be
More details can be found in [2]. We now present its maigyecuted by other filters. These detached components make
features. o _ possible a centralised decision to be broadcasted to $evera
A FlowVR application is composed of two main parts : a Sjiters in order to synchronize their policies. For exampae,
of modules, and a data-flow network ensuring data exchang@edy filter is connected to a synchronizer which selecits in
between modules. The user has to create modules, COMPOg&-8ming buffer the newest stamp available and sends iteto th
network and map modules on clusters hosts. _ greedy filter. This filter then forwards the message assetiat
1) Modules: Modules encapsulate tasks and define a ligfiin this stamp to the downstream module.
of input and output ports. A module is an endless iteration The FlowVR network is implemented by a daemon running
reading input data from its input ports and writing new resub, each host. A module sends a message on the FlowVR
messages on its output ports. Messages are also assoCigigdork by allocating a buffer in a shared memory segment
with Iightweight_data caIIec_!;tampsthat identify the Message managed by the local daemon. If the message has to be
and allow routing operations. A module uses three Majgnyarded to a module running on the same host, the daemon
methods: only forwards a pointer to the message to the destination
« The wait function defines the beginning of a new iteramodule that can directly read the message. If the message
tion. It is a blocking call ensuring that each connectelgas to be forwarded to a module running on a distant host,
input port holds a new message. the daemon sends it to the daemon of the distant host. Using
« The get function obtains the message available on @ shared memory makes it possible to reduce data copies for
port. This is a non-blocking call since theait function improved performances. Moreover a filter does not run in its
guarantees that a new message is available on e process. It is a plugin loaded by FlowVR daemons. The
module port. goal is to favor performance by limiting the required numbier
« The put function writes a message on an output porgontext switches. As a consequence, the CPU load generated

Only one new message can be written per port and ggf the FlowVR network management can be considered as
iteration. This is a non-blocking call, thus allowing thehegligible compared to module load.

overlapping of computations and communications.
Note that a module does not explicitly address any other
FlowVR component. The only way to gain access to other We now present our approach to compute performance
modules are ports. This feature enforces possibility tseeuinformations for a FlowVR application mapping on a cluster.

IV. PERFORMANCE PREDICTION

Our goal is to provide information such as the frequency &how that the size of its output depends on the size of the
the different modules, the CPU load on the different nodes simulation domain. I&rc(e) is a filter thenVVol(e) depends on
the volume of communications on each network link. Thethe filter characteristics. For exampleyeeedyor a broadcast
the developer will be able to determine if his applicationgu filter sends the same amount of data it receives. Another
as expected or to compare several mappings to find the besample is themergefilter which sends only one message
one. built from all messages it receives.dfc(e) is a synchronizer
then for the sake of simplicity we assume thébl(e) = 0.
Indeed messages sent and received by synchronizers contain
A mapping is a FlowVR network enriched with informatioronly stamps. Consequently their message sizes are négligib
on the location of modules in the cluster, and on network®mpared to the amount of data sent by modules. We also
used for communication. A cluster is defined as a set of nodeesssume for the sake of simplicity that filters and synchrensiz
Nodes and a set of network&’etworks. To deal with SMP have a negligible load compared to module loads. Indeed they
nodes, each node € Nodes has a list of CPUs given by only perform memory operations on messages.
the functionC PUs(n). A node can also have several network The value ofl/ol(e) is independent on the hardware and is
adapters connected to different networks. Thus each nade statically determined from the module characteristicdud&&
associated to a list of networkSets(n) C Networks. Each of Tezec(m) andLD(m) can be determined by different ways.
network net € Networks has a bandwidthBW (net) and For example the developer can measure them by running each
a latencyL(net). This allows communication schemes usingnodule separately on the target node. On the other hanea, sinc
multiple heterogeneous networks. We assume cluster nietwoFlowVR allows to reuse modules from other applications,
with point-to-point connections in full-duplex, and commuT,,..(m) and LD(m) may be already available.
nications handled by dedicated network controller WithOlg
CPU overload. We also assume that communication between o
objects mapped on the same processor are costless. Indeegérformance of the modules depend on synchronization
in this case, messages are stored in the shared memory a@% concurrency between them. Consequently we need to
pointer to the message is given to the receiving object. TAgtermine for each modute its iteration timeT’; (i) and its
FlowVR network is a grapty composed of a set of Verticesc_oncurrent executlo_n tim&.c..e.(m). We define f[he iteration
V and a set of directed edgds A vertexv € V represents time T, (m) as the.tlme bgtweep _tyvo consecutl_/e calls to the
a FlowVR object which can be a module, a filter or ElowVR wait function. This deﬁnmc_)n charact_erlzes the_real
synchronizer. An edge € E represents a connection betweef[€quencyF'(m) of a module execution for a given mapping :
a source objectsrc(e) and a destination objedest(e) with 1

A. Model inputs

Determining performance

sre(e), dest(e) € V. To build a mapping the developer binds F(m) = T (m) @
objects and connections of the FlowVR network respectivelyWe define the concurrent execution tiffig.....(m) as the
to cluster nodes and networks. We denote the location @f \" . ded for the execution of one iteration raf when

an objectv € V' by the functionnode(m) which gives a goeral modules are running on the same node. Indeed, the
noden € Nodes. The developer has to map modules 0R, ¢ tion of concurrent modules are interleaved by the OS
nodes._ The mapping of modules on processors is done by g&ﬂeduler and we have consequemtly,.(m) > Thzee(m).
operapng system schedyler. The net\(vork used by a connectq e concurrent execution time is determined according to a
e is given by the functionVet(e) which returns a nework gope ey policy, but this policy strongly depends on theeti
net € Networks. If two connected objects are on the samg ,,q 16, waits for 1/0 operations and is blocked in the
nodes the connection is localVet(e) = local. Otherwise the py,\/p wait function. If m has no concurrent modules then
connection is associated to a networkt € Networks such we have -
as Netle) = et j Tecree(m) = Teaee(m) @)

ur approach implies that the developer must give extra
information on modules to compute performances. For eachWe first study the effects of synchronization on perfor-
modulem € V we need to know its execution tin#,..(m) Mmances. Then we will evaluate how the concurrency between
and its loadLD(m) on the host processor. The executiomodules affects their performances.
time T¢,..(m) is the time needed by a module to perform
one iteration whemn is not synchronized with other modules 1) DeterminingT;, from synchronization:In this section
and have no concurrent modules. The loA®(m) is the we examine how synchronization between modules affeat thei
percentage of the execution time the moduleeally uses the iteration time. For a module: we define its input modules as
CPU. The rest of the execution time is used for I/O operatiorthe set of modulesM (m) with edges connected to. We dis-
For each edge € E we need to know the volume of datatinguish two subsets afM (m) : IMg(m) andIM,(m) such
Vol(e) sent bysrc(e) throughe during one sole iteration. If asIM(m)UIM,(m)=IM(m)andIM;(m)NIM,(m) =
sre(e) is a module therVol(e) is equal to the amount of dataf). The subsetd M (m) and IM,(m) contain respectively
sent byv through the output port connecteddoFor example, the modules connected tov synchronously through FIFO
if we consider a module computing a physical simulation weonnections and asynchronously throwggbedyfilters.

We first consider the influence afreedyconnections on 2) DeterminingT..... for concurrent modulesWe turn to
performance. A modulen receiving data througtlgreedy study consequences on concurrency on modules performances
filters does not wait for messages from moduled M, (m). to compute their concurrent computation time.

Indeed agreedyfilter always provide a message which is The behaviour of concurrent modules on a nodeis

the last one available. This means thB§(m) does not determined by the scheduler of the operating system. Our
depend on synchronizations with input modules %/, (m). approach is based on the Linux scheduler policy [1][5] which
Consequently the module is like a module with only FIFO gives priority to a module over others according to the time
connections. Moreover if M (m) = 0 then its iteration time each concurrent module waits. In this case the more a module

only depends on concurrency with other modules : waits, the higher priority it gets. Therefore to determioe f
each modulen its Ti....(m) we first need to determine the
Tit(m) = Teewee(m) ®3) waiting time. This time depends on the time a modulevaits

o for I/O operations and stays in the Flow\MRait function.
Thus to study the effect of synchronization on performance . .
Predecessor modules are not synchronized. They only wait

it is possible to removereedyfilters from the grapit. We for 1/0 operations according to their execution times ararth

obtain a new graph call . We note tha may not :
grap & syne) .Gsy’“ y loads. For each predecessor modute, we definel’; o (pm)
be connected anymore and may be split into several Compo-follow)

nents. Each component consists of FlowVR objects connecfy
sync_hronously with FIFO connectiqns. Since components are Tr/0(pm) = Tegec(pm) x (1 — LD(pm)) (6)
not linked we can study each one independently.]] o
We now consider each module in a component’ € If a modulem is synchronized with its input modules then
e If IM,(m) # 0 thenm is synchronized with its input we can also define the time waits as the time not used for
sync- s
modules. To begin its iteratiom; must receive messages fronf'€ computation during an iteration. Consequently we define
each module il M, (m). Thusm should wait for the slowest Tr/0(m) as follow :
module in7M(m) and this module determines the iteration 7y (1m) =maz(Tupee(m), Tin(i), Vi € IM,(m))

time of m : — Tezec(m) x LD(m)

Tit(m) = maz(maz(Ti(i), Vi € IMs(m)), Teezec(m)) (4) With T} o (m) we can sort modules on each noden a

We note that ifm is slower than its input modules thenIISt {(n) from-the module with the highest value o () .
) to the one with the lowest value. Then we allocate a CPU in
Tit(m) = Teewec(m). If IMg(m) = 0 then m is not

synchronized with other modules. We called these modu ’Us(n) and a load on this CPU to each moduiein I(n).

predecessors and we defipe:ds(C) as the set of predecesso e consider modules in the list order. Each module is set to
. 7 the most available CPU, that is the CPU with the lowest load.
modules in a componenf’. Their iteration time is given

: . . _We defineCPULD(cpu) as the load of a CPU. It is equal
by equation 3 because they are not synchronized. It is a{%othe sum of the module loads on the CPU. A module then

possm_)Ie to havereds(C') = 0. Indeed modul_es e can be receives a concurrent loadD.(m) on this CPU according to
organized in a synchronous cycle. If there is no predecessor

. . itS load LD(m). Then we use the ratio betwedrD(m) and
in C then it means that we have a predecessor cygle . o

T LD.(m) to evaluateT,.....(m). This process is implemented
which is a synchronous cycle such as for each module

in Gpe, IMs(m) € Gp.. Note that we may have both by the following algorithm :
predecessor modules and predecessor cyclés,in Modules

in a synchronous cycle have the same iter??on time. In thef®" @l cpu € CPUs(n) do
case of a predecessor cycle,., each modulen € G, waits CPULD(cpu) =0

only for other modules ir7,,.. Consequentf;,(m) depends enq for

on the concurrent execution time of other modules in theecycl while i(n) # 0 do

We should also consider the time needed for communications " = head(1(n))
between modules it¥,,.. For each moduler. € G, we have l(n) = tail(l(n))

()

load =1
for all cpu € CPUs(n) do
Tit(me) = Z Teexec(m) if CPULD(cpu) < load then
meGpe p = cpu
Vol(e 5 load = CPULD(cpu)
+ > (7BW(N(62(6)) + L(Net(e))) ®) end if
Nete(i)czlcocal end for
LD.(m)= (1 - CPULD(p))) x LD(m)
According to equations 3, 4 and 5 to determifig(m) we CPULD(p) = CPULD(p) + LD.(m)
needT.c...(m) for eachm. Trezec(m) = Togee(m) x LLII)?C((%

end while

In this approacil;,o(m), and consequently.....(m), is are able to determin&;;(m) according to equations 2 and 5.
determined fromT;,(i),i € IM,(m) from equation 7. But Otherwise for each module: in C,,.. with input modules
T, (i) may depend O ;... (i) according to equations 3, 4not in C¢,.. We first need to study parts of the graph which
and 5. For example ifis a predecessor module)/,(i)) =, contain modules i M;(m). Then we can apply equation 4
then T}, (i) depends orl,.,..(:) from equation 3. Then if to modules iNCyycie.
m and: are mapped on the same node we can not computéNe finally consider cycles with both directed and bidirected
Teexec(i) if we have not yet determinell; o (m) andT;,o(i). edges. If we detect a cycl€.,.. of this kind then we
Consequently, in this example we have an interdependerlm@ve an interdependency and we can not sort modules. To
between equations 3 and 7. solve this problem we propose to choose an order between
To detect interdependencies we first modffy,,,. to rep- modules. For example we can consider that modules in the
resent concurrency between modules. Therefore we add bghme synchronous componéithave the same iteration time.
rected edges between concurrent modules jp,.. We obtain Indeed if there is a module: € C such asTiegec(m) >
a new graplG,., were each edge represents a dependency dlig(i), i € IM;(m) thenm is slower thani. Consequently
to synchronizations (directed edges) or concurrency ketweanessages from are accumulated in the FlowVR shared
modules (bidirected edges). If we detect a cycle in the graptemory until it is full. In this case we have a buffer overflow.
then we can have an interdependency between modules inTheis our hypothesis seems appropriate and desirable for the
cycle. We define a cycle as a path between a module and itsi#feloper. But this single iteration time is not determined
such as this path is not empty. Note that a cycle can contdMe are nonetheless able to compare concurrent modules in
the same bidirected edge twice but not the same directed etlyge same componerd. Indeed if we consider two modules
twice. For example two modules connected with a bidirected;, ms in C and inC.yee With node(m1) = node(ms) =n
edge constitute a cycle. we haveT;:(my) = T;:(m2) according our hypothesis. Then
We turn to present how to determifig.,..(m) andT;:(m) if m; and mq are not predecessors @ we have from
for each modulem in G4,. Note thatGg, may not be equation 7 :
connected, in this cas€'y., has several components. Since . _
. . Tr/0(m1) = T1/0(m2)
there is no dependencies between component;gf we can
study separately each one. For each moduie a component Tewec(mz) x LD(mz2) = Tegec(ma) x LD(m1))
Caep € Gaep We definel M., (m) as the set of modules with Consequently it comes to compare the time each module
directed or bidirected edges connectechito effectively uses the CPU. For each modulave already have
A componentCy,, can contain cycles of different natureits T.,..(m) and itsLD(m). But if we have inC' a predecessor
and Directed Acyclic Graphs. We propose to remove cyclesodulepm, or a modulen from a different synchronous com-
in Cq4ep. We obtain a seDy,, of DAGs. We then study cycles ponent, then we are not able to compare them. Consequently
and DAGs inDy., independently. we distinguish two possible configurations. In the first one
If we consider a DAGd in Dg., then we have no concur-we have only modules from the same component on a node
rency between modules because we have no bidirected edge$hen according to our hypothesis we are able to compare
between them. Thus from equation 2 we h&e,..(m) = them and to sort them. Thus, this solves the interdependency
Tezec for each modulen € Dy,,,. If d contains a predecessor On the other hand if we have a predecessor moguie
module pm then from equations 2 and 3 we can determiner a modulem from a different component i€y, then
T;:(pm). Then we propagate this value to each module our hypothesis does not allow to compare them. In this case
such as/ M, (m) = pm to determinel’;;(m) from equations 2 we propose to sef.cicc(m) = Terec(m) for eachm €
and 4. If, for a modulen we havel M, (m) ¢ d then it means C.,... just to define an order. Then we are able to determine
that it is dependant of a module in a cycle. Consequently.,..(m) for each modulen and thenT;;(m). At this step
we must first study this cycle to compufg;(m). We now we can verify the order. If the order has changed we repeat
consider cycles iCgep. the process. But we can not guarantee that this processalway
Different kinds of cycles may be present @y.,. We first converge. In this case our tests show oscillations of thelexe
consider a cycleC,,;. C Cyep With only bidirected edges. tion time due to modifications in the order between modules.
In this case all modules i@, are mapped on the sameThis behaviour does not correspond to the one we expect for
node and are from different components.(f,.. contains performances and especially for interactive applicatishih
only predecessor modules then we can deterrfiing (pm) performance has to be stable. Moreover this dynamic vanati
for eachpm € C.yce according to equation 6. Otherwise ifof performances due to the scheduling can be very difficult
we have at least one module which is not a predecessor tlien the programmer to detect and to analyse. Our method
we use equation 7. But we need to first study the parts of theakes possible to detect when this behavior may occur and to
graph which contaid M (m). precisely point out modules in these configurations. Witk th
If Ccyele cONtains only directed edges théh,.. is a syn- information the developer can change its mapping or can tune
chronous cycle. Moreover each modutewithin C.,.. has the scheduler to sort modules statically.
no concurrent modules. Consequently we h#@vg...(m) = We now construct theCy., from these different parts.
Tezec(m) from 2. If Ceyeqe is @ predecessor cycle then weéNe first consider parts which are not dependent of others.

(8)

Indeed the graph contains such parts because if this is aot taceive its data :
case then we have a cycle between parts and consequently

we can consider them as a single part. For each moaule bwy(n, net) = Z Vol(e) x F(sre(e)) (10)
in these “predecessor parts” we have determifigd..(m) Nef(egf;wt
and T;;(m). Then we merge parts which depends on these node(dest(e))=n

“predecessor parts’. Thus we can compliigye.(m) and If for a noden we havebw(n,net) > BW|(net) then
Tiy(m) for each modulem in these parts. We repeat themessages are accumulated insthé shared memory because the
process for the other parts until we have completely buét trgjaemon is not able to send them all. Consequently we can
graph. . detect a buffer overflow on the node If bw,(n,net) >
Once we have determin€ll.;..(m) andTi;(m) for €ach pyy(nep) then there is too much data sent to the same node,
modulem € Gyne We Verify thatTeezec(m) < Ti(i),7 € |eading to contention. In this case a buffer overflow occurs
IMsm. If this is not the case them is slower than its input 4 1qdes sending data to nodethrough networknet. Our
modules and a buffer overflow will occur amde(m). The method gives the developer the ability to point out network
developer can remove the buffer overflow in different waygenecks in his mappings. Then it is possible to remove
For example he can distribute on several nodes to decrease,am for example by reducing the number of modules on the
Tezec(m) and consequentlc,e.(m). If is also possible 10 same node, by modifying the communication scheme, or by
map concurrent modules ofi on other nodes to decreasqjsing other networks.
Teewce(m)- We now study thdatency between modules. It represents
We are now able to determine module performances foritge time an information needs to be processed by modules and
given mapping. We also provide to the developer a way tgansported through the mapping. In VR applications the la-
detect incorrect mappings. In this case our analysis paifit Qency is critical between interaction and visualizationdules
modules which generates errors and propose a mean to soldg consequence of a user input should be visualized within

them. the shortest possible delay to keep an interactive feeling.
We now study communications between modules to deter-We determine the latency between two modulgsandm.
mine network performances. from the pathP between them. The patR is provided by

3) Networking: We now consider the communications dethe developer and contains a set of FlowVR objects and edges

fined by an application mapping between the different FlowvRetween them. The latency is obtained by adding the iteratio
objects. time T;t(m) of each modulem and the network latency

We begin our study with a traversal of the application grap@l(Net(e)) for each edge between two distinct nodes :

to determine the frequendy(f) each filterf, and the volume L(P) = Z Tyt (m)

of data on its output ports. We start our traversal with stgrt ey

modules and follow the message flow in the graph. When
. : R Vie) (11)
we consider a filterf then we assign it a frequendy(f) + Z W + L(Net(e))
according to its behaviour. For example a greedy fifigteq, N tVEEI; l
sends a message only when the receiving modulg,; asks etle)#loca
it for a new data. Thus we havE(fgreedy) = F(Mdest)- With this information the developer is able to detect whethe

A broadcast filterf,,.qaqcast Processes messages at the santiee latency of a path corresponds to its requirements. For
frequency of its input modulen,,.. In this case we have example he can verify that the latency between modules is
Froroadeast = Fm.,,- low enough for interactivity. If the latency is too high, the

Then we add additional edges to represent communicatf@@veloper can minimize it by mapping several modules on
out of the FlowVR communication scheme, for examplde same node to decrease communications latencies. It is
communication between several instances of a MPI modufdSO possible to create more instances of parallel moduoles t
For each iteration we add output edges and input eddé&crease their iteration times or to use a network with agrigh
respectively to and from other MPI instances. bandwidth and a lower latency.

Then we are able to compute the bandwillth needed by

) V. TESTS
a cluster node: to send its data on a networlet :

In this section we present several tests to validate oupperf
mance prediction model on simple FlowVR applications. Then

bws(n, net) = Z Vol(e) x F(sre(e)) (9) e apply our method to a real application. Tests are perfdrme

Neffgf;wt’ on a cluster composed of two sets of eight nodes linked
node(src(e))=n with a gigabit Ethernet network. The first set is composed of

nodes with dual Pentium4 Xeon processors also linked with
This represents the total quantity of data send in a seconddyMyrinet network. The second one is composed of nodes
modules on a node through a networknet. We can also with two Opteron processors, each one with two cores, also
determine the bandwidtBV, needed by a cluster nodeto networked with a second gigabit Ethernet network.

P Module | Nodes Prediction | Measure
A. Test application LD | Towee | T T,

We first verify each aspect of our model with simple mi % é5 % ggi 338
. . . . mo .
FIowV_R applications. Thes_e apphca_tlons are based onaj| - 3 05 | 21 234 240
generic FlowVR module which can simulate different kinds TABLE Il

of modules. We first determine for each module in an
applicationT,..(m) by running independently each module
on the destination host. Then we run the application on the
cluster. Finally we compare predictions to results.

(TIMES ARE GIVEN IN MS)

_ Then we map modules on the same node. In this case we
only sum the execution times to obtain the iteration time of
modules in the cycle from equation 5. The table IV shows our

1) SynchronizationsWe first consider a greedy synchro
nization between two modules,, m> mapped on different

nodes. o
predictions and results.
Module | Nodes Prediction | Measure
LD | Tegec | Tit Tit Module | Nodes Prediction | Measure

mi 1 1 37 37 37 LD | Tegee | Tit Tie
ma 2 05 | 18 18 18 m1 1 1 37 84 84
ma 1 05 | 26 84 84
TABLE | ma 1 05 | 21 84 84

(TIMES ARE GIVEN IN MS)
TABLE IV

(TIMES ARE GIVEN IN MS)

Results are shown in table . This test confirms that greedy
connections do not affect module performances.

We now replace the greedy connection betweanandm,
by a FIFO connection.

Results show that the iteration time is equal to the sum of
the execution times as predicted by our approach. Moreover
we note that communication through the shared memory does
not add extra latency. Thus our hypothesis is verified.

Module | Nodes Prediction | Measure .
LD | Tegee | Ty Ty We turn to consider concurrency between modules.
ma 1 1 37 37 37
ma 2 05 | 18 37 37 2) Concurrency: To study concurrency we map several
TABLE II modules on the same SMP node with two processors. Then we
(TIMES ARE GIVEN IN MS) apply our approach to determine for each concurrent module

m itS Teegec-
In this test we consider four different modules , ms, ms
We now invert the FIFO connection between; and andm, mapped on a dual processor node. These modules are
ms. In this case we predict a buffer overflow because wot synchronized to avoid interdependencies since we want t
have T;:(m1) = Tegzec(m1) and consequently,...(mz2) > validate our scheduling policy. We first run independenégte
T;:(ma). This test confirms that a buffer overflow occurs whemodule on the host to determine its load and its executioe.tim
Tegec(m) > Ti(i),i € IMs(m). Indeed the shared memoryThen we determine their concurrent execution time accgrdin

is full and and the application exists with an error. to our approach.
We turn to consider three modules organized in a syn-

chronous cycle. Since each module in the cycle waits for the | Prediction Measure

others we can not have two modules running at the same time. % 2

Thus we predict that the execution time does not changewhen| s | 2 | 1D | Toa | Toewee | LDe | Toewee | LD.

modules are mapped on the same node. On the other hand we m: | 1 | 1.00| 20 | 38 042 | 36 0.55

should see a variation of the iteration time when modules are | ™2 | 1 | 030} 16 | 32 0.15 1 26 020
) _ ms |1 |050]| 10 | 10 050 | 16 0.44

not mapped on t_he ‘same node since we have to take into| ,,, | 1 | 058 | 51 | 51 058 | 60 0.52

account communications in equation 5. TABLE V

We first map modules on different nodes. Each node sends a
message of 5MB per iteration through a gigabit network with a
bandwidth of 100MB/s. Thus we expect each communication
will take around 50ms. We assume that the network latencygpegy|ts in table V are close to our predictions. Nonetheless

is negligible compared to this communication time. We havge note that the scheduler gives the maximum priority to

three communications in the cycle so we add 150ms to th?oduIeSml and m» but does not give them the necessary
execution times in equation 5. Predictions and results ggg,q.

shown in table III.
Results in table 11l are really closed to our predictionsreve 3) Communications:We turn to study communications
with a simple estimation of the network parameters. between modules.

(TIMES ARE GIVEN IN MS)

We verify that if a module is slower than its input module The graph can be splitted into two synchronous components
then it generates a buffer overflow. Therefore we use tvibwe remove greedy connections between thewer and
modulesm; and mo with a FIFO connection betweem; therenderermodules. The first component contains thed,
and my. We setT;:(ms) such asT;:(ms) > Ti(my). Tests the particlesand therenderermodules while the second one
show that the buffer overflow error occurs few iterationgiaft only contains theenderermodules. We note that we have no
we launch the application. synchronous cycle in our application.

A complete and more complex example of performance We turn to study synchronization and concurrency between
prediction and optimization using multiple networks can bmodules for three possible mappings. We first propose a map-

found in our previous paper [11]. ping with the simulation, the particle system and the reeder
modules on the same dual processor nodes. In this case we
B. The FluidParticle application detect an interdependency between the three modules.dndee

We now apply our approach on a real FlowVR applicatior}’® ha_ve a cycle Wh'Ch contains gldwected edge between
The FluidParticle application consists of a flow simulatique fluid and thg particles e_md a b|d|recte_d edge betyveen
which produces a velocity field. This field is then used tEgnderer aqd fluid. The particules module is S).lnChI_’OﬂIZGd
advect particles. Particles are displayed on a display W&ﬂth the fluid mo_dule an_d have a Iow_er_execut|on time. Th_e
of four projectors using a point sprite representation.sThfenderermOdUIe is the single module in its component and is

application is used to observe typical fluid phenomena ”l&é)gsﬁgclllgr;tly adplredre:cessolr mdod]ylge;o/Since t_)(Ttrrethdderler
vortices. Our goal is to provide the highest performance f thefluid modules have a load o 0, tharticlesmodule

the simulation and to provide an interactive visualizatibm ahw??lsdhavz tlhe h|gh§st pnont;g Cprr]lseque_n‘léylderedr olr
this section we focus our study on effects of synchronimti(s € rll“ module may be m;ppe with theartic ZS moh uie
and concurrency between modules since a complete exa lethe same processor. But we can not order these two

of performance analysis focused on networks can be fou dules. Thus the sche_duler may change their mapp_ing on
in [11]. the two processor dynamically. Indeed our tests show tledt th

The application is composed of the following modules : rc::;;rnrgnt execution time vary. We now propose a different
« fluid : this is a parallel version of the Stam's fluid f\e map theparticles theviewerand therenderermodules
simulation [15] based on the MP! library [9]. on the same node with two processors then we also detect
« particles: th|s_ is a parallel module. Each ms_tance storeg cycle with both directed and bidirected edges. Thus we
a set of particles and moves them according to forcggg have an interdependency between modules and we can
provided by the fluid simulation. The particle set is theRot sort them. Indeed we have two modules from the same
sent on the output port. N . _synchronous component and a predecessor module from a
« viewer: it converts the particles positions received on it§iterent component. In this case we suppose that the iverat
input port into graphical data which are then sent througfy,e js the same for each module in the component. Then
Its scene output port. . _ ~we can compare thparticles and theviewer modules from
« renderer: it d|splqys informations provided by the Viewergquation 8. We obtain that thearticles module has a higher
modules. There is one renderer per screen. We wantdgority thanviewer module. But we could not compare them
visualize the particles on a display wall of four projecyit the renderer module. To solve the interdependency we
tors. Renderer mpdules are synchronized toget_her Wltfbf’bpose t0 SeTepec(m) = Tozec(m) for each modulen to
swaplock to provide a coherent result on the display. {y o set an order between these modules. In this case the mod
« joypad: itis the interaction module which allow the useyje with the highest priority iparticles thenviewerand then
to interact with the fluid by adding forces. renderer Consequently the first two modules are mapped on
We determine for each module its execution time ardlifferent processors, then thenderermodule is mapped with
its load. Results are shown in table VI. We note that thtaeparticles If we apply this process one more time we obtain
joypadmodule has load under 1%. It is an interaction modutte same order and the same iteration times and concurrent
and it is always connected to other modules throggéedy execution times for each module. Consequently we converge.
filters. Indeed this allows to interact asynchronously wit Thus we can predict that thenderermodule may be mapped
simulation. Consequently it can not involve penalties ard wvith the particles module on the same processor and that it
choose to ignore it. will be allocated a load of 78%. Our tests show that the frame
We now describe the communication and synchronizatioate of therenderermodule is around 23% slower which drops
scheme between modules. THigid module is connected from 18 to around 13 frames per second. Consequently this
synchronously with theparticles module. Then theparti- mapping does not offer an interactive visualization.
cles module is also connected with théewer module syn- To obtain an interactive visualization we should map the
chronously. Finally theviewerand therenderermodules are renderer module on a dedicated node. We also need to
connected through greedy filter This allows to change the avoid concurrency with théuid module to obtain the fastest
user point of view and to update data from the viewer modusémulation. Thus we propose to map modules as described
asynchronously. in table VI. In this mapping we use node 11 to 18 for the

Module Node Prediction Measure

LD Tezec Tcecvec Tz LDc Tcecvec Tz LDc
fluid 11, 12, ..., 18| 0.97 70 70 70 0.97 73 73 0.97
particles | 5,6,7,8 0.97 20 20 70 0.28 | 21 73 0.30
viewer 56,7,8 0.97 28 28 70 0.40 28 73 0.38
renderer | 1,2, 3,4 0.97 57 57 57 0.97 60 60 0.97
joypad 1 <001| <1 0 0 0 0 0 0

TABLE VI

(TIMES ARE GIVEN IN MS)

simulation and we distribute four modules on each one twnsequences of such choices. Moreover we also provide a
take advantage of the four processors. Then we map thay to detect errors mappings. We can point out modules
renderermodule on four nodes connected to four projectomhich generates buffer overflow due to synchronizations. We
to visualize the simulation on our display wall. Four nodesan also locate bottlenecks on network links.
with two processor on each one, are still available for the This approach brings to the FlowVR model a way to ab-
particlesandviewermodules. Consequently we distribute eacbtract the performance prediction from the code. Nevestisel
one on these four nodes to reduce their execution time. dar approach is not limited to FlowVR applications and is
this last case we have a cycle with only modules from thmufficiently general to consider applications developethwi
same synchronous component on each one of these nodéser distributed middleware.
Moreover we do not have a predecessor module mapped witlThe next step in our approach is to enhance the scheduling
them. Consequently we are able to determine their iteratioh concurrent modules to improve performances. Indeed the
time. Results of this mapping are shown in table VI. We noigefault policy of the scheduler does not guarantee optimal
that it confirms the performance predicted by our approagberformances for our applications. We also plan to provide
We also note that we avoid concurrency betweenpidticles automated tools based on our model to assist the developer in
and theviewer module. Indeed we havé.,..(particles) + his mapping creation and optimization.
Tenec(viewer) < Ty (fluid). This means that each message
from the fluid module is processed by thmarticles module
which then sends a message to Himwverand waits for a new
message. Then the message is processed hyeatvermodule
which then waits for a new message from ffaticlesmodule. [2]
But a new message is not yet available from the simulation.
Consequently, since thituid and therenderermodules have
no concurrent modules we have for each modulein the
applicationT cegzec(m) = Tegec(m). Thus we have a mapping
which optimizes the execution times. [
We have applied successfully our approach on our interac- of EGVE/IPT 05 Denmark, October 2005.
tive simulation. In each case we are able to take into accouf$] D. P. Bovet and M. Cesati.Understanding the Linux Kernel, Third
synchronization and concurrency to determine perfornmnc; Edition, chapter 7. Oreilly, 2005.

REFERENCES

[1] J. Aas. Understanding the linux 2.6.8.1 cpu scheduler.

http://citeseer.ist.psu.edu/aasO5understanding.html

J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. MeliB. Raffin,

and S. Robert. Flowvr: a middleware for large scale virtugality

applications. IrProceedings of Euro-par 200#®isa, Italia, August 2004.

[3] J. Allard, V. Gouranton, E. Melin, and B. Raffin. Paraltghg pre-
rendering computations on a net juggler pc cluster.Ptaceedings of
the IPT 2002 Orlando, Florida, USA, March 2002.

] J. Allard, C. Ménier, E. Boyer, and B. Raffin. Running der vr
applications on a pc cluster: the flowvr experience. Pimceedings

. . 6] G. Cavalheiro, F. Galilee, and J.-L. Roch. AthapascarParallel
of modules. We also have detected mappings with poor programming with asynchronous tasks. Mmoceedings of the Yale
performances. Multithreaded Programming Workshpjyale, June 1998.
[7] David Culler, Richard Karp, David Patterson, Abhijitt®ey, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thamsten
Eicken. LogP: towards a realistic model of parallel compiata In
PPOPP '93: Proceedings of the fourth ACM SIGPLAN symposiomm o
Principles and practice of parallel programmingages 1-12, New York,
NY, USA, 1993. ACM Press.
] J.M.Vincent F. Zara, F. Faure. Physical cloth simulatan a pc cluster.
In Eurographics Workshop on Parallel Graphics and Visual@at2002.
R. Gaugne, S. Jubertie, and S. Robert. Distributed gnidtialgorithms
for interactive scientific simulations on clusters. AT, 2003.
E. Melin J. Allard, V. Gouranton and B. Raffin. Paralitig pre-

VI. CONCLUSION

We have shown in this paper that our approach is able to
predict performances for distributed FlowVR applicatiofRgr
each module we provide its iteration time which characesriz
its frequency. Thus the developer can determine if its mappi
offers for each module the frequency he expected. He can al&
compare the execution time of a module to the concurre[%
execution time and then observe the effects of concurrency] rendering computations on a Net Juggler PC cluster.IPRS 2002
between modules. For each node we are able to compute 2002. ' _ _
the load of each processor. If the developer needs méfdl 5 herie e, € Mol Mitie tevore o nesonous o
performances our approach allows to point out modules which 14 appear
could be optimized. Then he can choose to map modules [0zl G. Loh. A critical assessment of logp: Towards a reiglishodel of
nodes with lower processor loads or to distribute a module gn_ Parallel computation. http://citeseer.ist.psu.edutZ20html.
several nodes. But this can generates more communicatiglr% X. Rebeuf. Un modele de colt symbolique pour les programmes

’ paralléles asynchrones a dépendances structur@dwse de Doctorat
on the network. Nevertheless our method allow to determine d'Universite, Universite d’Orléans, decembre 2000.

[14] Joseé L. Roda, Casiano Rodriguez, Daniel GonzalezaMs, and Fran-
cisco Almeida. Predicting the execution time of messagsipgsnodels.
Concurrency - Practice and Experiencel(9):461-477, 1999.

[15] J. Stam. Real-time fluid dynamics for games. Rroceedings of the
Game Developer Conferencklarch 2003.

[16] Leslie G. Valiant. A bridging model for parallel comjibn. Commun.
ACM, 33(8):103-111, 1990.

