
JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.1 (1-18)

Journal of Computer and System Sciences ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Towards more precise rewriting approximations ✩

Yohan Boichut ∗, Jacques Chabin, Pierre Réty

LIFO – Université d’Orléans, B.P. 6759, 45067 Orléans cedex 2, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 June 2015
Received in revised form 4 January 2017
Accepted 17 January 2017
Available online xxxx

Keywords:
Term rewriting
Tree languages
Logic programming
Reachability
Rewriting approximations

To check a system, some verification techniques consider a set of terms I that represents 
the initial configurations of the system, and a rewrite system R that represents the system 
behavior. To check that no undesirable configuration is reached, they compute an over-
approximation of the set of descendants (successors) issued from I by R , expressed by 
a tree language. Some techniques have been presented using regular tree languages, and 
more recently using non-regular languages to get better approximations: using context-
free tree languages [1] on the one hand, using synchronized tree languages [2] on the other 
hand. In this paper, we merge these two approaches to get even better approximations: we 
compute an over-approximation of the descendants, using synchronized-context-free tree 
languages expressed by logic programs. We give several examples for which our procedure 
computes the descendants in an exact way, unlike former techniques.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

To check systems like cryptographic protocols or Java programs, some verification techniques consider a set of terms I
that represents the initial configurations of the system, and a rewrite system R that represents the system behavior [3–5]. 
To check that no undesirable configuration is reached, they compute an over-approximation of the set of descendants1

(successors) issued from I by R , expressed by a tree language. Let R∗(I) denote the set of descendants of I , and consider 
a set Bad of undesirable terms. Thus, if a term of Bad is reached from I , i.e. R∗(I) ∩ Bad �= ∅, it means that the protocol or 
the program is flawed. In general, it is not possible to compute R∗(I) exactly. Instead, one computes an over-approximation 
App of R∗(I) (i.e. App ⊇ R∗(I)), and checks that App ∩ Bad = ∅, which ensures that the protocol or the program is correct.

However, I , Bad and App have often been considered as regular tree languages, recognized by finite tree automata. In 
the general case, R∗(I) is not regular, even if I is. Moreover, the expressiveness of regular languages is poor. Then the 
over-approximation App may not be precise enough, and we may have App ∩ Bad �= ∅ whereas R∗(I) ∩ Bad = ∅. In other 
words, the protocol is correct, but we cannot prove it. Some work has proposed CEGAR-techniques (Counter-Example Guided 
Approximation Refinement) to conclude as often as possible [3,6,7]. However, in some cases, no regular over-approximation 
works [8].

To overcome this theoretical limit, the idea is to use more expressive languages to express the over-approximation, i.e. 
non-regular ones. However, to be able to check that App ∩ Bad = ∅, we need a class of languages closed under intersection 

✩ A preliminary version of this paper appeared in the Proceedings of the 9th International Conference on Language and Automata Theory and Applications 
(LATA), LNCS 8977, 2015.

* Principal corresponding author.
E-mail addresses: yohan.boichut@univ-orleans.fr (Y. Boichut), jacques.chabin@univ-orleans.fr (J. Chabin), pierre.rety@univ-orleans.fr (P. Réty).

1 I.e. terms obtained by applying arbitrarily many rewrite steps on the terms of I .
http://dx.doi.org/10.1016/j.jcss.2017.01.006
0022-0000/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2017.01.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:yohan.boichut@univ-orleans.fr
mailto:jacques.chabin@univ-orleans.fr
mailto:pierre.rety@univ-orleans.fr
http://dx.doi.org/10.1016/j.jcss.2017.01.006


JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.2 (1-18)

2 Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
and whose emptiness is decidable. Actually, if we assume that Bad is regular, closure under intersection with a regular 
language is enough. The class of context-free tree languages has these properties, and an approximation technique using 
context-free tree languages has been proposed in [1]. On the other hand, the class of synchronized tree languages [9] also 
has these properties, and an approximation technique using synchronized tree languages has been proposed in [2]. Both 
classes include regular languages, but they are incomparable. Context-free tree languages cannot express dependencies be-
tween different branches, except in some cases, whereas synchronized tree languages cannot express vertical dependencies.

We want to use a more powerful class of languages that can express the two kinds of dependencies together: the 
class of synchronized-context-free tree-(tuple) languages [10,11], which has the same properties as context-free languages 
and as synchronized languages, i.e. closure under union, closure under intersection with a regular language, decidability of 
membership and emptiness.

In this paper, we propose a procedure that always terminates and that computes an over-approximation of the de-
scendants obtained by a linear rewrite system, using synchronized-context-free tree-(tuple) languages expressed by logic 
programs. Compared to our previous work [2], we introduce “input arguments” in predicate symbols, which is a major tech-
nical change that highly improves the quality of the approximation, and that requires new results and new proofs. This work 
is a first step towards a verification technique offering more than regular approximations. Some on-going work is discussed 
in Section 6 in order to make this technique be an acceptable verification technique.

The paper is organized as follows. Term rewriting and synchronized-context-free tree languages are introduced in Sec-
tion 2. Then technical results needed in the sequel are established in Section 3. Our main contribution, i.e. computing 
approximations, is presented in Section 4. Finally, in Section 5 our technique is applied to examples, in particular when 
R∗(I) can be expressed in an exact way neither by a context-free language, nor by a synchronized language.

Comparison with [1–5]: If no input arguments are used, this paper is equivalent to [2], which actually also needed the 
rewrite system to be left-and-right linear (the erratum of [2] is given in [12]), due to the semantics of logic programs. An 
extension of [2] to deal with nonright-linear rewrite system is proposed in [13].

If no input arguments are used, predicate symbols have only one argument, and assuming some additional restric-
tions, the logic program can be viewed as a finite tree automaton (predicate symbols are considered as states), which then 
generates a regular language. In this particular case, the procedure presented in this paper works as the tree automaton 
completion of [3–5]. However, [3–5] only need left-linearity, and [3] uses a set of equation E as an heuristics for guiding 
the approximation, whereas our procedure does not because equations do not make sense when working with predicate 
symbols with several arguments, i.e. with tree-tuples. On the other hand, our procedure always terminate, but [3–5] could 
also always terminate if a bound for the number of states was fixed.

The completion procedure of [1] computes an over-approximation of the descendants using a context-free tree language 
defined by an indexed linear tree grammar (ILTG). Actually, ILTGs look like and are equi-expressive with (top-down) push-
down tree automata. The rewrite system is assumed to be left-linear, and the procedure always terminate. Roughly speaking, 
when rewriting a term t generated by the current grammar (to get the descendants of t), the substitution (which is a match) 
is stored into the stack. However, to make the stack alphabet finite, substitutions are pruned, which amounts to merge var-
ious substitutions. Compared to our procedure, [1] is more automated, because it does not need additional heuristics to 
guide the approximation. However, it is limited by the use of context-free tree languages. Unfortunately, it is difficult to 
compare our procedure with that of [1], because they are quite different and use different formalisms.

Other Related Work: The class of tree-tuples whose overlapping coding is recognized by a tree automaton on the product 
alphabet [14] (called “regular tree relations” by some authors), is strictly included in the class of rational tree relations [15]. 
The latter is equivalent to the class of non-copying2 synchronized languages [16], which is strictly included in the class of 
synchronized languages.

Context-free tree languages (i.e. without assuming a particular strategy for grammar derivations) [17] are equivalent to 
OI (outside-in strategy) context-free tree languages, but are incomparable with IO (inside-out strategy) context-free tree 
languages [18,19]. The IO class (and not the OI one) is strictly included in the class of synchronized-context-free tree 
languages. The latter is equivalent to the “term languages of hyperedge replacement grammars”, which are equivalent to 
the tree languages definable by attribute grammars [20,21]. However, we prefer to use the synchronized-context-free tree 
languages, which use the well known formalism of pure logic programming, for its implementation ease.

Much other work computes the descendants in an exact way using regular tree languages (in particular the recent 
paper [22]). In general the set of descendants is not regular even if the initial set is. Consequently strong restrictions over 
the rewrite system are needed to get regular descendants, which are not suitable in the framework of protocol or program 
verification.

2. Preliminaries

Consider a finite ranked alphabet � = {a, b, f , g, h, . . .} and a set of variables Var = {x, y, z, . . .}. Each symbol f ∈ � has a 
unique arity, denoted by ar( f ). The notions of first-order term, position and substitution are defined as usual. Given σ and σ ′
two substitutions, σ ◦ σ ′ denotes the substitution such that for any variable x, σ ◦ σ ′(x) = σ(σ ′(x)). T� denotes the set of 

2 Clause heads are assumed to be linear.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.3 (1-18)

Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 3
ground terms (without variables) over �. For a unary functional symbol f , 

n times︷ ︸︸ ︷
f ( f (. . . f ( t))) is denoted by f n(t). For a term t , 

Var(t) is the set of variables of t , Pos(t) is the set of positions of t . For p ∈ Pos(t), t(p) is the symbol of � ∪ Var occurring 
at position p in t , and t|p is the subterm of t at position p. The term t is linear if each variable of t occurs only once 
in t . The term t[t′]p is obtained from t by replacing the subterm at position p by t′ . PosVar(t) = {p ∈ Pos(t) | t(p) ∈ Var}, 
PosNonVar(t) = {p ∈ Pos(t) | t(p) /∈ Var}. Note that if p ∈ PosNonVar(t), t|p = f (t1, . . . , tn), and i ∈ {1, . . . , n}, then p.i is the 
position of ti in t . For p, p′ ∈ Pos(t), p < p′ means that p occurs in t strictly above p′ . Let t, t′ be terms, t is more general 
than t′ (denoted t ≤ t′) if there exists a substitution ρ s.t. ρ(t) = t′ . Let σ , σ ′ be substitutions, σ is more general than σ ′
(denoted σ ≤ σ ′) if there exists a substitution ρ s.t. ρ ◦ σ = σ ′ .

A rewrite rule is an oriented pair of terms, written l → r. We always assume that l is not a variable, and Var(r) ⊆ Var(l). 
A rewrite system R is a finite set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The rewrite relation 
→R is defined as follows: t →R t′ if there exist a position p ∈ PosNonVar(t), a rule l → r ∈ R , and a substitution θ s.t. t|p =
θ(l) and t′ = t[θ(r)]p . →∗

R denotes the reflexive-transitive closure of →R . t′ is a descendant of t if t →∗
R t′ . If E is a set of 

ground terms, R∗(E) denotes the set of descendants of elements of E . The rewrite rule l → r is left (resp. right) linear if l
(resp. r) is linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right) linear. R is linear if R is both left and 
right linear.

In the following, we consider the framework of pure logic programming, and the class of synchronized-context-free tree-
tuple3 languages [10,11], which is presented as an extension of the class of synchronized tree-tuple languages defined by 
CS-clauses [9,23]. Given a set Pred of predicate symbols; atoms, goals, bodies and Horn-clauses are defined as usual. Note that 
both goals and bodies are sequences of atoms. We will use letters G or B for sequences of atoms, and A for atoms. Given a 
goal G = A1, . . . , Ak and positive integers i, j, we define G|i = Ai and G|i. j = (Ai)| j = t j where Ai = P (t1, . . . , tn). Let G be 
a sequence of atoms, A an atom occurring in G and B a new atom. We denote by G[A ← B] the replacement of the atom 
A by B in G .

Definition 1. The tuple of terms (t1, . . . , tn) is flat if t1, . . . , tn are variables. The sequence of atoms B is flat if for each atom 
P (t1, . . . , tn) of B , (t1, . . . , tn) is flat. B is linear if each variable occurring in B (possibly at subterm position) occurs only 
once in B . Note that the empty sequence of atoms (denoted by ∅) is flat and linear.

A Horn clause P (t1, . . . , tn) ← B is:

• empty if P (t1, . . . , tn) is flat, i.e. ∀i ∈ {1, . . . , n}, ti is a variable.
• normalized if ∀i ∈ {1, . . . , n}, ti is a variable or contains only one occurrence of function-symbol. A program is normalized

if all its clauses are normalized.

Example 1. Let x, y, z be variables. The sequence of atoms P1(x, y), P2(z) is flat, whereas P1(x, f (y)), P2(z) is not flat. The 
clause P (x, y) ← Q (x, y) is empty and normalized. The clause P ( f (x), y) ← Q (x, y) is normalized whereas P ( f ( f (x)), y) ←
Q (x, y) is not.

Definition 2. A logic program with modes is a logic program such that a mode-tuple �m ∈ {I, O }n is associated to each predicate 
symbol P (n is the arity of P ). In other words, each predicate argument has mode I (Input) or O (Output).

To distinguish them, output arguments will be covered by a hat.

Notation. Let P be a predicate symbol. ArIn(P ) is the number of input arguments of P , and Ar O ut(P ) is the number of 
output arguments. Let B be a sequence of atoms (possibly containing only one atom). In(B) is the input part of B , i.e. the 
tuple composed of the input arguments of B . ArIn(B) is the arity of In(B). V arin(B) is the set of variables that appear in 
In(B). O ut(B), Ar O ut(B), and V arout(B) are defined in a similar way. We also define V ar(B) = V arin(B) ∪ V arout(B).

Example 2. Let B = P (t̂1, ̂t2, t3), Q (t̂4, t5, t6). Then, O ut(B) = (t1, t2, t4) and In(B) = (t3, t5, t6).

Definition 3. Let B = A1, . . . , An be a sequence of atoms. We say that A j � Ak (possibly j = k) if ∃y ∈ V arin(A j) ∩V arout(Ak). 
In other words an input of A j depends on an output of Ak . We say that B has a loop if A j �+ A j for some A j (�+ is the 
transitive closure of �).

Example 3. Q (̂x, s(y)), R (̂y, s(x)) (where x, y are variables) has a loop because Q (̂x, s(y)) � R (̂y, s(x)) � Q (̂x, s(y)).

Definition 4. A Synchronized-Context-Free (S-CF) program Prog is a logic program with modes, whose clauses H ← B satisfy:

– In(H).O ut(B) (. is the tuple concatenation) is a linear tuple of variables, i.e. each tuple-component is a variable, and 
each variable occurs only once,

3 For simplicity, “tree-tuple” is sometimes omitted.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.4 (1-18)

4 Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
– and B does not have a loop.

A clause of an S-CF program is called S-CF clause.

Example 4. Prog = {P (̂x, y) ← P (ŝ(x), y)} is not an S-CF program because In(H).O ut(B) = (y, s(x)) is not a tuple of vari-
ables. Prog′ = {P ′(ŝ(x), y) ← P ′(̂x, s(y))} is an S-CF program because In(H).O ut(B) = (y, x) is a linear tuple of variables, 
and there is no loop in the clause body.

Definition 5. Let Prog be an S-CF program. Given a predicate symbol P without input arguments, the tree-(tuple) language 
generated by P is L Prog(P ) = {�t ∈ (T�)Ar O ut(P ) | P (�t) ∈ Mod(Prog)}, where T� is the set of ground terms over the signature 
� and Mod(Prog) is the least Herbrand model of Prog . L Prog(P ) is called Synchronized-Context-Free language (S-CF language).

Example 5. Let us consider the S-CF program without input arguments Prog = {P1(ĝ(x, y)) ← P2 (̂x, ̂y). P2(ĉ(x, y),

̂c(x′, y′)) ← P2(̂x, ̂y′), P2 (̂y, ̂x′). P2 (̂a, ̂a) ← .}. The language generated by P1 is L Prog(P1) = {g(t, tsym) | t ∈ T{c\2,a\0}}, where 
tsym is the symmetric tree of t (for instance c(c(a, a), a) is the symmetric of c(a, c(a, a))). This language is synchronized, but 
it is not context-free.

Example 6. Prog = {S(ĉ(x, y)) ← P (̂x, ̂y, a, b). P ( f̂ (x), ̂g(y), x′, y′) ← P (̂x, ̂y, h(x′), i(y′)). P (̂x, ̂y, x, y) ←} is an S-CF pro-
gram. The language generated by S is L Prog(S) = {c( f n(hn(a)), gn(in(b))) | n ∈ N}, which is not synchronized (there are 
vertical dependencies) nor context-free.

S-CF languages are closed under union, intersection, and emptiness is decidable [11]. Emptiness is linear in the number 
of clauses of the S-CF program. On the other hand, consider a S-CF program Prog′′ that computes the intersection of a S-CF 
program Prog with a regular program Prog′ . Let Pred, Pred′, Pred′′ be the set of predicate symbols of Prog , Prog′ , Prog′′
respectively. A bound for the size of Pred′′ is |Pred′′| ≤ |Pred|.2ArMax(Pred).|Pred′| , where ArMax(Pred) is the biggest arity of 
the elements of Pred.

Definition 6. The clause H ← B is non-copying if the tuple O ut(H).In(B) is linear. An S-CF program is non-copying if all its 
clauses are non-copying.

Example 7. The clause P (d̂(x, x), y) ← Q (̂x, p(y)) is copying.
P (ĉ(x), y) ← Q (̂x, p(y)) is non-copying.

Remark. An S-CF program without input arguments is actually a CS-program (composed of CS-clauses) [9], which generates 
a synchronized language.4 A non-copying normalized CS-program such that every predicate symbol has only one argument 
is called regular program. It is equivalent to a finite tree automaton. Indeed, clauses are of the form P0( ̂f (x1, . . . , xn)) ←
P1(x̂1), . . . , Pn(x̂n), which is equivalent to the transition f (P1, . . . , Pn) → P0 where P0, P1, . . . , Pn are considered as states. 
Consequently it generates a regular tree language. Conversely, every regular tree language can be generated by a regular 
program.

Given an S-CF program, we focus on two kinds of derivations.

Definition 7. Given an S-CF program Prog and a sequence of atoms G ,

• G derives into G ′ by a resolution step if there exists a clause5 H ← B in Prog and an atom A ∈ G such that A and H
are unifiable by the most general unifier σ (then σ(A) = σ(H)) and G ′ = σ(G)[σ(A) ← σ(B)]. It is written G �σ G ′ .
We consider the transitive closure �+ and the reflexive-transitive closure �∗ of �. If G1 �σ1 G2 and G2 �σ2 G3, we 
write G1 �∗

σ2◦σ1
G3.

• G rewrites into G ′ (possibly in several steps) if G �∗
σ G ′ s.t. σ does not instantiate the variables of G . It is written 

G →∗
σ G ′ .

Example 8. Prog = {P (x̂1, ĝ(x2)) ← P ′(x̂1, ̂x2). P ( f̂ (x1), ̂x2) ← P ′′(x̂1, ̂x2).}, and consider G = P ( f (x), y). We have
P ( f (x), y) �σ1 P ′( f (x), x2) with σ1 = [x1/ f (x), y/g(x2)] and P ( f (x), y) →σ2 P ′′(x, y) with σ2 = [x1/x, x2/y].

4 Initially, synchronized languages were presented using constraint systems (sorts of grammars) [24], and later using logic programs. CS stands for 
“Constraint System”.

5 We assume that the clause and G have distinct variables.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.5 (1-18)

Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 5
In the remainder of the paper, given an S-CF program Prog and two sequences of atoms G1 and G2, G1 �∗
Prog G2 (resp. 

G1 →∗
Prog G2) also denotes that G2 can be derived (resp. rewritten) from G1 using clauses of Prog . Note that for any atom 

A, if A → B then A � B . On the other hand, A �σ B implies σ(A) → B . Consequently, if A is ground, A � B implies 
A → B .

It is well known that resolution is complete.

Theorem 1. Let A be a ground atom. A ∈ Mod(Prog) iff A �∗
Prog ∅.

3. Technical lemmas

Before describing in Section 4 our technique for computing non-regular approximations, we need some technical lemmas 
for proving our results.

Lemma 1. Let t and t′ be two terms such that V ar(t) ∩ V ar(t′) = ∅. Suppose that t′ is linear. Assuming that t and t′ are unifiable, 
let σ be the most general unifier of t and t′ . Then, one has: ∀x, y : (x, y ∈ V ar(t) ∧ x �= y) ⇒ V ar(σ (x)) ∩ V ar(σ (y)) = ∅ and 
∀x : x ∈ V ar(t) ⇒ σ(x) is linear.

For the next lemmas, we introduce two notions allowing the extraction of variables occurring once in a sequence of 
atoms.

Definition 8. Let G be a sequence of atoms. V arin
Lin(G) is a tuple of variables occurring in In(G) and not in O ut(G), and 

V arout
Lin (G) is a tuple of variable occurring in O ut(G) and not in In(G). In both cases, tuples of variables are built in such a 

way that the number of occurrences of variables is preserved for the concerned variables i.e. if a variable occurs n times in 
V arin

Lin(G) (resp. V arout
Lin (G)) then the same variable occurs n times in In(G) (resp. O ut(G)).

Example 9. Let G = P ( ̂g( f (x′, z′)), y′), Q (v̂ ′, g(z′)). Then V arin
Lin(G) = (y′) and V arout

Lin (G) = (x′, v ′).

Note that for a matter of simplicity, we denote by x ∈ V arin
Lin(G) (resp. x ∈ V arout

Lin (G)) that x occurs in the tuple V arin
Lin(G)

(resp. V arout
Lin (G)). The following lemma focuses on a property of a sequence of atoms obtained after a resolution step.

Lemma 2. Let Prog be a non-copying S-CF program, and G be a sequence of atoms such that O ut(G) is linear, In(G) is linear and G
does not contain loops. We assume6 that variables occurring in Prog are different from those occurring in G. If G �σ G ′ , then G ′ is 
loop free, σ(V arin

Lin(G)).O ut(G ′) and σ(V arout
Lin (G)).In(G ′) are both linear.

Example 10. Let Prog = {P (ĝ(x), y, z) ← Q (̂x, f (y), z)} and G = P ( ̂g( f (x′)), y′, z′), R(ẑ′). Then G �σ G ′ with σ =
(x/ f (x′), y/y′, z/z′), G ′ = Q ( f̂ (x′), f (y′), z′), R(ẑ′). Note that G ′ is loop free, σ(V arin

Lin(G)).O ut(G ′) = (y′, f (x′), z′) is linear, 
σ(V arout

Lin (G)).In(G ′) = (x′, f (y′), z′) is linear.

Proof. First, we show that σ(V arin
Lin(G)). O ut(G ′) and σ(V arout

Lin (G)).In(G ′) are linear. Thus, in a second time, we show that 
G ′ is loop free.

Suppose that G �σ G ′ . Thus, there exist an atom Ax in G = A1, . . ., Ax, . . . , An , an S-CF-clause H ← B ∈ Prog and the 
mgu σ such that σ(H) = σ(Ax) and G ′ = σ(G)[σ(Ax) ← σ(B)].

Let V arin
Lin(G) = x1, . . . , xk, . . . , xk+n′ , . . . , xm built as follows:

• x1, . . . , xk−1 are the variables occurring in V arin(A1, . . . , Ax−1) and not in V arout(G);
• xk, . . . , xk+n′ are the variables occurring in V arin(Ax) and not in V arout(G);
• xk+n′+1, . . . , xm are variables occurring the atoms V arin(Ax+1, . . . , An) and not in V arout(G).

Since In(G) and O ut(G) are both linear and σ is the mgu of Ax and H , one has σ(V arin
Lin(G)) = x1, . . . , xk+1, σ(xk), . . . ,

σ (xk+n′ ), xk+n′+1, . . . xm . Note that the linearity of In(G) involves the linearity of V arin
Lin(G). And one can deduce that 

σ(V arin
Lin(G)) is linear iff the tuple σ(xk), . . . , σ(xk+n′ ) is linear.

By hypothesis, O ut(H).In(B) and O ut(B).In(H) are both linear.
So, a variable occurring in V ar(H) ∩ V ar(B) is either

• a variable that is in O ut(H) and O ut(B) or
• a variable that is in In(H) and In(B).

6 If it is not the case then variables are relabeled.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.6 (1-18)

6 Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 1. Possible forms of H .

A variable occurring in O ut(H) and in In(H) does not occur in B . Symmetrically, a variable occurring in O ut(B) and in 
In(B) does not occur in H . Moreover, a variable cannot occur twice in either O ut(H) or In(H).

Let us focus on Ax . Ax is linear since it does not contain any loop by hypothesis. Let us study the possible forms of H
given in Fig. 1.

Each variable y occurring in B is:

• either a new variable or
• a variable occurring once in H and preserving its nature (input or output).

The relation �Prog ensures the nature stability of variables i.e.

V ar(O ut(σ (B))) ∩ V ar(In(σ (H))) = ∅ and (1)

V ar(In(σ (B))) ∩ V ar(O ut(σ (H))) = ∅ (2)

Moreover, a consequence of Lemma 1 is that O ut(σ (B)) and In(σ (B)) are both linear.
Let us study the two possible cases:

(a) since the variables of H and those of G are distinct and V arin
Lin(G) is linear, σ(V arin

Lin(G)) = x1, . . . , xk+1, σ(xk), . . . ,
σ (xk+n′ ), xk+n′+1, . . . , xm is also linear. Moreover, considering H as linear and (1) and (2), a consequence is that⋃

xi ,i∈{k,...,k+n′}
V ar(σ (xi)) ⊆ {xk, . . . , xk+n′ } ∪ V arin(Ax).

One can also deduce that V arout(G ′) ⊆ V arout(G) ∪ (V arout(B)). Consequently, V arout(G ′) ∩ V ar(σ (V arin
Lin(G))) = ∅ and 

the tuple σ(V arin
Lin(G)).O ut(G ′) is linear iff O ut(G ′) is linear.

(b) A variable can occur at most twice in H but an occurrence of such a variable is necessarily an input vari-
able and the other an output variable. Consequently the unification between Ax and H leads to a variable α of 
σ(V arin

Lin(G)) occurring twice in σ(H). But according to the form of H , these two occurrences of α do not oc-
cur in σ(V arin

Lin(G)) since one of the two occurrences is necessarily at an output position. So σ(V arin
Lin(G)) =

x1, . . . , xk+1, σ(xk), . . . , σ(xk+n′ ), xk+n′+1, . . . , xm is a linear tuple. Moreover, Prog being a non-copying S-CF program, 
for any variable xi , with i = k, . . .k + n′ ,
– if xi ∈ V ar(σ (x)) with x a variable occurring twice in H then V ar(σ (xi)) ∩ V arout(G ′) = ∅;
– if there exists z ∈ V arout(Ax) s.t. z ∈ V ar(σ (xi)) and z ∈ V ar(σ (x)) with x occurring twice in H then V ar(σ (xi)) ∩

V arout(G ′) = ∅;
– if there exists z ∈ V arout(Ax) s.t. xi ∈ V ar(σ (z)) and z ∈ V ar(σ (x)) with x occurring twice in H then V ar(σ (xi)) ∩

V arout(G ′) = ∅;
– if there exists x ∈ V arin(H) such that x /∈ V arout(H) then one has V ar(σ (xi)) ⊆ {xk, . . . , xk+n′ } ∪ V arin(Ax). Thus 

V ar(σ (xi)) ∩ V arout(G ′) = ∅.
Consequently, σ(V arin

Lin(G)).O ut(G ′) is linear iff O ut(G ′) is linear.

Let us now study the linearity of O ut(G ′). First, let us focus on the case O ut(σ (G − Ax)) where G − Ax is the sequence 
of atoms G for which the atom Ax has been removed. Note that σ(G − Ax) = G ′ − σ(B).

Suppose that O ut(G − Ax) is not linear. So there exist two distinct variables x and y of G such that V ar(σ (x)) ∩
V ar(σ (y)) �= ∅. Since these variables are concerned by the mgu σ , they are also variables of Ax at input positions as 
illustrated in Fig. 2. Since these variables are distinct and share the same variable by the application of σ , then there exist 
two subterms (red and green triangles in Fig. 2) at input positions in H sharing the same variable α. That is impossible 
since, by definition, for each H ← B ∈ Prog , one has In(H).O ut(B) and O ut(H).In(B) both linear.

So, the last possible case for breaking the linearity of O ut(G ′) is that there exist two distinct variables x and y such that 
x occurs in O ut(B), y occurs in O ut(G − Ax) and V ar(σ (x)) ∩ V ar(σ (y)) �= ∅. A variable α of V ar(σ (x)) ∩ V ar(σ (y)) is 



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.7 (1-18)

Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 7
Fig. 2. G − Ax . (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

necessarily a variable of H . Since a copy of α is done in the variable y and y necessarily occurs in Ax at an input position, 
there is a contradiction. Indeed, it means that the variable α must occur both in O ut(H) and In(H) but also in O ut(B). 
Thus, H ← B is not a non-copying S-CF clause. Consequently, O ut(G ′) is linear.

To conclude, σ(V arin
Lin(G)).O ut(G ′) is linear. Note that showing that σ(V arout

Lin (G)).In(G ′) is linear is similar.
The last remaining point to show is that G ′ does not contain any loops.
By construction, G ′ = σ(G)[σ(Ax) ← σ(B)]. There are three cases to study:

• Suppose there exists a loop occurring in G ′ − σ(B). By definition, G ′ − σ(B) = σ(A1), . . . σ (Ax−1), σ(Ax+1), . . . σ (Am). 
Let us reason on the sequence of atoms G where G = Ai, Ax, A j . Note that it can be easily generalized to a sequence of 
atoms of any size, but for a matter of simplicity, we focus on a significant sequence composed of three atoms. In that 
case, G ′ −σ(B) = σ(Ai), σ(A j). If there exists a loop in G ′ −σ(B) but not in G then there are two possibilities (actually 
three but two of them are exactly symmetric):
– Ai � A j and A j � Ai : Then σ has generated the loop. So, one can deduce that there exist two variables α and β

such that α ∈ V arin(σ (Ai)) ∩ V arout(σ (A j)), β ∈ V arout(σ (Ai)) ∩ V arin(σ (A j)). Thus, there exist y ∈ V arout(Ai), y′ ∈
V arin(Ai), z ∈ V arout(A j) and z′ ∈ V arin(A j) such that α ∈ V ar(σ (y′)) ∩ V ar(σ (z)) and β ∈ V ar(σ (y)) ∩ V ar(σ (z′)). 
Since those four variables are concerned by the mgu, one can deduce that they also occur in Ax . More precisely, 
according to the linearity of In(G) and O ut(G), y′ ∈ V arout(Ax), y ∈ V arin(Ax), z ∈ V arin(Ax) and z′ ∈ V arout(Ax). In 
that case, Ai � Ax and Ax � Ai because y′ ∈ V arout(Ax) ∩ V arin(Ai) and y ∈ V arout(Ai) ∩ V arin(Ax). Consequently, 
a loop occurs in G . Contradiction.

– Ai � A j and A j � Ai : Consequently, σ has generated the loop. Since Ai � A j , then there exists a variable y such that 
y ∈ V arin(Ai) ∩ V arout(A j). If there exists a loop in G ′ − σ(B) then there exists a variable α s.t. α ∈ V arout(σ (Ai)) ∩
V arin(σ (A j)). So there exist two variables y′ and z′ with y′ ∈ V arout(Ai) and z′ ∈ V arin(A j) s.t. α ∈ V ar(σ (y′)) ∩
V ar(σ (z′)). Since those two variables are concerned by the mgu, one can deduce that they also occur in Ax . More 
precisely, according to the linearity of In(G) and O ut(G), y′ ∈ V arin(Ax) and z′ ∈ V arout(Ax). In that case, one has 
Ax � Ai and A j � Ax because y′ ∈ V arin(Ax) ∩ V arout(Ai) and z′ ∈ V arout(Ax) ∩ V arin(A j). Moreover, by hypothesis, 
Ai � A j . Consequently, a loop occurs in G because A j � Ax � Ai � A j . Contradiction.

• A loop cannot occur in σ(B): This is a direct consequence of Lemma 1. Indeed, σ is the mgu of Ax which is linear 
and H . B is constructed from the variables occurring once in H and new variables. Moreover, In(B) and O ut(B) are 
linear and the only variables allowed to appear in both In(B) and O ut(B) are necessarily new and then not instantiated 
by σ . To create a loop in these conditions would require that two different variables α and β instantiated by σ would 
share the same variable i.e. V ar(σ (α)) ∩ V ar(σ (β)) �= ∅. Contradicting Lemma 1.

• Suppose that a loop occurs in G ′ but neither in G ′ − σ(B) nor in σ(B): Let G be the sequence of atoms such that 
G = Ai, Ax . In that case, G ′ = σ(Ai), σ(B) with σ the mgu of Ax and H . One can extend the schema to any kind 
of sequence of atoms satisfying the hypothesis of this lemma without loss of generality. We consider B as follows: 
B = B1, . . . , Bk . If there exists a loop in G ′ but neither in G ′ − σ(B) nor in σ(B) then there exist Bk1 , . . . , Bkn atoms 
occurring in B such that σ(Ai) � σ(Bk1 ) � . . . � σ(Bkn ) � σ(Ai). So, one can deduce that there exists two variables α
and β such that α ∈ V arin(σ (Ai)) ∩ V arout(σ (Bk1 )) and β ∈ V arout(σ (Ai)) ∩ V arout(σ (Bkn )). Consequently, there exists 
two variables y, z such that y ∈ V arin(Ai), z ∈ V arout(Ai), α ∈ V ar(σ (y)) and β ∈ V ar(σ (z)). Both variables also occur 
in Ax . Suppose that y does not occur in Ax . Since σ is the mgu of Ax and H and y not in V ar(Ax), σ does not 
instantiate y. Consequently, α = y. However, V ar(σ (B)) ⊆ V ar(H) ∪ V ar(Ax) ∪ V ar(B). Moreover, the sets of variables 
occurring in Prog and in G are supposed to be disjointed. So, y cannot occur in σ(B) and then the loop in G ′ does 
not exist. Thus, y occurs in Ax as well as z. Furthermore, since In(G) and O ut(G) are linear, y ∈ V arout(Ax) and 
z ∈ V arin(Ax). Consequently, G contains a loop. Contradicting the hypothesis.
To conclude, G ′ does not contain any loop. �



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.8 (1-18)

8 Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Lemma 2 can be generalized to several steps.

Lemma 3. Let Prog be a non-copying S-CF program, and G be a sequence of atoms such that O ut(G) is linear, In(G) is linear and G
does not contain loops. We assume7 that variables occurring in Prog are different from those occurring in G. If G �∗

σ G ′ , then G ′ is 
loop free, σ(V arin

Lin(G)).O ut(G ′) and σ(V arout
Lin (G)).In(G ′) are both linear.

Proof. Let G �∗
σ G ′ be rewritten as follows: G0 �σ1 G1 . . . �σk Gk with G0 = G , G ′ = Gk and σ = σk ◦ . . . ◦ σ1. Let Pk be 

the induction hypothesis defined such that: If G0 �∗
σ Gk then

• Gk does not contain any loop,
• σ(V arin

Lin(G0)).O ut(Gk) is linear and
• σ(V arout

Lin (G0)).In(Gk) is linear.

Let us proceed by induction.

• P0 is trivially true. Indeed, In(G0) and O ut(G0) are linear. Moreover, for any x ∈ V arin
Lin(G0) (resp. x ∈ V arout

Lin (G0)), one 
has x /∈ V ar(O ut(G0)) (resp. x /∈ V ar(In(G0))). Thus, V arin

Lin(G0).O ut(G0) is linear (resp. V arout
Lin (G0).In(G0)).

• Suppose that Pk is true and Gk �σk+1 Gk+1. Since Gk �σk+1 Gk+1, there exist H ← B ∈ Prog and an atom Ax occurring 
in Gk s.t. σk+1 is the mgu of Ax and H , and Gk+1 = σk+1(Gk)[σk+1(H) ← σk+1(B)]. By hypothesis, one has O ut(Gk) and 
In(Gk) linear. Consequently, Lemma 2 can be applied and one obtains that
– σ(V arin

Lin(Gk)).O ut(Gk+1) is linear,
– σ(V arout

Lin (Gk)).In(Gk+1) is linear and
– Gk+1 does not contain any loop.
Moreover, for Prog a non-copying S-CF program, if Gi �σi+1 Gi+1 then one has: For any variable x, y, if x ∈ V arin

Lin(Gi)

and y ∈ V ar(σi+1(x)) then y ∈ V arin
Lin(Gi+1) or y /∈ V ar(Gi+1). So, one can conclude that given σk ◦ . . . ◦σ1(V arin

Lin(G0)), 
for any variable x ∈ V arin

Lin(G0), for any y ∈ V ar(σk ◦ . . . ◦ σ1(x)), either y ∈ V arin
Lin(Gk) or y /∈ V ar(Gk).

Let us study the variables of 
⋃

y∈V arin
Lin(G0)(V ar(σk ◦ . . . ◦ σ1(y)).

– For any variable x s.t. x ∈ ⋃
y∈V arin

Lin(G0)(V ar(σk ◦ . . . ◦ σ1(y))) \ V ar(Gk), x /∈ V ar(Gk+1). Indeed, an already-used vari-

able cannot be reused for relabeling variables of Prog while the reduction process. Moreover such variables are not 
instantiated by σk+1 since the mgu σk+1 of Ax and H only concerns variables of V ar(H) ∪ V ar(Ax). So, for any vari-
able y in V ar(σk ◦ . . . ◦σ1(y)) \ V ar(Gk), one has σk+1(y) = y and y /∈ V ar(Gk+1). Consequently, for any variable y in 
V ar(σk+1 ◦ σk ◦ . . . ◦ σ1(y))) \ V ar(Gk), y /∈ V ar(Gk+1).

– For any variable x s.t. x ∈ ⋃
y∈V arin

Lin(G0)(V ar(σk ◦ . . . ◦ σ1(y))) ∩ V ar(Gk), one can deduce that x ∈ V arin
Lin(Gk).

Since σk+1(V arin
Lin(Gk)). O ut(Gk+1) is linear, therefore one can deduce that for any y ∈ ⋃

y∈V arin
Lin(G0)(V ar(σk ◦ . . . ◦

σ1(y))) ∩ V ar(Gk), V ar(σk+1 ◦ σk ◦ . . . ◦ σ1(y)) ∩ V ar(O ut(Gk+1)) = ∅.
So, one has σk+1 ◦ σk ◦ . . . ◦ σ1(V arin

Lin(Gk)).O ut(Gk+1) is linear. The proof of σ(V arout
Lin (Gk)).In(Gk+1) is in some sense 

symmetric. To conclude, considering the hypothesis of Lemma 2, one has: If G �∗
σ G ′ , then

– G ′ is loop free;
– σ(V arin

Lin(G)).O ut(G ′) is linear;
– σ(V arout

Lin (G)).In(G ′) is linear. �
4. Computing descendants

Let us first present the main ideas.

Example 11. Let R = { f (x) → g(h(x))} and I = {pn( f (sn(a))) | n ∈N} generated by Predicate P0 in the S-CF program Prog =
{Q (̂a) ← . P0 (̂x) ← P1 (̂x, y), Q (̂y). P1(p̂(x), y) ← P1(̂x, s(y)). P1( f̂ (x), x) ←}. Note that R∗(I) = I ∪{pn(g(h(sn(a)))) | n ∈N}.

To simulate the rewrite step f (sn(a)) → g(h(sn(a))), we consider the rewrite-rule left-hand-side f (x). We can see 
that: P1( f̂ (x), y) �[Prog,θ=(x/y)] ∅ and θ(P1( f̂ (x), y)) = P1( f̂ (y), y) →R P1(ĝ(h(y)), y). Then the clause P1(ĝ(h(y)), y) ←
is called critical pair.8 This critical pair is not convergent (in Prog) because P1(ĝ(h(y)), y) �∗

Prog ∅. To get the descendants, 

the critical pairs should be convergent. Let Prog′ = Prog ∪ {P1(ĝ(h(y)), y) ←}. Now the critical pair is convergent in Prog′ , 
and note that the predicate P0 of Prog′ generates R∗(I). Adding critical pairs into the S-CF program is called completion.

7 If it is not the case then variables are relabeled.
8 In former work, a critical pair was a pair. Here it is a clause since we use logic programs.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.9 (1-18)

Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 9
For technical reasons,9 we consider only normalized S-CF programs, and Prog′ is not normalized. However, the critical 
pair can be normalized using a new predicate symbol, and replaced by the following normalized clauses P1(ĝ(x), y) ←
P2(̂x, y). P2(ĥ(y), y) ←. This is the role of Function norm in the completion algorithm below.

In general, adding a critical pair (after normalizing it) into the S-CF program may create new critical pairs, and the com-
pletion process may not terminate. To force termination, two bounds predicate-limit and arity-limit are fixed. If predicate-limit
is reached, Function norm should re-use existing predicates instead of creating new ones. If a new predicate symbol is cre-
ated whose arity10 is greater than arity-limit, then this predicate has to be cut by Function norm into several predicates 
whose arities do not exceed arity-limit. On the other hand, for a fixed11 S-CF program, the number of critical pairs may 
be infinite. Function removeCycles modifies some clauses so that the number of critical pairs is finite. Strong coherence is 
technical and will be defined later. It is used to prove the results. However, if the initial program Prog is regular or is a 
CS-program, i.e. Prog does not have input arguments, then the strong coherence property is automatically satisfied.

Definition 9 (comp). Let arity-limit and predicate-limit be positive integers. Let R be a linear rewrite system, and Prog be a 
finite, normalized and non-copying S-CF program strongly coherent with R . The completion process is defined by:

Function compR(Prog)

Prog = removeCycles(Prog)

while there exists a non-convergent critical pair H ← B in Prog do
Prog = removeCycles(Prog ∪ normProg(H ← B))

end while
return Prog

Critical pairs and strong coherence are defined in Section 4.1, and Theorem 2 shows closure under rewriting when 
all critical pairs are convergent. Theoretical notions and results are presented in Section 4.2 in order to define Function 
removeCycles. Section 4.3 speaks about normalization, and the final result, i.e. we get an over-approximation of the descen-
dants, is given in Section 4.4.

4.1. Critical pairs

The notion of critical pair is the heart of our technique. Indeed, it allows us to add S-CF clauses into the current S-CF 
program in order to cover rewriting steps.

Definition 10. Let Prog be a non-copying S-CF program and l → r be a left-linear rewrite rule. Consider distinct vari-
ables x1, . . . , xn such that V ar(l) ∩ {x1, . . . , xn} = ∅. If there are P and k s.t. the kth argument of P is an output, and 
P (x1, . . . , xk−1, l, xk+1, . . . , xn) �+

θ G where12

1. resolution steps are applied only on atoms whose output is not flat,
2. O ut(G) is flat and
3. the clause P (t1, . . . , tn) ← B used in the first step of this derivation satisfies tk is not a variable13

then the clause θ(P (x1, . . . , xk−1, r, xk+1, . . . , xn)) ← G is called critical pair. if θ does not instantiate the variables of 
In(P (x1, . . . , xk−1, l, xk+1, . . . , xn)) then the critical pair is said strict.

Example 12. Let Prog be the S-CF program defined by:
Prog = {P (ŝ(x)) ← Q (̂x, a). Q ( f̂ (x), y) ← Q (̂x, g(y)). Q (̂x, x) ← .} and consider R = { f ( f (x)) → h(x)}. Note that 

L(P ) = {s( f n(gn(a))) | n ∈N}.
We have Q ( ̂f ( f (x)), y) � Q ( f̂ (x), g(y)) � Q (̂x, g(g(y))).
Since O ut(Q (̂x, g(g(y)))) is flat, this generates the strict critical pair Q (ĥ(x), y) ← Q (̂x, g(g(y))).

The following lemma is very important for completion. It shows that when the completion process adds a strict critical 
pair into the current S-CF program, the resulting program is still S-CF.

Lemma 4. A strict critical pair is an S-CF clause. In addition, if l → r is right-linear, a strict critical pair is a non-copying S-CF clause.

9 Critical pairs are computed only at root positions.
10 The number of arguments.
11 I.e. without adding new clauses in the S-CF program.
12 Here, we do not use a hat to indicate output arguments because they may occur anywhere depending on P .
13 In other words, the overlap of l on the clause head P (t1, . . . , tn) is done at a non-variable position.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.10 (1-18)

10 Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Proof. Let G0 = P (x1, . . . , xk−1, l, xk+1, . . . , xn). Since l is linear, G0 is linear and V arin
Lin(G0) = In(G0). From Lemma 3, 

θ(In(G0)).O ut(G) is linear and G is loop-free. Note that In(G0) and O ut(G) are tuples of variables. Since the critical pair is 
strict, we deduce that θ does not instantiate the variables of In(G0), then θ(In(G0)).O ut(G) is a linear tuple of variables. 
Consequently, a strict critical pair is an S-CF clause.

Since G0 is linear, V arout
Lin (G0) = V arout(G0). Thus, from Lemma 3, θ(O ut(G0)).In(G) is linear. And since r is linear, the 

critical pair is a non-copying clause. �
Definition 11. A critical pair H ← B is said convergent if H →∗

Prog B .

The critical pair of Example 12 is not convergent.
Let us recall that the completion procedure is based on adding the non-convergent critical pairs into the program. In 

order to preserve the nature of the S-CF program, the computed non-convergent critical pairs are expected to be strict. 
Moreover, since critical pairs are only computed using output arguments, each reducible14 symbol should not occur in an 
input argument. So we define a sufficient condition on R and Prog called strong coherence.

Definition 12. Let R be a rewrite system. We consider the smallest set of consuming symbols, recursively defined by: f ∈ �

is consuming if there exists a rewrite rule f (t1, . . . , tn) → r in R s.t. some ti is not a variable, or r contains at least one 
consuming symbol.

The S-CF program Prog is strongly coherent with R if:

1) for all l → r ∈ R , the top-symbol of l does not occur in input arguments of Prog ,
2) and no consuming symbol occurs in clause-heads having input arguments.

Note that a CS-program (no input arguments) is strongly coherent with any rewrite system.
In R = {g(s(y)) → h(y)}, g is consuming. Thus Prog = {P (ĝ(x), x) ← .} is not strongly coherent with R because item 2 

is not satisfied. We have P (ĝ(s(y)), z) �[x/s(y),z/s(y)] ∅, which generates the critical pair P (ĥ(y), s(y)) ←. This critical pair is 
not a S-CF clause.

Lemma 5. If Prog is a normalized S-CF program strongly coherent with R, then every critical pair cp is strict, and Prog ∪ {cp} is 
strongly coherent with R.

Proof. Consider f (�s) → r ∈ R (�s is a tuple of terms), and assume that

P ( �̂x1, f̂ (�s), �̂x2, �z) �[P ( �̂t1 ,̂ f (�u), �̂t2,�v)←B, θ ] G �∗
σ G ′

such that O ut(G ′) is flat, �x1, �x2, �z, �u, �v are tuples of distinct variables and �t1, �t2 are tuples of terms (however �v may share 
some variables with �t1.�u. �t2). This derivation generates the critical pair (σ ◦ θ)(P ( �̂x1, ̂r, ̂�x2, �z)) ← G ′ .

If l → r is consuming then P has no input arguments, i.e. �z and �v do not exist. Therefore σ ◦ θ cannot instantiate the 
input variables of P , hence the critical pair is strict.

Otherwise �s is a linear tuple of variables, and (x/t means that the variable x is replaced by t) θ = (�v/�z) ◦
( �x1/ �t1, �s/�u, �x2/ �t2), which does not instantiate �z nor the output variables of B . Moreover O ut(B) is flat, then O ut(G) =
O ut(θ B) is flat. Thus G ′ = G and the critical pair is P (θ̂ �x1, ̂θr, ̂θ �x2, �z) ← G , which is strict.

About strong coherence, the function symbols occurring in the input arguments of the critical pair come from the input 
arguments of Prog . Therefore condition 1 of Definition 12 is satisfied.

On the other hand, suppose that P has input arguments. So f is not consuming, then �s is a linear tuple of variables. 
Consequently the derivation contains only one step, i.e. G ′ = G . Then �s is instantiated by variables, and θ( �x1) = �t1, θ( �x2) = �t2, 
where �t1 and �t2 do not contain consuming symbols. Moreover r does not contain consuming symbols (otherwise f would 
be consuming). Therefore condition 2 of Definition 12 is satisfied. �

So, we come to our main result that ensures to get the rewriting closure when every computable critical pair is conver-
gent.

Theorem 2. Let R be a linear rewrite system, and Prog be a non-copying normalized S-CF program strongly coherent with R. If all 
strict critical pairs are convergent, then for every predicate symbol P without input arguments, L(P ) is closed under rewriting by R, 
i.e. (�t ∈ L(P ) ∧�t →∗

R
�t′) =⇒ �t′ ∈ L(P ).

14 I.e. the top symbol of the left-hand-side of some rewrite rule.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.11 (1-18)

Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 11
The proof is very technical. To illustrate the proof, consider Example 12 again, except that the critical pair Q (ĥ(x), y) ←
Q (̂x, g2(y)) is added into the S-CF program. Now

Prog = { P (ŝ(x)) ← Q (̂x,a). Q ( f̂ (x), y) ← Q (̂x, g(y)). Q (̂x, x) ← . Q (ĥ(x), y) ← Q (̂x, g2(y)) }
and R = { f 2(x) → h(x)}. So there is only one critical pair, which is convergent thanks to the last clause of Prog .

s( f 2(g2(a))) ∈ L(P ) because the atom A = P (s( f 2(g2(a)))) ∈ Mod(Prog), moreover A = P (s( f 2(g2(a)))) →R A′ =
P (s(h(g2(a)))). Since A ∈ Mod(Prog), we have A �∗ ∅.

More precisely:

A = P (s( f 2(g2(a)))) � A′′ = Q ( ̂f 2(g2(a)),a) � Q ( ̂f (g2(a)), g(a)) � Q (ĝ2(a), g2(a)) � ∅.

Using the notations of the proof, we have C = s, l = f 2(x), r = h(x), σ = (x/g2(a)), σ ′ = (x/g2(a), y/a). Thus A′′ =
Q (σ̂ (l), a) = σ ′(Q (̂l, y)).

On the other hand, since Prog is non-copying, we have

A′ = P (s(h(g2(a)))) � Q ( ̂h(g2(a)),a) = Q (σ̂ (r),a) = σ ′(Q (ĥ(x), y))

where Q (ĥ(x), y) is the head of the critical pair. Since the critical pair is convergent, we have

A′ � σ ′(Q (ĥ(x), y)) � σ ′(Q (̂x, g2(y))) = Q (ĝ2(a), g2(a)) � ∅
Therefore A′ ∈ Mod(Prog), hence s(h(g2(a))) ∈ L(P ).

Proof of Theorem 2. Let A ∈ Mod(Prog) s.t. A →l→r A′ . Then A|i = C[σ(l)] for some i ∈ N and A′ = A[i ← C[σ(r)].
Since resolution is complete, A �∗ ∅. Since Prog is normalized, resolution consumes symbols of C one by one. Since 

Prog is coherent with R , the top symbol of l cannot be generated as an input: it is either consumed in an output argument, 
or the whole σ(l) disappears thanks to an output argument. Consequently G0 = A �∗ Gk �∗ ∅ and there exists an atom 
A′′ = P (t1, . . . , tn) in Gk and an output argument j s.t. t j = σ(l), i.e. A �∗ Gk[A′′ = P (t1, . . . , σ(l), . . . , tn)], and along the 
step Gk � Gk+1 the top symbol of σ(l) is consumed or σ(l) disappears entirely. On the other hand, A′ �∗ Gk[A′′ ←
P (t1, . . . , σ(r), . . . , tn)] since Prog is non-copying.

If t j = σ(l) disappears entirely, it can be replaced by any term, then A′ �∗ Gk[A′′ ← P (t1, . . . , σ(r), . . . , tn)] �∗ ∅, hence 
A′ ∈ Mod(Prog). Otherwise the top symbol of σ(l) is consumed along Gk � Gk+1. Consider new variables x1, . . . , xn such 
that {x1, . . . , xn} ∩ V ar(l) = ∅, and let us define the substitution σ ′ by ∀i ∈ {1, . . . , n}, σ ′(xi) = ti and ∀x ∈ V ar(l), σ ′(x) =
σ(x). Then σ ′(P (x1, . . . , x j−1, l, x j+1, . . . , xn)) = A′′ , and according to resolution properties P (x1, . . . , l, . . . , xn) �∗

θ ∅ and 
θ ≤ σ ′ . This derivation can be decomposed into: P (x1, . . . , l, . . . , xn) �∗

θ1
G ′ �θ2 G �∗

θ3
∅ where θ = θ3 ◦ θ2 ◦ θ1, and s.t. 

O ut(G ′) is not flat and O ut(G) is flat.15

The derivation P (x1, . . . , l, . . . , xn) �∗
θ1

G ′ �θ2 G can be commuted into: P (x1, . . . , l, . . . , xn) �∗
γ1

B ′ �γ2 B �∗
γ3

G s.t. 
O ut(B) is flat, O ut(B ′) is not flat, and within P (x1, . . . , l, . . . , xn) �∗

γ1
B ′ �γ2 B resolution is applied only on atoms whose 

output is not flat, and we have γ3 ◦γ2 ◦γ1 = θ2 ◦ θ1. Then γ2 ◦γ1(P (x1, . . . , r, . . . , xn)) ← B is a critical pair. By hypothesis, it 
is convergent, then γ2 ◦γ1(P (x1, . . . , r, . . . , xn)) →∗ B . Note that γ3(B) →∗ G and recall that θ3 ◦γ3 ◦γ2 ◦γ1 = θ3 ◦ θ2 ◦ θ1 = θ . 
Then θ(P (x1, . . . , r, . . . , xn)) →∗ θ3(G) →∗ ∅, and since θ ≤ σ ′ we get P (t1, . . . , σ(r), . . . , tn) = σ ′(P (x1, . . . , r, . . . , xn)) →∗ ∅. 
Thus A′ �∗ Gk[A′′ ← P (t1, . . . , σ(r), . . . , tn)] �∗ ∅, hence A′ ∈ Mod(Prog).

By trivial induction, the proof can be extended to the case of several rewrite steps. �
4.2. Ensuring finitely many critical pairs

The following example illustrates a situation where the number of critical pairs is infinite for a given S-CF program.

Example 13. Let f (c(x), y) → d(y) be a rewrite rule, and {P0( f̂ (x, y)) ← P1 (̂x, ̂y). P1(̂x, ŝ(y)) ← P1 (̂x, ̂y). P1(ĉ(x), ̂y) ←
P2(̂x, ̂y). P2(̂a, ̂a) ← .} be an S-CF program16 Then P0( ̂f (c(x), y)) → P1(ĉ(x), ̂y) �y/s(y) P1(ĉ(x), ̂y) �y/s(y) · · · P1(ĉ(x), ̂y) →
P2(̂x, ̂y). Resolution is applied only on non-flat atoms and the last atom obtained by this derivation is flat. The composi-
tion of substitutions along this derivation gives y/sn(y) for some n ∈ N. There are infinitely many such derivations, which 
generates infinitely many critical pairs of the form P0( ̂d(sn(y))) ← P2(̂x, ̂y).

This is annoying since the completion process introduced in Definition 9 needs to compute all critical pairs. This is why 
we define sufficient conditions to ensure that a given finite S-CF program has finitely many critical pairs.

15 Since ∅ is flat, a goal having a flat output can always be reached, i.e. in some cases G = ∅.
16 Note that L(P0) = { f (c(a), sn(a)) | n ∈N} is a regular language, whereas the S-CF program (which is also a CS-program) is not regular. If it were regular, 

there would be finitely many critical pairs.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.12 (1-18)

12 Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Definition 13. Prog is empty-recursive if there exist a predicate symbol P and two tuples �x = (x1, . . . , xn), �y = (y1, . . . , yk)

composed of distinct variables s.t. P (̂�x.�y) �+
σ A1, . . . , P ( �̂x′.�t′), . . . , Ak where �x′ = (x′

1, . . . , x
′
n) is a tuple of variables and there 

exist i, j s.t. x′
i = σ(xi) and σ(x j) is not a variable and x′

j ∈ V ar(σ (x j)).

Example 14. Let Prog be the S-CF program defined as follows: Prog = {P (̂a, ̂b) ← . P (x̂′, ̂s(y′)) ← P (x̂′, ̂y′).}. From P (̂x, ̂y), 
one can obtain the following derivation: P (̂x, ̂y) �[x/x′, y/s(y′)] P (x̂′, ̂y′). Consequently, Prog is empty-recursive since σ =
[x/x′, y/s(y′)], x′ = σ(x) and y′ is a variable of σ(y) = s(y′).

The following lemma shows that the nonempty-recursiveness of an S-CF program is sufficient to ensure the finiteness of 
the number of critical pairs.

Lemma 6. Let Prog be a normalized S-CF program. If Prog is not empty-recursive, then the number of critical pairs is finite.

Remark. Note that the S-CF program of Example 13 is normalized and has infinitely many critical pairs.

However it is empty-recursive because P1(̂x, ̂y) �[x/x′, y/s(y′)] P1(x̂′, ̂y′).

Proof. By contrapositive. Let us suppose there exist infinitely many critical pairs. So there exist P1 and infinitely many 
derivations of the form

(i): P1(x1, . . . , xk−1, l, xk+1, . . . , xn) �∗
α G ′ �θ G (the number of steps is not bounded). As the number of predicates is finite 

and every predicate has a fixed arity, there exists a predicate P2 and a derivation of the form
(ii): P2(t1, . . . , tp) �k

σ G ′′
1, P2(t′

1, . . . , t
′
p), G ′′

2 (with k > 0) included in some derivation of (i), strictly before the last step, 
such that:
1. O ut(G ′′

1) and O ut(G ′′
2) are flat and the derivation from P2(t1, . . . , tp) can be applied on P2(t′

1, . . . , t
′
p) again, which 

gives rise to an infinite derivation.
2. σ is not empty and there exists a variable x in P2(t1, . . . , tp) such that σ(x) = t and t is not a variable and contains 

a variable y that occurs in P2(t′
1, . . . , t

′
p). Otherwise σ ◦ . . . ◦ σ would always be a variable renaming and there 

would be finitely many critical pairs.
3. There is at least one non-variable term (let t j) in output arguments of P2(t1, . . . , tp) (due to the definition of criti-

cal pairs) such that t′
j = t j .17 As we use an S-CF clause in each derivation step, the output argument t′

j matches a 
variable (output argument) in the body of the last clause used in (ii). As t′

j = t j , the output argument t j matches 
a variable (output argument) in head of the first clause used in (ii). So, for each variable x occurring in the non-
variable output terms of P2, we have σ(x) = x.

4. From the previous item, we deduce that the variable x found in item 2 is one of the terms t1, . . . , tp , say tk . We can 
assume that y is t′

k . tk is an output argument of P2 because it matches a non-variable and only output arguments 
are non-variable in the head of S-CF clause.

If in derivation (ii) we replace all non-variable output terms by new variables, we obtain a new derivation18

(iii): P2(x1, . . . , xn, tn+1, . . . , tp) �k
σ ′ G ′′′

1 , P2(x′
1, . . . , x

′
n, t′

n+1, . . . , t
′
p), G ′′′

2 and there exists i, k (in {1, . . .n}) such that 
σ ′(xi) = x′

i (at least one non-variable term (in output arguments) in the (ii) derivation), and σ ′(xk) = tk , x′
k is a 

variable of tk . We conclude that Prog is empty-recursive. �
Deciding the empty-recursiveness of an S-CF program seems to be a difficult problem (undecidable?). Nevertheless, we 

propose a sufficient syntactic condition to ensure that an S-CF program is not empty-recursive.

Definition 14. The S-CF clause P (t̂1, . . . , ̂tn, x1, . . . , xk) ← A1, . . . , Q (. . .), . . . , Am is pseudo-empty over Q if there exist i, j
such that

• ti is a variable,
• and t j is not a variable,
• and ∃x ∈ V ar(t j), x �= ti ∧ {x, ti} ⊆ V ar O ut(Q (. . .)).

Roughly speaking, when making a resolution step issued from the following flat atom P ( ŷ1, . . . , ŷn, z1, . . . , zk), the variable 
yi is not instantiated, and y j is instantiated by something that is synchronized with yi (in Q (. . .)).

17 This property does not necessarily hold as soon as P2 is reached within (ii). We may have to consider further occurrences of P2 so that each required 
term occurs in the required argument, which will necessarily happen because there are only finitely many permutations.
18 Without loss of generality, we can consider that the output arguments (at least two) are the first arguments of P2.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.13 (1-18)

Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 13
The S-CF clause H ← B is pseudo-empty if there exists some Q s.t. H ← B is pseudo-empty over Q . The S-CF clause:
P (t̂1, . . . , ̂tn, x1, . . . , xn′) ← A1, . . . , Q ( ŷ1, . . . , ŷk, s1, . . . , sk′ ), . . . , Am is empty over Q if for all yi , there exists j such that 

t j = yi or yi /∈ V ar(P (t̂1, . . . , ̂tn, x1, . . . , xn′)).

Example 15. The S-CF clause P (̂x, ̂f (x), ̂z) ← Q (̂x, ̂z) is both pseudo-empty (thanks to the second and the third argument 
of P ) and empty over Q (thanks to the first and the third argument of P ).

Definition 15. Using Definition 14, let us define two relations over predicate symbols.

• P1 �Prog P2 if there exists in Prog a clause empty over P2 of the form P1(. . .) ← A1, . . . , P2(. . .), . . . , An . The reflexive-
transitive closure of �Prog is denoted by �∗

Prog .
• P1 >Prog P2 if there exist in Prog predicates P ′

1, P ′
2 s.t. P1 �∗

Prog P ′
1 and P ′

2 �∗
Prog P2, and a clause pseudo-empty over 

P ′
2 of the form P ′

1(. . .) ← A1, . . . , P ′
2(. . .), . . . , An . The transitive closure of >Prog is denoted by >+

Prog .

Prog is cyclic if there exists a predicate P s.t. P >+
Prog P .

Example 16. Let � = { f \1, h\1, a\0}. Let Prog be the S-CF program such that Prog = {P (̂x, ̂h(y), ̂f (z)) ← Q (̂x, ̂z), R (̂y).

Q (̂x, ĝ(y, z)) ← P (̂x, ̂y, ̂z). Q (̂a, ̂a) ← . R (̂a) ← .}. One has P >Prog Q and Q >Prog P . Thus, Prog is cyclic.

The lack of cycles is the key point of our technique since it ensures the finiteness of the number of critical pairs.

Lemma 7. If Prog is not cyclic, then Prog is not empty-recursive, consequently the number of critical pairs is finite.

Proof. By contrapositive. Suppose that Prog is empty recursive. It exists P s.t. P (x̂1, . . . , ̂xn, y1, . . . , yn′) �+
σ A1, . . . ,

P (x̂′
1, . . . , ̂x

′
n, t′

1, . . . , t
′
n′), . . . , Ak where x′

1, . . . , x
′
n are variables and there exist i, j s.t. x′

i = σ(xi) and σ(x j) is not a vari-
able and x′

j ∈ V ar(σ (x j)). We can extract from the previous derivation the following derivation which has p steps (p ≥ 1):

P (x̂1, . . . , x̂n, y1, . . . , yn′) = Q 0(x̂1, . . . , x̂n, y1, . . . , yn′) �α1

B1
1 . . . Q 1(x̂1

1, . . . , x̂1
n1 , t1

1, . . . , t1
n′

1
) . . . B1

k1
�α2

B1
1 . . . B2

1 . . . Q 2(x̂2
1, . . . , x̂2

n2 , t2
1, . . . , t2

n′
2
) . . . B2

k2
. . . B1

k1
�α3 . . . �αp

B1
1 . . . B p

1 . . . Q p(x̂p
1 , . . . , x̂p

np , t p
1 , . . . , t p

n′
p
) . . . B p

kp
. . . B1

k1

where Q p(x̂p
1 , . . . , ̂xp

np , t
p
1 , . . . , t p

n′
p
) = P (x̂′

1, . . . , ̂x
′
n, t′

1, . . . , t
′
n′).

For each k (after k steps in the previous derivation), αk ◦ αk−1 . . . ◦ α1(xi) is a variable of O ut(Q k(x̂k
1, . . . , ̂x

k
nk

, tk
1, . . . , t

k
n′

k
))

and αk ◦αk−1 . . . ◦α1(x j) is either a variable of O ut(Q k(x̂k
1, . . . , ̂x

k
nk

, tk
1, . . . , t

k
n′

k
)) or a non-variable term containing a variable 

of O ut(Q k(x̂k
1, . . . , ̂x

k
nk

, tk
1, . . . , t

k
n′

k
)).

Each derivation step issued from Q k uses either a clause pseudo-empty over Q k+1 and we deduce Q k >Prog Q k+1, or 
an empty clause over Q k+1 and we deduce Q k �Prog Q k+1. At least one step uses a pseudo-empty clause otherwise no 
variable from x1, . . . , xn would be instantiated by a non-variable term containing at least one variable in x′

1, . . . , x′
n .

We conclude that P = Q 0 op1 Q 1 op2 Q 2 . . . Q p−1 opp Q p = P with each opi is >Prog or �Prog and there exists k such 
that opk is >Prog . Therefore P >+

Prog P , so Prog is cyclic. �
Thus, if Prog is not cyclic, all is fine. Otherwise, we need to transform Prog into Prog′ such as Prog′ is not cyclic and 

Mod(Prog) ⊆ Mod(Prog′).
The transformation is based on the following observation. If Prog is cyclic, there is at least one pseudo-empty clause 

that participates in a cycle. In Example 16, P (̂x, ̂h(y), ̂f (z)) ← Q (̂x, ̂z), R (̂y) is a pseudo-empty clause over Q involved in 
the cycle. To remove the cycle, we transform it into P (̂x, ̂h(y), ̂f (z)) ← Q (̂x, ̂x2), R(x̂1), Q (x̂3, ̂z), R (̂y) (x1, x2, x3 are new 
variables), which is not pseudo-empty anymore. The main process is described in Definition 19. Definitions 16, 17 and 18
are preliminary definitions used in Definition 19. Example 17 illustrates the definitions. If there are input arguments then 
some variables occurring in the input arguments of the body should also be renamed in order to get a non-copying S-CF 
clause.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.14 (1-18)

14 Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Definition 16. Given a S-CF program Prog , the set S of productive predicate symbols is recursively defined as being the 
smallest set such that

– for each fact (P (· · · ) ←) of Prog , P ∈ S ,
– and for each clause P (· · · ) ← P1(· · · ), . . . , Pn(· · · ) of Prog , if P1, . . . , Pn ∈ S , then P ∈ S .

P is unproductive iff P /∈ S .

Definition 17 (simplify). Let H ← A1, . . . , An be an S-CF clause, and for each i, let us write Ai = Pi(. . .).
If there exists Pi such that Pi is unproductive then simplify(H ← A1, . . . , An) is the empty set, otherwise it is the set that 

contains only the S-CF clause H ← B1, . . . , Bm such that

• {Bi | 0 ≤ i ≤ m} ⊆ {Ai | 0 ≤ i ≤ n} and
• ∀i ∈ {1, . . . , n}, ( ¬(∃ j, B j = Ai) ⇔ (V ar(Ai) ∩ V ar(H) = ∅ ∧ ∀k �= i, V ar(Ai) ∩ V ar(Ak) = ∅)).

In other words, simplify deletes unproductive clauses, or it removes the atoms of the body that contain only free variables.

Let H ← B be a non-copying S-CF clause. Note that if the variable x occurs several times in B then x /∈ V ar(H).

Definition 18 (unSync). Let H ← B be a non-copying S-CF clause.
Let us write O ut(H) = (t1, . . . , tn) and In(B) = (s1, . . . , sk).
unSync(H ← B) = simplify(H ← σ0(B), σ1(B)) where σ0, σ1 are substitutions built as follows. ∀x ∈ V ar(B):

σ0(x) =
⎧⎨⎩ x if x ∈ V ar O ut(B) ∧ ∃i, ti = x

x if x ∈ V arIn(B) ∩ V arIn(H) ∧ ∃ j, (s j = x)
a fresh variable otherwise

σ1(x) =
⎧⎨⎩ x if x ∈ V ar O ut(B) ∧ ∃i, (ti /∈ Var ∧ x ∈ Var(ti))

x if x ∈ V arIn(B) ∩ V arIn(H) ∧ ∃ j, (s j /∈ Var ∧ x ∈ Var(s j))

a fresh variable otherwise

Definition 19 (removeCycles). Let Prog be an S-CF program. If Prog is not cyclic then removeCycles(Prog) = Prog . Other-
wise removeCycles(Prog) = removeCycles({unSync(H ← B)} ∪ Prog′) where H ← B is a pseudo-empty clause involved in a 
cycle and Prog′ = Prog \ {H ← B}.

Example 17. Let Prog be the S-CF program of Example 16. Since Prog is cyclic, let us compute removeCycles(Prog). The 
pseudo-empty S-CF clause

P (̂x, ̂h(y), ̂f (z)) ← Q (̂x, ̂z), R (̂y) is involved in the cycle. Consequently, unSync is applied on it. According to Defini-
tion 18, one obtains σ0 and σ1 where σ0 = [x/x, y/x1, z/x2] and σ1 = [x/x3, y/y, z/z]. Thus, one gets the S-CF clause 
P (̂x, ̂h(y), ̂f (z)) ← Q (̂x, ̂x2), R(x̂1), Q (x̂3, ̂z), R (̂y). Note that according to Definition 18, simplify is applied and removes 
R(x̂1) from the body. Following Definitions 17 and 19, P (̂x, ̂h(y), ̂f (z)) ← Q (̂x, ̂z), R (̂y) is removed from Prog and 
P (̂x, ̂h(y), ̂f (z)) ← Q (̂x, ̂x2), Q (x̂3, ̂z), R (̂y) is added instead. Note that the atom R(x̂1) has been removed using simplify. 
Note also that there is no cycle anymore.

removeCycles may enlarge the least Herbrand Model.

Lemma 8. Let Prog and Prog′ be two S-CF programs such that Prog is non-copying and Prog′ = removeCycles(Prog). Then Prog′
is a non-copying and non-cyclic S-CF program, and Mod(Prog) ⊆ Mod(Prog′). Moreover:

– if Prog is normalized, then so is Prog′,
– if Prog is strongly coherent with R, then so is Prog′.

Consequently, there are finitely many critical pairs in Prog′ .

Proof. removeCycles applies unSync until the program is not cyclic. When applying unSync, one pseudo-empty clause is 
removed and replaced by a non-pseudo-empty one. Thus, the number of pseudo-empty clauses decreases, and when there 
are no more pseudo-empty clauses, the program is not cyclic. Then removeCycles terminates and returns Prog′ , which is 
not cyclic.

simplify does not change Mod(Prog). On the other hand, unSync may enlarge Mod(Prog), because of the introduction of 
free variables in the clause body.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.15 (1-18)

Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 15
simplify and unSync do not change the clause head. Then if the clause is normalized, the resulting clause also is. Moreover, 
the fresh variables introduced into input arguments by σ0 are distinct from those introduced by σ1. Then if the clause is 
non-copying, the resulting clause also is.

The definition of strong coherence (Definition 12) includes two conditions. Recall that for a S-CF clause, function symbols 
in input arguments necessarily occur in the body. Therefore condition 1 is preserved by removeCycles because removeCycles
does not add new function symbols in clause bodies (just new variables are added). Condition 2 is preserved by removeCy-
cles because removeCycles does not change clause heads. �
4.3. Normalizing critical pairs – normProg

If a critical pair is not convergent, we add it into Prog , and the critical pair becomes convergent. However, a critical pair 
is not necessarily normalized, whereas all clauses in Prog should be normalized. In the case of CS-clauses (i.e. without input 
arguments), a procedure that transforms a non-normalized clause into normalized ones has been presented [2]. For example, 
P ( ̂f (g(x)), ̂b) ← Q (̂x) can be normalized into {P ( f̂ (x), ̂b) ← P1 (̂x). P1(ĝ(x)) ← Q (̂x).} (P1 is a new predicate symbol). 
Since only output arguments should be normalized, this procedure still works even if there are also input arguments.

As new predicate symbols are introduced, possibly with bigger arities, completion may not terminate. To make it termi-
nate in every case, two positive integers are used: predicate-limit and arity-limit. If the number of predicate symbols having 
the same arity as P1 (including P1) exceeds predicate-limit, an existing predicate symbol (for example Q ) must be used 
instead of the new predicate P1. This may enlarge Mod(Prog) in general and may lead to a strict over-approximation. If the 
arity of P1 exceeds arity-limit, P1 must be replaced in the clause body by several predicate symbols19 whose arities are less 
than or equal to arity-limit. This may also enlarge Mod(Prog). See [2] for more details. In other words normProg(H ← B)

builds a set of normalized S-CF clauses N such that Mod(Prog ∪ {H ← B}) ⊆ Mod(Prog ∪ N).
However, when starting from a CS-program (i.e. without input arguments), it could be interesting to normalize by intro-

ducing input arguments, in order to profit from the bigger expressiveness of S-CF programs, and consequently to get a better 
approximation of the set of descendants, or even an exact computation, like in Examples 18 and 19 presented in Section 5. 
The quality of the approximation depends on the way the normalization is achieved. Some heuristics will be developed in 
further work. Moreover, they should preserve strong coherence when introducing new input arguments. A rule to preserve 
it could be as follows. For each function symbol f occurring in the head of a critical pair:

– if f is consuming, f should be generated as output in a predicate symbol having no input arguments,
– if f is reducible, i.e. f occurs as the root of a left-hand-side, and f is not consuming, f should be generated as output.

This rule is applied in Examples 18 and 19.

4.4. Completion

At the beginning of Section 4, we have presented in Definition 9 the completion algorithm i.e. compR . In Sections 4.1
and 4.3, we have described how to detect non-convergent critical pairs and how to convert them into normalized clauses 
using normProg .

Theorem 3 illustrates that our technique leads to a finite S-CF program whose language over-approximates the descen-
dants obtained by a linear rewrite system R .

Theorem 3. Function comp always terminates, and all critical pairs are convergent in compR(Prog). Moreover, for each predicate 
symbol P without input arguments, R∗(L Prog(P )) ⊆ LcompR (Prog)(P ).

Proof. The proof is straightforward. �
5. Examples

In this section, completion is applied on several examples. I is the initial set of terms and R is the rewrite system. 
Initially, we define an S-CF program Prog that generates I and that satisfies the assumptions of Definition 9. To make the 
procedure terminate shortly, we suppose that predicate-limit = 1, which means that for all i, there is at most one predicate 
symbol having i arguments, except for i = 1 we allow two predicate symbols having one argument.

When the following example is dealt with synchronized languages, i.e. with CS-programs [2, Example 42], we get a 
strict over-approximation of the descendants. Now, thanks to the bigger expressivity of S-CF programs, we compute the 
descendants in an exact way.

19 For instance, if P1 is binary and arity-limit = 1, then P1(t1, t2) should be replaced by the sequence of atoms P2(t1), P3(t2). Note that the dependency 
between t1 and t2 is lost, which may enlarge Mod(Prog). Symbols P2 and P3 are new if it is compatible with predicate-limit. Otherwise former predicate 
symbols should be used instead of P2 and P3.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.16 (1-18)

16 Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 3. Run of compR on Example 18.

Example 18. Let I = { f (a, a)} and R = { f (x, y) → u( f (v(x), w(y)))}. The exact set of descendants is R∗(I) = {un( f (vn(a),

wn(a))) | n ∈N}. We define Prog = {P f ( f̂ (x, y)) ← Pa (̂x), Pa (̂y). (1), Pa (̂a) ← . (2)}. Note that L Prog(P f ) = I .

Using clause (1) we have P f ( f̂ (x, y)) →(1) Pa (̂x), Pa (̂y) generating the critical pair: P f ( ̂u( f (v(x), w(y)))) ← Pa (̂x), Pa (̂y). 
In order to normalize this critical pair, we choose to generate symbols u, f as output, v , w as input. Moreover only one 
predicate symbol of arity 3 is allowed. It produces three new S-CF clauses:

P f (̂z) ← P1(̂z, x, y), Pa (̂x), Pa (̂y). (3), P1(û(z), x, y) ← P1(̂z, v(x), w(y)). (4) and P1( f̂ (x, y), x, y) ← . (5).

Now P f ( ̂f (x′, y′)) →(3) P1( ̂f (x′, y′), x, y), Pa (̂x), Pa (̂y) �(5),σ Pa (̂x), Pa (̂y) where σ = (x′/x, y′/y). Consequently, it gen-

erates the convergent critical pair P f ( ̂u( f (v(x), w(y)))) ← Pa (̂x), Pa (̂y) again. On the other hand, since P1( ̂f (x′, y′),
x, y) �(5),(x′/x, y′/y) ∅, the critical pair P1( ̂u( f (v(x), w(y))), x, y) ← is detected, but it is already convergent.

No other critical pair is detected. Then, we get the S-CF program Prog′ composed of clauses (1) to (5), and note that 
L Prog′(P f ) = R∗(I) indeed.

The run of the completion is summarized in Fig. 3. The left-most column reports the detected non-convergent critical 
pairs and the right-most column describes how they are normalized.

The previous example could probably be dealt in an exact way using the technique of [1] as well, since R∗(I) is a 
context-free language. It is not the case for the following example, whose language of descendants R∗(I) is not context-free 
(and not synchronized). It can be handled by S-CF programs in an exact way thanks to their bigger expressivity.

Example 19. Let I = {d1(a, a, a)} and

R =
{

d1(x, y, z)
1→ d1(h(x), i(y), s(z)), d1(x, y, z)

2→ d2(x, y, z)

d2(x, y, s(z))
3→ d2( f (x), g(y), z), d2(x, y,a)

4→ c(x, y)

}
R∗(I) is composed of all terms appearing in the following derivation:

d1(a,a,a)
1→ n d1(h

n(a), in(a), sn(a))
2→ d2(h

n(a), in(a), sn(a))

3→ k d2( f k(hn(a)), gk(in(a)), sn−k(a))
4→ c( f n(hn(a)), gn(in(a))) .

Note that the last rewrite step by rule 4 is possible only when k = n.
Let Prog = {Pd( ̂d1(x, y, z)) ← Pa (̂x), Pa (̂y), Pa (̂z). (1), Pa (̂a) ← . (2)}. Thus L Prog(Pd) = I .
By applying clause (1) and using rule 1, we get the critical pair:
Pd( ̂d1(h(x), i(y), s(z))) ← Pa (̂x), Pa (̂y), Pa (̂z). To normalize it, we choose to generate all symbols as output. Then the 

following clauses (3) and (4) are added into Prog: Pd( ̂d1(x, y, z)) ← P1(̂x, ̂y, ̂z). (3) and P1(ĥ(x), ̂i(y), ̂s(z)) ← Pa (̂x), Pa (̂y),

Pa (̂z). (4). By applying clause (1) and using rule 2, we obtain the critical pair Pd( ̂d2(x, y, z)) ← Pa (̂x), Pa (̂y), Pa (̂z). (5). This 
critical pair being already normalized, it is directly added into Prog .

We obtain the critical pair Pd( ̂d1(h(x), i(y), s(z))) ← P1(̂x, ̂y, ̂z) by applying clause (3) and rule 1. To normalize it, we 
generate all symbols as output. It produces clause (3) again, and P1(ĥ(x), ̂i(y), ̂s(z)) ← P1 (̂x, ̂y, ̂z). (6).

Applying clause (3) and using rule 2, we get the critical pair:
Pd( ̂d2(x, y, z)) ← P1 (̂x, ̂y, ̂z). (7) which is already normalized. Thus, it is directly added into Prog . Applying clause (5) 

and using rule 4, we get the critical pair Pd(ĉ(x, y)) ← Pa (̂x), Pa (̂y). (8) which is already normalized. Consequently, it is 
directly added into Prog .



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.17 (1-18)

Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 17
Fig. 4. Run of compR on Example 19.

By applying clauses (7) and (4), and using rule 3, we get the critical pair: Pd( ̂d2( f (h(x)), g(i(y)), z)) ← Pa (̂x), Pa (̂y), Pa (̂z). 
To normalize it, we choose to generate d2, f , g as output, and h, i as input. It produces:

Pd( ̂d2(x, y, z)) ← P2(̂x, ŷ, ẑ, x′, y′, z′), Pa(x̂′), Pa( ŷ′), Pa(ẑ′). (9)

P2( f̂ (x), ĝ(y), ẑ, x′, y′, z′) ← P2(̂x, ŷ, ẑ,h(x′), i(y′), z′). (10′)

P2(̂x, ŷ, ẑ, x, y, z) ← . (11)

Now, clause (10′) may provide an infinite number of critical pairs. Applying removeCycles makes clause (10′) be substi-
tuted by the clause P2( f̂ (x), ̂g(y), ̂z, x′, y′, z′) ← P2 (̂x, ̂y, ̂z1, h(x′), i(y′), z′

1), P2(x̂1, ŷ1, ̂z, h(x′
1), i(y′

1), z
′) (10).

By applying clauses (7) and (6), and using rule 3, we get the critical pair: Pd( ̂d2( f (h(x)), g(i(y)), z)) ← P1(̂x, ̂y, ̂z). We 
normalize it as previously. We get Pd( ̂d2(x, y, z)) ← P2(̂x, ̂y, ̂z, x′, y′, z′), P1(x̂′, ̂y′, ̂z′). (12) as well as (10), (11) again.

With clauses (9 or 12), (10), and rule 3, we get the convergent critical pairs Pd( ̂d2( f ( f (x)), g(g(y)), z)) ← P2 (̂x, ̂y, ̂z1,

h(h(x′)), i(i(y′)), z′
1), Pa(x̂′), Pa( ŷ′), Pa (̂z) and Pd( ̂d2( f ( f (x)), g(g(y)), z)) ← P2(̂x, ̂y, ̂z1, h(h(x′)), i(i(y′)), z′

1), P1(x̂′, ̂y′, ̂z).

By applying clauses (9 or 12) and (11), and using rule 3, we get the convergent critical pairs Pd( ̂d2( f (h(x)), g(i(y)), z)) ←
Pa (̂x), Pa (̂y), Pa (̂z) and Pd( ̂d2( f (h(x)), g(i(y)), z)) ← P1 (̂x, ̂y, ̂z). By applying clauses (9) and (11), and using rule 4, we get 
the convergent critical pair Pd(ĉ(x, y)) ← Pa (̂x), Pa (̂y). Applying clauses (9) and (10), and using rule 4, we obtain the criti-
cal pair: Pd( ̂c( f (x), g(y))) ← P2 (̂x, ̂y, ̂z, h(x′), i(y′), z′), Pa(x̂′), Pa( ŷ′). Its normalization gives the clauses: P3( f̂ (x), ̂g(y)) ←
P2(̂x, ̂y, ̂z, h(x′), i(y′), z′), Pa(x̂′), Pa( ŷ′). (13) and Pd(ĉ(x, y)) ← P3 (̂x, ̂y). (14). Note that the symbols c, f and g have been 
considered as output parameters.

No more critical pairs are detected and the procedure stops. The resulting program Prog′ is composed of clauses 
(1) to (14). Note that the subset of descendants d2( f k(hn(a)), gk(in(a)), sn−k(a)) can be seen (with p = n − k) as 
d2( f k(hk+p(a)), gk(ik+p(a)), sp(a)). The reader can check by himself that L Prog′ (Pd) is exactly R∗(I).

The run of the completion on this example is also summarized in Fig. 4. Black arrows means that the non-convergent 
critical pair is directly added to Prog since it is already normalized.



JID:YJCSS AID:3058 /FLA [m3G; v1.199; Prn:6/02/2017; 10:09] P.18 (1-18)

18 Y. Boichut et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
6. Further work

Computing approximations more precise than regular ones is a first attempt towards a verification technique. However, 
there are at least two steps before considering our technique as a verification technique: 1) automatically handling the 
choices done during the normalization process and 2) extending to work with any rewrite system.

Concerning item 1, the quality of the approximation highly depends on the choice of the predicate symbol to be reused 
when predicate-limit is reached. On the other hand, the choice of generating function-symbols as output or as input is also 
crucial. Some automated heuristics will have to be designed in order to obtain well-customized approximations, for instance 
by extending the ideas of [25].

Ongoing work tends to show that the linear restriction concerning the rewrite system can be tackled. A nonright-linear
rewrite system makes the computed S-CF program copying. Consequently, Theorem 2 does not hold anymore. To get rid 
of the right-linearity restriction, we are studying the transformation of a copying S-CF clause into non-copying ones that 
will generate an over-approximation. On the other hand, to get rid of the left-linearity restriction, we are studying a tech-
nique based on that of [9]. However, their method does not always terminate. We want to force termination thanks to an 
additional over-approximation.

References

[1] J. Kochems, C.-H.L. Ong, Improved functional flow and reachability analyses using indexed linear tree grammars, in: RTA, in: LIPIcs, vol. 10, 2011, 
pp. 187–202.

[2] Y. Boichut, J. Chabin, P. Réty, Over-approximating descendants by synchronized tree languages, in: RTA, in: LIPIcs, vol. 21, 2013, pp. 128–142.
[3] Y. Boichut, B. Boyer, T. Genet, A. Legay, Equational abstraction refinement for certified tree regular model checking, in: ICFEM, in: LNCS, vol. 7635, 

Springer, 2012, pp. 299–315.
[4] T. Genet, Decidable approximations of sets of descendants and sets of normal forms, in: RTA, in: LNCS, vol. 1379, Springer-Verlag, 1998, pp. 151–165.
[5] T. Genet, F. Klay, Rewriting for cryptographic protocol verification, in: CADE, in: LNAI, vol. 1831, Springer-Verlag, 2000, pp. 271–290.
[6] Y. Boichut, R. Courbis, P.-C. Héam, O. Kouchnarenko, Finer is better: abstraction refinement for rewriting approximations, in: RTA, in: LNCS, vol. 5117, 

Springer, 2008, pp. 48–62.
[7] A. Bouajjani, P. Habermehl, A. Rogalewicz, T. Vojnar, Abstract regular (tree) model checking, Int. J. Softw. Tools Technol. Transf. 14 (2) (2012) 167–191.
[8] Y. Boichut, P.-C. Héam, A theoretical limit for safety verification techniques with regular fix-point computations, Inf. Process. Lett. 108 (1) (2008) 1–2.
[9] S. Limet, G. Salzer, Proving properties of term rewrite systems via logic programs, in: RTA, in: LNCS, vol. 3091, Springer, 2004, pp. 170–184.

[10] P. Réty, J. Chabin, J. Chen, R-unification thanks to synchronized-contextfree tree languages, in: Workshop on Unification, UNIF, 2005, pp. 41–46.
[11] P. Réty, J. Chabin, J. Chen, Synchronized contextfree tree-tuple languages, Tech. Rep. LIFO, RR-2006-13, University of Orleans/LIFO, 2006.
[12] Y. Boichut, J. Chabin, P. Réty, Erratum of our RTA-13 paper, Tech. Rep., LIFO, Université d’Orléans, 2014, http://www.univ-orleans.fr/lifo/Members/

rety/articles/PatchRTA13.pdf.
[13] Y. Boichut, V. Pelletier, P. Réty, Synchronized tree languages for reachability in non-right-linear term rewrite systems, in: D. Lucanu (Ed.), Rewriting 

Logic and Its Applications – 11th International Workshop, WRLA, in: Lecture Notes in Computer Science, vol. 9942, Springer, 2016, pp. 64–81.
[14] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, M. Tommasi, in: Tree Automata Techniques and Applications (TATA), 2007.
[15] J. Raoult, Rational tree relations, Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 149–176.
[16] P. Réty, Langages synchronisés d’arbres et applications, Habilitation Thesis (in French), tech. rep., LIFO, Université d’Orléans, June 2001.
[17] W.C. Rounds, Context-free grammars on trees, in: P.C. Fischer, S. Ginsburg, M.A. Harrison (Eds.), STOC, ACM, 1969, pp. 143–148.
[18] J. Engelfriet, E.M. Schmidt, IO and OI (I), J. Comput. Syst. Sci. 15 (3) (1977) 328–353, http://dx.doi.org/10.1016/S0022-0000(77)80034-2.
[19] J. Engelfriet, E.M. Schmidt, IO and OI (II), J. Comput. Syst. Sci. 16 (1) (1978) 67–99, http://dx.doi.org/10.1016/0022-0000(78)90051-X.
[20] J. Engelfriet, L. Heyker, Context-free hypergraph grammars have the same term-generating power as attribute grammars, Acta Inform. 29 (1992) 

161–210.
[21] J. Engelfriet, J. Vereijken, Context-free grammars and concatenation of graphs, Acta Inform. 34 (1997) 773–803.
[22] I. Durand, M. Sylvestre, Left-linear bounded TRSs are inverse recognizability preserving, in: RTA, in: LIPIcs, vol. 10, 2011, pp. 361–376.
[23] S. Limet, G. Salzer, Tree tuple languages from the logic programming point of view, J. Autom. Reason. 37 (4) (2006) 323–349.
[24] V. Gouranton, P. Réty, H. Seidl, Synchronized tree languages revisited and new applications, in: FoSSaCS, in: LNCS, vol. 2030, Springer, 2001, 

pp. 214–229.
[25] T. Genet, V. Rusu, Equational tree automata completion, J. Symb. Comput. 45 (2010).

http://refhub.elsevier.com/S0022-0000(17)30006-5/bib4B6F6368656D734F3131s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib4B6F6368656D734F3131s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib426F69636875745254413133s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib426F696368757442474C3132s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib426F696368757442474C3132s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib67656E65745254413938s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib67656E65744361646532303030s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib426F696368757443484B3038s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib426F696368757443484B3038s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib426F75616A6A616E694852563132s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib426F6963687574483038s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib4C533034s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib52657479554E49463035s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib5265747952522D323030362D3133s1
http://www.univ-orleans.fr/lifo/Members/rety/articles/PatchRTA13.pdf
http://www.univ-orleans.fr/lifo/Members/rety/articles/PatchRTA13.pdf
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib426F696368757457524C4132303136s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib426F696368757457524C4132303136s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib54415441s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib52616F756C743937s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib52657479486162696C69746174696F6E32303031s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib44424C503A636F6E662F73746F632F526F756E64733639s1
http://dx.doi.org/10.1016/S0022-0000(77)80034-2
http://dx.doi.org/10.1016/0022-0000(78)90051-X
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib456E67656C66726965743932s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib456E67656C66726965743932s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib456E67656C66726965743937s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib44424C503A636F6E662F7274612F447572616E64533131s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib4C532D4A41523036s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib676F7572616E746F6E464F53534143533031s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib676F7572616E746F6E464F53534143533031s1
http://refhub.elsevier.com/S0022-0000(17)30006-5/bib47656E65744A53433130s1

	Towards more precise rewriting approximations
	1 Introduction
	2 Preliminaries
	3 Technical lemmas
	4 Computing descendants
	4.1 Critical pairs
	4.2 Ensuring ﬁnitely many critical pairs
	4.3 Normalizing critical pairs - normProg
	4.4 Completion

	5 Examples
	6 Further work
	References


