
EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005), pp. 1–8

K. W. Brodlie, D. J. Duke, K. I. Joy (Editors)

Interactive rendering of massive terrains on PC clusters

V. Gouranton1, S. Madougou1,2, E. Melin1 and C. Nortet1

1Laboratoire d’Informatique Fondamentale d’Orléans, LIFO Orléans, France
2BRGM, France

Abstract

We describe a parallel framework for interactive smooth rendering of massive terrains. We define a parallelization

scheme for level of detail algorithms in cluster-based environments. The scheme relies on modern PC clusters

capabilities to address the scalability issue of level of detail algorithms. To achieve this, we propose an efficient

tile-based data partitioning method that allows both reducing load imbalance and solving the well-known border

problem. At runtime level of detail computations are performed in parallel on cluster nodes. A hierarchical view

frustum culling combined to a compression mechanism harnessing the frame-to-frame coherence are used to

drastically reduce the inter-tasks communication overhead. We take into account level of detail algorithms visual

quality issue by providing geomorphing and texturing supports. We are able to interactively and smoothly render

terrains composed of hundreds of millions to billions of polygons on a cluster of 8 PCs.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Parallel simplification,

Virtual Reality, Real-time Rendering, Level of Detail Algorithms

1. Introduction

These last two decades, scientific visualization becomes an

attractive way for gaining deep understanding in scientific

data. Interactive rendering of these data gives researchers

the ability to do faster visual data analysis. Due to strides in

data acquisition technologies (high-resolution 3D scanners,

cameras, scientific simulation), these data can reach gigan-

tic sizes. For instance, USGS elevation data for Washing-

ton state at a horizontal resolution of ten meter and a ver-

tical resolution of ten centimeter represent 1,4 billion ele-

vation values [was]. Visualizing this kind of data in an in-

teractive way is not a trivial task [HDJ04]. As the data ob-

viously do not fit in the system memory, direct rendering

cannot be used even with high-end graphics dedicated in-

frastructures such as SGI machines [MBDM97]. These ar-

chitectures generally provide memory and compute capa-

bilities that can satisfy many visualization needs. However,

their restricted scalability and extensibility makes them not

appropriate for the rapid increase of today’s datasets. An

alternative way is to use level of detail (LOD) algorithms.

Given a model to be visualized, their goal is to decrease

the size of the data sent through the graphics pipeline by

discarding the unnecessary detail while preserving an ac-

ceptable visual quality. Although they induce some CPU

load overhead, LOD algorithms give the ability to balance

between interactivity and detail for large models visualiza-

tion. First LOD algorithms require the data to fit entirely in

the systemmemory [LKR∗96, Hop96, DWS∗97]. This natu-
rally bounds their usage for huge datasets. In order to bypass

this bottleneck, many desktop-based LOD algorithms resort

to out-of-core mechanisms. This often leads to considerable

CPU load and memory footprint overheads. To ensure inter-

activity by hiding the latency due to the external memory

access, they must implement complex prefetching mecha-

nisms. However, any extra time spent in LOD algorithm in-

exorably results into frame rate degradation, thus into inter-

action disruption.

For interactive rendering of huge datasets, both LOD tech-

niques and high-performance computing are required. More-

over, the anatomy of super-computers is quickly and deeply

changing. Clusters of commodity components are becoming

the leading choice architecture. They are now usual in the

supercomputer top 500 [top]. They are scalable and mod-

ular with a high performance-price ratio. These architec-

tures are proved efficient for classical (not interactive) in-

tensive computations. In scientific visualization field, sev-

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)

2 V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

eral work [ARZ03, GJR03] showed the effectiveness of us-

ing PC cluster as a means of complex computations (simu-

lation) while the rendering is performed in a multi-display

environment. Our goal is to define a similar model for LOD

algorithms aiming at massive terrain rendering. Distribut-

ing terrain data and LOD computations among cluster nodes

avoids the two limiting factors, CPU time and memory. The

number of nodes being theoretically unbounded, there is no

reason to systematically resort to external memory solutions

as for desktop-based algorithms. However, as in the out-of-

core case, one must face the communications overhead in-

duced by bus and network traffics. Currently, efficient inter-

connecting networks exist for clusters. Their throughput now

outperforms that of todays hard discs. Furthermore, in the

particular case of graphics applications, in addition to the

LOD algorithm which itself is a data reduction process, ways

for further reducing the data transfer can be implemented by

harnessing intrinsic graphics properties.

LOD algorithms usually require building a hierarchi-

cal structure that encompasses all levels of detail. As

this preprocessing may be very time-consuming, the first

parallelization attempts have been used to tackle this is-

sue [ESV99, DLR00]. Other approaches really parallelize

LOD computations [BW00, GLMM04]. In [BW00] a mas-

ter/slaves paradigm is proposed. In this scheme, slaves per-

form the LOD computations and the resulting data are gath-

ered on master for rendering. The master node becomes a

bottleneck for the scalability of this approach. In a previous

work [GLMM04], we present a cluster-based parallelization

framework for height fields that does not suffer from this

bottleneck. However, this work presents some weaknesses.

No load balancing support is provided. It does not propose

a satisfactory solution for the partition boundary simplifica-

tion issue (the border problem) nor it benefits from frame-

to-frame coherence. Moreover, there is no support for visual

quality improvement such as geomorphing or texturing.

This paper describes a comprehensive parallelization

framework built on the model described in [GLMM04]. Crit-

ical issues such as the border problem and load balancing

are solved. Essential optimizations that benefit from graph-

ics properties such as culling and frame-to-frame coherence

are proposed to drastically reduce the communication over-

head. In addition, techniques such as geomorphing and tex-

turing, are used to improve the visual quality of the render-

ing. The paper is organized as follows: in section 2 we briefly

recall our previous work. Section 3 describes the paralleliza-

tion scheme in details. The way communication overhead

is minimized is explained in 4. Geomorphing and texturing

are described in 5. Algorithm performance is given through

benchmarks in section 6. We conclude and plan for future

work in section 7.

2. Background

In [GLMM04], we present a cluster-based parallel simplifi-

cation framework for height fields (fig. 1). This framework

partitions cluster nodes into visualization nodes and LOD

nodes. The visualization nodes do only rendering whereas

LOD nodes do only computations. At a preprocessing stage,

initial height field data are partitioned into n partitions where

n is the number of LOD nodes. During the execution, before

each step of LOD computations, LOD nodes receive view

parameters (view point and frusta) from visualization nodes.

Then, they independently perform the LOD algorithm on

their partition. Resulting data are culled against visualiza-

tion nodes frusta before being sent for rendering. The way

Figure 1: A parallelization model for LOD.

the initial data are partitioned does not allow to reach a sat-

isfying load balancing. As partition is done on a large block

per node basis, load balancing is strongly related to the user’s

interaction. Moreover, this work does not address the border

problem because LOD computations are performed totally

independently inside tiles whereas some overlapping data

are needed. Indeed, [GLMM04] proposes a parallelization

of Roettger’s algorithm [RHS98]. This algorithm dynami-

cally constructs a hierarchical structure, called quadtree, that

represents the most relevant data with respect to the current

view point and the local terrain topology. The subdivision

process is controlled by a decision variable f evaluated at

each quadtree node (for the sake of clarity, we will call it

block). It depends on the block’s current subdivision state

as well as the local terrain topology. The local terrain topol-

ogy is measured as the terrain roughness around the block

(called its d2 value). Thus, the decision variable of a given

block also depends on the adjacent blocks. This informa-

tion is used to constrain the LOD difference between adja-

cent blocks to never exceed one, block’s LOD value being

its depth in the quadtree structure. We call this constraint

the fundamental constraint. As long as this constraint is ful-

filled, T-junctions, that cause cracks, are avoided by skipping

drawing central vertices on shared edges between blocks of

different LOD values (see figure 2). While using a sequen-

tial algorithm, we can easily satisfy this constraint as d2 val-

ues are computed in a consistent manner by taking into ac-

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)

V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters 3

count neighbors ones. However, in a parallel framework, ad-

jacent blocks may belong to different partitions. Thus, inde-

pendently computing d2 values inside the partitions as done

in [GLMM04], leads to inconsistencies in border blocks d2

values because a complete neighborhood information lacks

for these blocks.

Figure 2: Lacking complete neighborhood information

leads to cracks between adjacent blocks of different parti-

tions.

3. The Parallelization Scheme

As usual in parallel computing, our algorithm is made up

of two phases: a data partitioning phase and a computations

phase. Data partitioning is done statically in a preprocess-

ing stage whereas computations step occurs at each frame

and may lead to inter-tasks communications. The three key

points in writing efficient parallel algorithms, namely inter-

tasks communications, load balancing and global coherence,

are taken into account. Inter-tasks communication is the

topic of the next section. The global coherence issue, known

as the border problem in the field of LOD, is discussed in

subsection 3.2. The way data are partitioned takes care of

load imbalance and it concerns the next subsection.

3.1. Data Partitioning

Data distribution is a critical stage in parallel computing.

The parallel algorithm efficiency heavily depends on it. The

global task and data must be partitioned into subtasks and

subsets that are ideally independent and balanced. Apart

from embarrassingly parallel algorithms, these goals are dif-

ficult to reach. In the LOD field, partitions size must be care-

fully chosen: they must not be too small nor too large. In

one side, if they are too large, the navigation can introduce

load imbalance. On the other side, cutting them too smaller

can limit the drastic simplification ability of the algorithm as

the number of partitions determines its minimum achievable

resolution. Let’s assume our initial terrain is a square of side

(2n +1). On one hand, if terrain is not square, we extend its
side to the power of 2 immediately greater than the actual

side, the added data being skipped at drawing phase. Next,

terrain data are partitioned into square tiles of side (2m +1),

where m <= n. Such tiles perfectly fit to Roettger’s algo-

rithm and can be processed on different machines. The num-

ber m is chosen such that load imbalance is minimized and

the minimal resolution is acceptable. To achieve this, tiles

are assigned to the computation nodes in a checkerboard

manner. Thus, whatever the navigation is, each computations

node has some work to do. Moreover, sending the simplified

data to the visualization nodes is not done on a per-tile basis.

Instead, all computations node data are gathered together be-

fore being sent, thus optimizing the network bandwidth use.

3.2. Addressing the Border Problem

Spatial decomposition is not a novel idea in

the LOD field. Many out-of-core algorithms

[CRMS02, CGG∗03, Hop98, Ulr02, ESC00, YSGM04]
partition the initial data into tiles (some authors call them

clusters, segments or chunks) to speed up external data ac-

cess. A known issue related to this partitioning is the border

problem. This problem occurs because LOD algorithms

need to know about the neighborhood of a particular simplex

in order to determine whether it has to be simplified, refined

or left unchanged. However, when data are partitioned, this

information lacks for border simplices inside the partitions.

Several authors have been faced this issue. For instance,

in [Hop98], Hoppe describes one of the first out-of-core

LOD algorithms which partitions initial terrain data into

rectangular blocks. After simplification, adjacent blocks are

stitched together in a hierarchical fashion to form larger

blocks. To ensure a conforming stitching, blocks boundaries

are left unchanged. While going up in the hierarchy, blocks

boundaries are coarsen but at the price of an additional

processing. Other authors simply hide the visual artifacts

due to the border problem either by using vertical skirts

to fill the cracks around the chunks [Ulr02] or by using

texturing [BDH00].

In fact, in order to solve the border problem, some infor-

mation about neighboring simplices are needed for each bor-

der simplex [CRMS02]. There are several ways to do this.

One way is to fetch the missing information at runtime. This

could be costly, especially in a parallel computing context.

So, we adopt an alternative way which consists in associat-

ing additional neighborhood information into partitions data

at the preprocessing stage and then doing some computa-

tions to recover the missing information. As stated in sec-

tion 2, in the LOD algorithm we used, when the fundamen-

tal constraint is fulfilled, the only information needed by a

block about its neighbors is whether they are refined or not.

This information is obtained by computing the decision vari-

able f of those blocks. Thus, we must fulfill two conditions

in order to guarantee a solution to the border problem:

1. satisfying the fundamental constraint across partitions

boundaries

2. knowing foreign neighbor blocks subdivision state for

each border block

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)

4 V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

To satisfy the first constraint, the d2 values must be com-

puted as described in [RHS98], but on the entire dataset and

before the partitioning stage occurs. To satisfy the second

condition for a given border block, we must be able to eval-

uate f for each adjacent block belonging to another tile. Ex-

cept the d2 value, all parameters needed to evaluate the deci-

sion variable for adjacent blocks can be computed from the

border block. So, in addition to its own d2 values, a tile must

store the d2 values of neighboring tile blocks. These contigu-

ous blocks follow a binary tree pattern, and as neighboring

tiles number is at most four, the number of additional d2 val-

ues to record is 4∗!n−1
i=0 2

i = 4∗ (2n − 1). This represents a
few percent of the initial tile data (3% for n=7 for instance).

Right

neighboring

tile

Tile

d2 value

Figure 3: Binary tree of neighboring d2 values at the border

of the tile right edge.

4. Minimizing communication overhead

Although they have evolved, networks still remain a bottle-

neck for data transfer-intensive applications on PC clusters.

Therefore, sending all data at each frame from LOD nodes

to visualization nodes would bound the model scalability.

Instead, we propose a scheme which relies on culling and

frame-to-frame coherence to considerably reduce the data

transfer overhead by avoiding sending non visible and non

modified data.

4.1. Hierarchical frustum culling

Large terrain visualization highly benefits from frustum

culling since generally only a small part of the whole model

is visible at a time. It is even more true in conjunction with

a LOD algorithm because they are complementary: LOD is

more effective for large views of the 3D object and frustum

culling reaches its full potential at close ranges. In addition,

in our scheme, all distribution features take advantage of this

complementarity: faster LOD computations with early ge-

ometry pruning and lighter communication, both leading to

an effective rendering. Frustum culling is as more efficient

as it is performed early, so it is carried out in two stages :

coarse-grained by not processing every tile fully outside the

viewing frustum, and then fine-grained inside the LOD pro-

cess when traversing each tile quadtree. Storing a complete

hierarchy of bounding boxes over each tile quadtree would

represent up to 66% of the original data. Actually a reason-

able tradeoff is to limit the hierarchy to one or two level(s)

below its maximum depth, the memory overhead is hence-

forth of 16% or 4% only whereas as the culling efficiency is

still maintained.

4.2. Exploiting Temporal Coherence

Despite of LOD which continuously modifies the data visi-

bility state, we observe that, the frame-to-frame coherence

property still holds inside tiles. So, between two frames,

large parts of the rendered data do not change even with in-

teraction. On the basis of this observation, we implemented

a mechanism allowing the modified data detection. It should

be noted that this stage takes place after the culling step.

Therefore, as it is applied to already reduced data, it does

not induce a significant CPU overload. Furthermore, the in-

troduced memory overhead is compensated by a substantial

reduction of communication overhead . This mechanism is

very similar to Unix commands diff and patch. We recall that

after LOD algorithm is performed, data are sent to visualiza-

tion node as triangle fans. For each tile, we record a copy of

the list of fans being rendered which is the result of the previ-

ous LOD computations. At the end of current computations,

a new list of fans is generated. A diff operation occurs be-

tween this list and the saved one. The delta is then sent to

the visualization nodes which perform a patch operation be-

tween the incoming data and the previously rendered data.

This operation results in updating the rendered data with re-

spect to the current view parameters.

5. Rendering Quality

Thanks to advances in graphics technologies, graphics users

become more demanding in interactivity and high visual

quality even for huge models. LOD-specific visual issues

are not tolerated anymore. Indeed, LOD obviously produces

lower detail rendering in simplified regions. Moreover, as the

view point moves, detail is suddenly added or removed. This

leads to visual artifacts known as vertex popping. There are

several ways to solve these issues. Terrain texturing can be

used to maintain an acceptable detail even in simplified ar-

eas. Vertex popping is usually solved by using colors blend-

ing or by implementing a geometrical morphing technique

(geomorphing) [Hop97]. However, geomorphing is more

widely used than blending. Instead of going from one level

of detail to another in one step, geomorphing technique con-

sists to smoothly morph vertex positions between two con-

secutive levels of detail. This smooth transition is gained at

the cost of an additional processing. So, it naturally benefits

from our parallel framework as the induced CPU workload

is distributed on all computations nodes.

5.1. Geomorphing

Since its introduction by Fergusson et al. [FEK01], many

LOD algorithms have incoporated the morphing tech-

nique. Different approaches are used for its implementa-

tion. Distance-based approcaches use transition zones to

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)

V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters 5

blend the geometry between levels of detail [COL96, Paj98].

Time-based strategies use a fixed time interval as interpo-

lating parameter [Hop97, DWS∗97]. These approaches may
induce important computational overhead because finding

the appropriate interpolating parameter is not a trivial task

[Hop97]. Another approach consists in using the error metric

used in the algorithm to parameterize the morphing process

[RHS98, CE01] . What is common to all approaches is that

they all may introduce cracks because of the need to early

know the interpolation final positions before the subdivision

that creates them occurs.

In [RHS98], the morphing parameter (called the blend-

ing factor b) is computed using the decision variable f (the

metric error). However, instead of computing the blend-

ing factor as specified in this paper, we use the formula

b = (1− f)
(0.5+0.5∗ f cmin− f) [ter] (f cmin being the minimum of

the child blocks f values) that takes into account children

states. This is essential in order to prevent a block having a

child while still morphing. Moreover it allows more linearity

and more smoothness to the morphing process.

Our parallel framework perfectly fits to this technique (see

figure 4). However, due to the border problem, the cracks

occurrence is even more important in our model than the

sequential ones. But as the blending factor depends on f and

that the global consistence issue regarding this parameter is

solved with the border problem, our implementation is free

of geomorphing cracks.

Figure 4: New vertices at each level of refinement. Only

these vertices have to be geomorphed, while corner ones

stay at the same 3D position.

5.2. Texturing

Texture data represent another important category of terrain

data. In many applications, terrain data are associated with

another layer of data such as a large satellite image, gener-

ally in the form of a texture handled by the graphics card

[DBH00, BDH00].

To fit the texturing to our tiling framework, we also adopt

a tiled texturing approach [Ulr02]. At preprocessing stage,

we compute a texture tile for each terrain tile using lightmap-

ping and multi-texturing. These additional tiles are managed

by the visualization nodes at rendering time.

Using lightmaps leads us to a static lighting based on the

original terrain model. We found this technique more suit-

able to our framework than dynamic lighting that could re-

quire more graphics resources and lead to disturbing effects

as we do not provide yet morphing mechanism for lighting

attributes. In contrast, our approach avoids this drawback

and it requires only one or two bytes per texel which can

be compressed using advanced features of modern graph-

ics cards. An alternative way would be to distribute light-

ing information on computations nodes, packed with height

data. But lighting precision will follow the LOD simplifica-

tion scheme, which leads to unexpected appearance in most

simplified areas.

Texturing may also be used to manage missing values by

exploiting alpha texturing. Missing data are present in many

areas such as GIS. In this framework, we use them to ful-

fill the tile size constraint by setting to ’missing’ all values

beyond the real boundary of the tile.

Finally, large scenery textures may be difficult to han-

dle as we do not provide distribution mechanism for tex-

ture data. However, since our framework frees visualization

nodes from unnecessary geometry storing and processing,

the whole graphics resources are available for addressing a

maximal video memory, using AGP memory at full extent

or even running out-of-core techniques such as clip-mapping

[TMJ98].

6. Performance

We perform our tests on a cluster of 8 PCs equipped with

Pentium 4 processors, 1 Gb of RAM and NVIDIA GeForce

FX 5900 graphics cards with 256 Mb of video memory. The

nodes are connected by a Gigabit Ethernet network. The

same screen resolution of 1024x768 is used in all config-

urations. We use the publicly available USGS Washington

state dataset [was] for all of our tests. These data represent

1.3 billion elevation values. The flythrough on the terrain is

fixed in order to keep the interaction almost identical in all

cases. As our framework is a tile-based system, we can load

a variable number of tiles in order to change our dataset size,

a tile being of size 257x257. With this setup which leads to a

fine approximation of the model, an extended version of the

whole USGS dataset representing 3.2 Gigabytes of data was

successfully rendered in a 1 visualization node and 7 compu-

tation nodes setup, at an average framerate of 28. Each of the

7 computation nodes was loaded with 3600 tiles of 256x256

actual points, wich equals to a complete map of 1.65 billions

16 bits height values.

The purpose of our work is to increase the size of datasets

that can be rendered using level of detail and commodity

clusters. So, our first test naturally consists in checking the

algorithm data scalability. For this purpose, we start with a

dataset composed of 3600 tiles. For rendering this dataset,

we use one machine for the computations and another for the

visualization. Next, we render the double by adding a sec-

ond computation node with another 3600 tiles and so on. As

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)

6 V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

shown in the figure 5, the average frame rate is approxima-

tively constant which corresponds to our expectations. The

bending of this curve is due to the graphics board which be-

comes more loaded as the dataset size increases. Given this

observation, we would expect to speed up the processing of

a fixed-size model by adding more computations nodes. We

check this over by running a test consisting in rendering a

dataset made up of 3600 tiles using different setups, all us-

ing one visualization node. In the first setup, we use only one

computations node, so that it processes all the 3600 tiles. The

second setup uses 2 computations nodes, each one dealing

with 1800 tiles. The others setups follow the same scheme.

Results being drawn in figure 5, we can observe that the aver-

age frame rate increases as the number of computation nodes

augments.

Figure 5: Data scalability test. We observe that the frame

rate increases with the number of computation nodes (the top

curve), it remains constant by multiplying the dataset size

and the number of computation nodes by the same factor.

Tests on the data compression are very conclusive while

not activating geomorphing. 80% to 90% of the data remain

unchanged on the visualization nodes. However, when acti-

vating geomorphing this ratio drops to 50-60% which is not

surprisingly as geomorphing introduces more changing ver-

tices (see figure 6). Using our framework, we distribute these

additional computations on the cluster nodes. As shown in

figure 6, the more they are, the lighter the extra cost.

Finally, we do not use texturing for the tests (see figure 7).

But as they induce no substantial overhead on the rendering,

using them do not alter the given results.

7. Conclusion

We presented a parallel framework for interactive smooth

rendering of massive terrains. The framework based on the

model presented in [GLMM04], gives several improvements

Figure 6: Implemeting geomorphing introduces important

computation overhead. Observe the distance between the 2

top curves. Thes curves represent the global computation

time when geomorphing is on (curve on the bottom) an off

(curve on the top).

Figure 7: Our parallel framework running on USGS Wash-

ington dataset.

on this previous work. The main contributions concern ad-

dressing unsolved issues in [GLMM04] by solving the bor-

der problem and reducing load imbalance, adding more op-

timizations to further reduce the communication overhead

by providing a hierarchical view frustum culling and a data

compression mechanisms. Moreover, geomorphing and tex-

turing features are given to improve the rendering quality.

As shown by our benchmarks, this allows our framework to

support smooth interactive rendering of very huge terrains.

However, texture data bound our parallel scheme because

they are centralized on the visualization nodes. A solution

will be to distribute those data among computation nodes

which process them and then transfer the resulting color val-

ues to the rendering nodes. Furthermore, terrain data may

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)

V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters 7

be described as ’triangle soup’, our framework is then not

usable. In order to extend its applicability to other types

of dataset such as triangulated irregular networks (TIN) or

time-varying data, we aim at using scattered data approxima-

tion techniques [LWS97] to adapt such models to our frame-

work. In addtion, to speed up the local computations, the

high stream processing capabilities of recent graphics pro-

cessors can be exploited.

Acknowledgments

We would like to acknowledge the BRGM (French Geolog-

ical survey) and Région Centre for supporting part of this

work. We also would like to acknowledge Sylvain Jubertie

for setting up the environment for our tests.

References

[ARZ03] ALLARD J., RAFFIN B., ZARA F.: Coupling

parallel simulation and multi-display visualiza-

tion on a pc cluster. In Euro-par 2003 (Klagen-

furt, Austria, August 2003). 1

[BDH00] BAUMANN K., DOLLNER J., HINRICHS K.:

Integrated multiresolution geometry and tex-

ture models for terrain visualization. Proceed-

ings joint EuroGraphics-IEEE TCVG 2000

(May 2000). 3, 5

[BW00] BRODSKY D., WATSON B.: Model simplifica-

tion through refinement. Graphics Interface’00

(2000). 2

[CE01] CLINE D., EGBERT P.: Terrain decimation

through quadtree morphing. IEEE Transaction

on Visualization and Computer Graphics 2001

7, 1 (January 2001), 62–69. 5

[CGG∗03] CIGNONI P., GANOVELLI F., GOBETTI E.,

MARTON F., PONCHIO F., SCOPIGNO R.:

Bdam: Batched dynamic adaptive meshes for

high performance terrain visualization. Pro-

ceedings EG2003 (September 2003), 505–514.

3

[COL96] COHEN-OR D., LEVANONI Y.: Temporal con-

tinuity of levels of detail in delaunay triangu-

lated terrain. IEEE Visualization ’96 (October

1996), 37–42. 4

[CRMS02] CIGNONI P., ROCCHINI C., MONTANI C.,

SCOPIGNO R.: External memory manage-

ment and simplification of huge meshes. IEEE

Transaction on Visualization and Computer

Graphics (2002). 3

[DBH00] DOLLNER J., BAUMANN K., HINRICHS K.:

Texturing techniques for terrain visualization.

Proceedings IEEE Visualization’00 (2000),

227–234. 5

[DLR00] DEHNE F., LANGIS C., ROTH G.: Mesh

simplification in parallel. ICA3PP’00 (2000),

281–290. 2

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI

D., MILLE M., ALDRICH C., MINEEV-

WEINSTEIN M. B.: Roaming terrain: Real-

time optimally adapting meshes. IEEE Visual-

ization (1997), 81–88. 1, 4

[ESC00] EL-SANA J., CHIANG Y.-J.: External mem-

ory view-dependent simplification. Computer

Graphics Forum 3, 19 (August 2000), 139–

150. 3

[ESV99] EL-SANA J., VARSHNEY A.: Parallel process-

ing for view-dependent polygonal virtual envi-

ronments. Proceedings SIGGRAPH’99 (1999).

2

[FEK01] FERGUSSON R., ECONOMY R., KELLY

A.AND RAMOS P.: Continuous terrain level

of detail for visual simulation. ACM Sym-

posium on Interactive 3D Graphics (March

2001), 111–120. 4

[GJR03] GAUGNE R., JUBERTIE S., ROBERT S.: Dis-

tributed multigrid algorithms for interactive

scientific simulations on clusters. ICAT 2003,

Japan (2003). 1

[GLMM04] GOURANTON V., LIMET S., MADOUGOU S.,

MELIN E.: a scalable cluster-based paral-

lel simplification framework for height fileds.

EuroGraphics/ACM SIGGRAPH, Proceedings

Parallel Graphics and Visualization’04 (June

2004), 59–65. 2, 6

[HDJ04] HWA L., DUCHAINEAUM., JOY K.: Adaptive

4-8 texture hierarchies. IEEE Visualization ’04

(October 2004), 219–226. 1

[Hop96] HOPPE H.: Progressive meshes. In proceed-

ings SIGGRAPH’96 (1996), 99–108. 1

[Hop97] HOPPE H.: View-dependent refinement of pro-

gressive meshes. Computer Graphics (In pro-

ceedings SIGGRAPH’97) (August 1997), 189–

198. 4, 5

[Hop98] HOPPE H.: Smooth view-dependent level-of-

detail control and its application to terrain ren-

dering. IEEE Visualization ’98 31 (October

1998), 35–42. 3

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W.,

HODGES L. F., FAUST N., TURNER G.: Real-

time, continuous level of detail rendering of

height fields. Computer Graphics, Proceedings

SIGGRAPH’96 (1996), 109–118. 1

[LWS97] LEE S., WOLBERG G., SHIN Y.: Scattered

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)

8 V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

data interpolation with multilevel b-splines.

IEEE Transaction on Visualization and Com-

puter Graphics 3, 3 (July-September 1997). 6

[MBDM97] MONTRYM J., BAUM D., DIGNAM D.,

MIGDAL C.: InfiniteReality: A Real-Time

Graphics System. In Computer Graphics

(SIGGRAPH 97) (August 1997), ACM Press,

pp. 293–303. 1

[Paj98] PAJAROLA R.: Large scale terrain visualiza-

tion using the restricted quadtree triangulation.

IEEE Visualization (Proc. IEEE Visualization

’98) (1998), 19–26. 4

[RHS98] ROTTGER S., HEIDRICH W., SLUSSALLEK

P.: Real-time generation of continuous levels

of detail for height fields. Proceedings in 6th

International Conference in Central Europe on

Computer Graphics and Visualization (1998),

315–322. 2, 3, 5

[ter] http://home.planet.nl/ monstrous/. 5

[TMJ98] TANNER C., MIGDAL C., JONES M.: The

clipmap: A virtual mipmap. SIGGRAPH’98

proceedings (1998), 151–158. 5

[top] http://www.top500.org. 1

[Ulr02] ULRICH T.: Rendering massive terrains using

chunked level of detail control. SIGGRAPH

Course Notes (2002). 3, 5

[was] http://rocky.ess.washington.edu/data/raster/tenmeter/onebytwo10/index.html.

1, 5

[YSGM04] YOON S., SALOMON B., GAYLE R.,

MANOCHA D.: Quick-vdr: Interactive view-

dependent rendering of massive models. IEEE

Visualization 2004 (October 2004), 131–138.

3

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)

