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Abstract

In this paper, we present a method to interactively render 3D large datasets on a PC Cluster. Classical methods use
simplification to fill the gap between such models and graphics card capabilities. Unfortunatelly, simplification
algorithms are time and memory consuming and they allow real time interaction only for a restricted size of
models. This work focuses on parallelizing Rottger’s simplification algorithm of height fields but the main ideas
can be generalized to other scientific areas. The method benefits from the scalable compute power of clusters. As
our results show it, this permits us to achieve a data scaling while maintaining an acceptable frame rate with a
real time interaction. Moreover, the scheme can take avantage of tiled-display environments.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Parallel simplification,
Virtual Reality, Real-time Rendering, Level of Detail Algorithms

1. Introduction

The work presented in this paper was initiated to solve a
technological lock encountered by the French Geological
Survey (BRGM) namely the rendering and the navigation in
geological models displayed on 3D virtual reality environ-
ment driven by a cluster of PC. Our work intends to answer
a more general question: how to use as best as possible the
scalability of a VR Cluster in term of storage capacity and
graphical computing power for rendering such models ?

Geological models are most of the time described by
height fields i.e. rectangular grids of elevation data H(x,y)
with points regularly spaced in x and y axis. Owing to tech-
nological strides in collecting geographical and geological
informations, height fields modeling Earth ground and un-
derground have became very large. Today, large data sets
consisting of hundreds of thousands to billions of polygons
are commonplace. For example, geospatial data extracted
from satellites easily go beyond tens of giga-bytes [gto]. So
geological models usually exceed memory storage capacity
of current computers. Moreover, for Virtual Reality appli-
cations, the graphical rendering must be performed in real-
time to achieve a realistic interaction with the virtual world.
In this case, even if the model fits in system memory, it is not

sufficient since it must be manipulated in the graphics board
to be render at an interactive rate. Then the memory storage
available is again reduced despite the spectacular progress in
computer graphics area.

In Geosciences, using VR allows a better comprehension
of the composition of the basements and underground phe-
nomena thanks to 3D rendering. The exploration of such a
model has two aspects: one very interactive for searching a
specific location (for example a typical geological configu-
ration), a second more static where it is important to render
a maximum of details of a part of the model to study the
specific point selected during the first phase. Simplification
or level of detail algorithms (LOD) are good candidates to
obtain a graphical rendering performed in real-time which
is essential to achieve a realistic interaction with the virtual
word. These algorithms dynamically modify the visualized
data according to their position in the space.

There are various kinds of simplification algo-
rithms (see [HG97] for a survey). One class of them
fits to large height fields: view-dependent algorithms
[DWS∗97, Hop96, LKR∗96]. These algorithms rely on
distance to view point to perform the simplification or
the refinement. Therefore, two different regions can be at
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different resolutions, what is convenient for large terrains.
Although they are often complex and deal with large data
sets, most of view-dependent algorithms are sequential.
They are consequently limited by computer resources
like memory and CPU-time. Some of them include out-
of-core scheme [LP02] but disk accesses still remain too
long to satisfy real time requirements of Virtual Reality
applications.

Our aim is to obtain a scalable solution of rendering large
height fields. For that we take into account that an alterna-
tive solution to high-end dedicated computers usually used
for Virtual Reality has emerged for a few years: VR clus-
ters. They are composed of off-the-shelf PC equipped with
graphics boards and interconnected by an efficient network.
An obvious advantage of clusters is that there is theoretically
no limit to the number of nodes it can contain. Consequently,
using parallel algorithms on this kind of architecture may be
very interesting provided that the algorithm itself is scalable.
Scalability can be obtained by carefully distributing the data
on the cluster and avoiding as far as possible data gathering
to keep off the two main bottlenecks due to communication
network and memory storage.

There are very few parallel simplification algorithms and
as far as we know none of them allows a scalability on a
cluster of PC with interactive frame rate.

El-Sana and Varshney [ESV99] proposed one of the first
works on parallelizing view-dependent LOD algorithms.
They worked on Xia’s merge trees [XESV97] . Merge tree
is a data structure built upon Hoppe’s progressive meshes
[HDD∗93]. The input polygonal mesh is divided into in-
dependent subsets that are processed in parallel. The par-
allelization is only used in the merge tree construction not
during the rendering. Furthermore, the implementation is in-
tended for shared memory machines only which does not fit
our purposes.

In [DLR00], Dehne and al. describe a scheme for paral-
lelizing the progressive meshes (PM). They started by parti-
tioning the original mesh using a greedy graph partitioning.
Each partition is then sent to a processor that converts it to
the PM format. The resulting PM are then merged to pro-
duce the final PM for the original mesh. The PM algorithm
they worked on is not view-dependent which is a drawback
when LOD is used to navigate in the model as we intend to.
Moreover it requires a lot of memory for the complex data
structures used by PM.

PR-Simp presented by Brodsky and Pedersen [BP02] is
a parallel extension to their R-Simp [BW00], a sequential
model simplification algorithm. PR-Simp uses master/slave
architecture. Master starts by computing a bounding box of
the entire model that it sends to the slaves. When they receive
the bounding box, they divide it in n clusters, where n is the
number of processors. Each processor then scans all vertices
and stores those that fall in its cluster. R-Simp is used to
simplify the clusters on each processor. After that, a divide

and conquer approach that takes logn iterations is used to
merge remaining parts on master. This is costly and places
a bottleneck on the master. PR-Simp permits a data scaling
but it is not view-dependent.

This paper is a contribution for the use of parallel ap-
proaches to view-dependent LOD algorithms for height
fields. We choose Rottger’s algorithm as an illustration of
our framework, for convenience and performance reasons
but other LOD algorithms may be parallelized in this way.
The paper shows how one can benefit from storage and com-
pute power of clusters to obtain a data scaling by using the
regular structure of height fields and rendering techniques
such as view frustum culling. The remainder of the paper
is structured as follows: in section 2 we give an overview
of Rottger’s algorithm. Parallelization description follows in
section 3. After giving and analyzing benchmarks results in
section 4, we conclude in section 5.

2. Rottger’s algorithm

We have chosen Rottger’s algorithm to illustrate our work
because of three main qualities. It has been designed for
height fields, it is view point dependent which is very im-
portant when navigating in the height field and it does not
require sophisticated memory consuming data-structures.

This algorithm [RHS98] is based of the work of Lind-
strom and al. [LKR∗96]. In the latter paper, Lindstrom and
al. describe a view-dependent algorithm for height fields of
size (2n + 1) ∗ (2n + 1). The algorithm dynamically modi-
fies a quadtree by using a bottom-up strategy to determine
whether a node needs to be subdivided or merged with adja-
cent nodes. For that a boolean criterion is evaluated. The cri-
terion uses the upper bound of the projected pixel error. One
disadvantage of this algorithm is that the pixel error function
must be evaluated for each point of the height field, what is
costly in computation time.

Rottger’s algorithm, contrary to that of Lindstrom, uses a
top-down approach to create the triangulation and the ver-
tex removal is performed based on distance to view point
and local surface roughness. The top-down strategy allows
to visit just a fraction of the data set: only one point per
block. This fraction depends on the rendering quality. The
algorithm uses a boolean matrix, so called quadtree matrix,
to capture the state of the quadtree at each step of the tri-
angulation. In this matrix, each node’s center is set, if the
node is further refined. Otherwise, a special value is used.
For example, the quadtree matrix entries that correspond to
points drawn in black in the triangulation in (fig.1) are set
to 1. After the triangulation is finished, Rottger algorithm
draws triangle fans whereas Lindstrom draws triangle strips.
Both structures allow to reduce the amount of data sent to
graphics pipeline but fans better capture the roughness of a
surface.

The triangulation is created by recursively descending the
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Figure 1: A triangulation of 9×9 height field from Rottger’s
algorithm.

quadtree. At each node, a boolean subdivision criterion is
evaluated and its result stored in the quadtree matrix. If it
is evaluated to true and the finest LOD has not yet been
reached, the recursion continues by visiting all four sub-
nodes. The subdivision criterion depends on the distance to
view point as well as local surface roughness. It allows to
reduce the resolution as the distance to view point increases
and to augment it in regions of high surface roughness.

When the finest LOD is reached, the height field is drawn
by recursively traversing the quadtree where the correspond-
ing matrix entries are set. Whenever a quadtree leaf is
reached, a complete or partial fan is drawn. To avoid cracks
between adjacent edges of nodes at different resolutions, the
center vertex at these edges is skipped. This method works
only when the LOD of adjacent sub-nodes differ by no more
than one which is guaranteed by the way the algorithm com-
putes and stores surface roughnesses.

3. Parallelizing the Level Of Detail Algorithm

Rottger’s algorithm has two main drawbacks for our pur-
poses. The first one is common to all in-core sequential sim-
plification algorithms. It concerns the fact that the entire
height field needs to fit in the system memory and this is
often not the case for geological models. The second one is
that this algorithm has not been designed for tiled-display
environments. Our aim is to obtain a scalable parallelization
framework to benefit from the extensibility of cluster archi-
tecture with regard to memory storage capacity and comput-
ing power. To achieve this goal, the cluster nodes are parti-
tioned into two classes: visualization nodes and computation
nodes.

Basically, the algorithm is composed of three stages:

• Initialization: during this phase which takes place only
once, the height field is distributed to the computation
nodes. This allows to benefit from memory storage ca-
pacities of each computation nodes

• Communication: during this phase, visualization nodes
broadcast their current point of view and frustra to com-
putation nodes and computation nodes send to each ren-
dering node the part of scene it has to render.

• Computation: during this phase, computation nodes run
Rottger’s algorithm on the part of the height field they are
in charge while visualization nodes display the part of the
scene they have received.

The algorithm can be summarized in the following
pseudo-code:

computation node:
get local data
while true

get view point and frusta
perform LOD
for each visualization node nv

do culling against frustrum of nv
send data to nv

end for
end while

visualization node:
while true

broadcast view point and frustum
to computation nodes

get rendering data
draw the scene

end while

One can remark that computation nodes perform a spe-
cial data culling for each visualization node which allows to
optimize data transfer and lighten graphical boards by dis-
carding non-visible part of the scene. Here are some more
details about the parallelization framework: the data parti-
tioning follows in section 3.1 and how to minimize the com-
munication costs is described is section 3.2.

3.1. Data partitioning

Data partitioning takes place at the initialization stage. Data
are read from a file available on all computation nodes. Ac-
cording to its rank, each node knows exactly which portion
of the data it has to store. The grid size is constrained to be
of the form (2n + 1) ∗ (2n + 1). In most cases, height fields
do not have this structure therefore data distribution has to
take into account this constraint. Given a height field of size
SzX ∗SzY , we first search the smallest number m such that :

2m−1 +1 < max(SzX ,SzY )∗
2

CN
≤ 2m +1

where CN is the number of computation nodes. Each com-
putation node gets a portion of size 2m +1, allowing overlap
if necessary.
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3.2. Minimizing communication costs

As usual in parallel computing, communications are the key
point to obtain efficient algorithms, especially when dealing
with large datasets. In our case, sending all data each frame
should clearly be discarded. One way to bypass this issue is
to reduce the amount of data that transit by the network. We
use the structure of height fields and culling to do this. In the
following sections, we explain how these ideas are used to
reduce the communication time.

3.2.1. Sending only indices and heights

One advantage of working on height fields is that one can
rely on their regular structure to do certain optimizations.
Height fields often are regularly sized in the horizontal plane.
So, we just need the indices (i, j) of a vertex, the extent of the
grid , the spacings along the x and y-directions and the cor-
ners to deduce the x and y coordinates. Given SzX and SzY
(fig.2) the x and y sizes of the height field, (llx, lly) its lower
left corner, let Dim = 2n + 1 the extent of each portion and
SpaceX and SpaceY the increments in x and y directions, we
can compute x and y coordinates of any vertex v for which
we know the holder(processor pk) and indices in local grid
(ik, jk). Indeed

xv = llx+(ik +(k−1)∗Dim)∗SpaceX (1)

Thus, given a vertex v = (x,y,h) that needs to be drawn,
just ( f (i, j),h) is sent to visualization nodes, where f (i, j) =
j ∗Dim + i. In the initialization stage, the values of llx, lly,
SzX , SzY , SpaceX , SpaceY and Dim are sent to visualization
nodes. During the rendering, when they receive v, the indices
are extracted from f (i, j) and above equations are used to
determine x and y coordinates. Although we give only the x
coordinate, the equations above are valid for y after possi-
ble extension. This scheme allows to reduce communication
costs by 33% because 2 floats instead of 3 are sent for each
point to be drawn.

3.2.2. Cull data before communication phase

After using the structure of grid to reduce the network load,
the communication time still remains too high for real-time
rendering. To avoid this, the subscenes are culled before
sending them to visualization nodes. At the beginning of
each local simplification stage, computation nodes receive
the view point and a frustum from each visualization node.
The view point is used to carry out Rottger’s simplication
algorithm while the frusta are used to cull the output of the
simplification step. We do not test each vertex against frusta
because it is too costly. As we need to send each fan that
intersects the frustum even partially, we have to test against
the fan’s bounding sphere. With this processing, only a rela-
tively small part of computation nodes’ portion needs to be
sent (fig.3). When the viewer is close, the LOD is high but
the area in the view frustum is small (fig.4). When he is far
enough to see the entire scene (fig.5), the LOD drops so that
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Figure 2: Repering a vertex x et y coordinates using indices.
Pk is the squared area allocated to processor pk. There are
regions where these areas overlap, what we note Oi j[kl].
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Figure 3: Data sent per node in case of 4 computation
nodes. Overlap regions are sent once. For the processor pk,
only the intersection of Sk and the viewing frustum is sent.

the amount of data to be sent is always of the same order.
This allows to maintain an interactive frame rate.

Our parallelization scheme (fig.6) for LOD algorithm is
data scaling since the height field is distributed among com-
putation nodes only once, at the begining, and they never
communicate to each other afterwards. It also strongly lim-
its the communication overhead from LOD nodes to visual-
ization nodes thanks to fustrum culling. It should be notice
that no process in our framework has a special task such as
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Figure 4: LOD near the view point.

Figure 5: LOD at farther regions to the view point.

mastering the others for gathering data, which increases its
scalabity capabilities.

4. Results

We perform our implementation on a cluster of 8 PC dual
xeon equipped with NVIDIA Geforce FX 5900 128 Mo
graphics boards. The interconnecting network is a gigabit
ethernet using TCP/IP. We use Net Juggler [AGL∗02] as
cluster middleware. This facilitates inter-frame synchroniza-
tion and communications as it permits direct calling MPI

Figure 6: Parallel version of Rottger’s algorithm in action.

[mpi] routines. As Net Juggler is built upon VR Juggler
[Bie00], we easily call OpenGL Performer [per] commands
through this software. We found Performer very convenient
for its higher abstraction of graphics objects. It also eas-
ily makes available to the programmer informations about
graphics context such frustum and viewpoint. The data we
use is provided by the French Geological Survey (BRGM)
and represents a height field of 1000×760 points. This rep-
resents about 1,520,000 triangles. We use this as one layer
and then create other layers for test purposes. The resolu-
tion we use is of 1280 × 1024 per visualization node. So
the resolution for four visualization nodes, for example, is
2560×2048. All tests are performed in the same conditions
such as model initial position, level of detail parameters and
interaction.

We have tried to render only one layer without any sim-
plification and we obtained a frame rate of about 10. This
value is approximatively divided by two when adding a sec-
ond layer. This illustrates the need of a LOD algorithm in
our context to obtain a framework usable in Virtual Reality.

4.1. Comparison between our sequential and parallel
implementations

First, we choose to compare the sequential algorithm with
our parallel version according to the execution time of the
pure LOD algorithm. This gives the benefit introduced by
the parallel implementation without graphics overload. The
results show that despite the extra-time introduced by the
communications in the parallel version, computations are 2
to 4 faster (see fig.7).

Next we choose to compare the sequential algorithm with
our parallel version according to the frame rate (fig.8). This
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Figure 7: LOD algorithm time for sequential and 4 nodes
parallel versions.

gives a real idea of the benefit that the end user can expect.
The parallel version uses one or four computation nodes and
only one visualization node in both case. Note that the se-
quential version use the same node for both the computation
and the visualization.

We observe that frame rate is better on the parallel algo-
rithm with one computation node and one visualization node
than on the sequential version. This illustrates the interest
of cluster architecture to distribute the LOD and the pure
rendering work on different nodes. Note that we perform a
culling before communication and rendering, what seriously
alleviates communications and graphics pipeline load.
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Figure 8: Average frame rates for sequential, 1 and 4 nodes
parallel LOD algorithm.

We turn now to compare the one computation node par-
allel algorithm with the four computation nodes one (fig.8).
We obtain a good speedup, only reduced by the cost of the
rendering on the visualization node. However, as data be-
come larger, the frame rate difference becomes narrower be-

cause of communication bottleneck that appears on the visu-
alization node.

Note that the memory of single computation node is un-
able to manage a model composed of 6 layers. This illus-
trates another interest of the parallel algorithm which allows
the use of the memory of the entire cluster.

4.2. Application to tiled-display environments

As described above (section 3), in our framework, each com-
putation node can send different graphics data to each vi-
sualization nodes according to their current frustum. This
partially erases the bottleneck generated by one single vi-
sualization node. In a tiled display environment driven by
a VR Cluster, it becomes usual to use several visualization
nodes synchronized by middleware such as Netjuggler but
the graphics distribution is seldom optimized. The figure 9
shows the average frame rate for 2 setups: both with 4 com-
putation nodes but one with only 1 visualization node and
the second with 4 visualization nodes. For all sizes the sec-
ond setup is better thanks to the number of triangles rendered
by each node that is ideally divided by 4 (in fact, it is seldom
true because the part of model displayed by each node de-
pends on the user interaction) and to the very light increase
in communication time due to culling.
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Figure 9: Average frame rates for 1 and 4 visualization
nodes using 4 computation nodes.

4.3. Towards processing very large datasets

We show that it is possible to create a parallel version of
LOD algorithm to manage more data than a sequential ver-
sion. Moreover this code is scalable and can achieve better
frame rates as we use more computation nodes. We also take
into advantage multi-display environment to prevent the cre-
ation of bottlenecks on visualization nodes.

Nevertheless if we want to use too large datasets for our
cluster, we have to implement a triangle budget to achieve
a constant frame rate [DWS∗97]. Classically this approach
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has a noticeable over-cost since the LOD has to iterate until
it reaches the good budget. Our approach is totally compati-
ble with a triangle budget implementation. Using our frame-
work, the triangle budget algorithm is parallelized and its
over-cost is minimized. However, we do not activate it for
benchmarks as we aim to determine real data scalability ca-
pacities of our method at a constant visual quality.

5. Conclusion

We have presented a parallelization framework for LOD al-
gorithms to navigate in large height fields. We have shown
that it has been designed to take advantage of the scalability
of VR cluster architectures by distributing data on the cluster
nodes and avoiding useless communication and data gather-
ing. Our benchmarks exhibit encouraging results.

Some improvement may be done to reduce communica-
tion traffic on the network by observing that 80% to 90%
of the scene does not change between two LOD computa-
tions. Therefore it should be possible to only send the differ-
ences between the two scenes. Such techniques usually have
a memory overhead which should be limited to be used for
our purposes.

It would be also interesting to apply our techniques to
visualize and navigate in data structures that are different
from height fields. For example, scientific simulations are
able to produce large amount of data which are evolving with
the time in contrast to height fields. Some LOD techniques
should be adapted to this kind of data and our framework
should help to parallelize them.
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