1 Introduction

In [1], we have described a technique for computing non-regular approximations using synchronized tree languages. This technique can handle the reachability problem of [2]. These synchronized tree languages [4, 3] are recognized using CS-programs [5], i.e. a particular class of Horn clauses. From an initial CS-program Prog and a left-linear term rewrite system (TRS) R, another CS-program Prog' is computed in such a way that its language represents an over-approximation of the set of terms (called descendants) reachable by rewriting using R, from the terms of the language of Prog. This algorithm is called completion. However, the assumptions of the result showing that all the descendants are obtained, i.e. Theorem 14 in [1], are not correct. Actually, preserving should be replaced by non-copying (a variable cannot occur several times in the head of a clause). However, the non-copying nature of a CS-program is not preserved by completion as soon as the given TRS is not right-linear. Consequently, the final result presented in [1] holds for completely linear TRS, and not for just left-linear TRS.

In this paper, we propose a correction of [1], assuming that the initial CS-program is non-copying, and the TRS is completely linear (see Section 3).

2 Preliminaries

Consider two disjoint sets, Σ a finite ranked alphabet and Var a set of variables. Each symbol $f \in \Sigma$ has a unique arity, denoted by $\text{ar}(f)$. The notions of first-order term, position and substitution are defined as usual. Given two substitutions σ and σ', $\sigma \circ \sigma'(x) = \sigma(\sigma'(x))$. T_{Σ} denotes the set of ground terms (without variables) over Σ. For a term t, $\text{Var}(t)$ is the set of variables of t, $\text{Pos}(t)$ is the set of positions of t. For $p \in \text{Pos}(t)$, $t(p)$ is the symbol of $\Sigma \cup \text{Var}$ occurring at position p in t, and $t|_p$ is the subterm of t at position p. The term t is linear if each variable of t occurs only once in t. The term $t[t'|_p$ is obtained from t by replacing the subterm at position p by t'. \(\text{PosVar}(t) = \{p \in \text{Pos}(t) \mid t(p) \in \text{Var}\}\), \(\text{PosNonVar}(t) = \{p \in \text{Pos}(t) \mid t(p) \notin \text{Var}\}\).

A rewrite rule is an oriented pair of terms, written $l \rightarrow r$. We always assume that l is not a variable, and $\text{Var}(r) \subseteq \text{Var}(l)$. A rewrite system R is a finite set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The rewrite relation \rightarrow_R is defined as follows: $t \rightarrow_R t'$ if there exist a position $p \in$
Prog predicate symbols ofProg is a logic program composed of CS-clauses.

A CS-clause is a Horn-clause \(H \leftarrow B \) s.t. \(B \) is flat and linear. A CS-program \(\text{Prog} \) is a logic program composed of CS-clauses. \(\text{Pred}(\text{Prog}) \) denotes the set of predicate symbols of \(\text{Prog} \). Given a predicate symbol \(P \) of arity \(n \), the tree-(tuple) language generated by \(P \) is \(L(P) = \{ t \in (T_\Sigma)^n \mid P(t) \in \text{Mod}(\text{Prog}) \} \), where \(T_\Sigma \) is the set of ground terms over the signature \(\Sigma \) and \(\text{Mod}(\text{Prog}) \) is the least Herbrand model of \(\text{Prog} \). \(L(P) \) is called Synchronized language.

The following definition describes syntactic properties over CS-clauses.

Definition 2. A CS-clause \(P(t_1, \ldots, t_n) \leftarrow B \) is:

- empty if \(\forall i \in \{1, \ldots, n\} \), \(t_i \) is a variable.
- normalized if \(\forall i \in \{1, \ldots, n\} \), \(t_i \) is a variable or contains only one occurrence of function-symbol.
- preserving if \(\text{Var}(P(t_1, \ldots, t_n)) \subseteq \text{Var}(B) \).
- non-copying if \(P(t_1, \ldots, t_n) \) is linear.

A CS-program is normalized, preserving, non-copying if all its clauses are.

Example 1. The CS-clause \(P(x, y, z) \leftarrow Q(x, y, z) \) is empty, normalized, preserving, and non-copying (\(x, y, z \) are variables).

The CS-clause \(P(f(x), y, g(x, z)) \leftarrow Q_1(x), Q_2(y, z) \) is normalized, preserving, and copying. \(P(f(g(x)), y) \leftarrow Q(x) \) is not normalized and not preserving.

Given a CS-program, we focus on two kinds of derivations.

1 In former papers, synchronized tree-tuple languages were defined thanks to sorts of grammars, called constraint systems. Thus "CS" stands for Constraint System.
Definition 3. Given a logic program \(\text{Prog} \) and a sequence of atoms \(G \),

- \(G \) derives into \(G' \) by a resolution step if there exist a clause\(^2\) \(H \leftarrow B \) in \(\text{Prog} \) and an atom \(A \in G \) such that \(A \) and \(H \) are unifiable by the most general unifier \(\sigma \) (then \(\sigma(A) = \sigma(H) \)) and \(G' = \sigma(G)[\sigma(A) \leftarrow \sigma(B)] \). It is written \(G \rightarrow_\sigma G' \).

- \(G \) rewrites into \(G' \) if there exist a clause \(H \leftarrow B \) in \(\text{Prog} \), an atom \(A \in G \), and a substitution \(\sigma \), such that \(A = \sigma(H) \) (\(A \) is not instantiated by \(\sigma \)) and \(G' = \text{Prog}[A \leftarrow \sigma(B)] \). It is written \(G \rightarrow \sigma G' \).

Sometimes, we will write \(G \sim_{[H \leftarrow B, \sigma]} G' \) or \(G \rightarrow_{[H \leftarrow B, \sigma]} G' \) to indicate the clause used by the step.

Example 2. Let \(\text{Prog} = \{P(x_1, g(x_2)) \leftarrow P'(x_1, x_2). P(f(x_1), x_2) \leftarrow P''(x_1, x_2)\} \), and consider \(G = P(f(x), y) \). Thus, \(P(f(x), y) \sim_{\sigma_1} P'(f(x), x_2) \) with \(\sigma_1 = [x_1/f(x), y/g(x_2)] \) and \(P(f(x), y) \rightarrow_{\sigma_2} P''(x, y) \) with \(\sigma_2 = [x_1/x, x_2/y] \).

Note that for any atom \(A \), if \(A \rightarrow B \) then \(A \sim B \). If in addition \(\text{Prog} \) is preserving, then \(\text{Var}(A) \subseteq \text{Var}(B) \). On the other hand, \(A \sim \sigma B \) implies \(\sigma(A) \rightarrow B \). Consequently, if \(A \) is ground, \(A \sim B \) implies \(A \rightarrow B \).

We consider the transitive closure \(\sim^+ \) and the reflexive-transitive closure \(\sim^* \) of \(\sim \).

For both derivations, given a logic program \(\text{Prog} \) and three sequences of atoms \(G_1, G_2 \) and \(G_3 \):

- if \(G_1 \sim_{\sigma_1} G_2 \) and \(G_2 \sim_{\sigma_2} G_3 \) then one has \(G_1 \sim_{\sigma_2 \circ \sigma_1} G_3 \);
- if \(G_1 \rightarrow_{\sigma_1} G_2 \) and \(G_2 \rightarrow_{\sigma_2} G_3 \) then one has \(G_1 \rightarrow_{\sigma_2 \circ \sigma_1} G_3 \).

In the remainder of the paper, given a set of CS-clauses \(\text{Prog} \) and two sequences of atoms \(G_1 \) and \(G_2 \), \(G_1 \sim^*_{\text{Prog}} G_2 \) (resp. \(G_1 \rightarrow^*_{\text{Prog}} G_2 \)) also denotes that \(G_2 \) can be derived (resp. rewritten) from \(G_1 \) using clauses of \(\text{Prog} \).

It is well known that resolution is complete.

Theorem 1. Let \(A \) be a ground atom. \(A \in \text{Mod}(\text{Prog}) \) iff \(A \sim^*_{\text{Prog}} \emptyset \).

2.2 Computing descendants

We just give the main ideas using an example. See [1] for a formal description.

Example 3. Let \(R = \{f(x) \rightarrow g(h(x))\} \) and let \(I = \{f(a)\} \) generated by the CS-program \(\text{Prog} = \{P(f(x)) \leftarrow Q(x). Q(a) \leftarrow\} \). Note that \(R^*(I) = \{f(a), g(h(a))\} \).

To simulate the rewrite step \(f(a) \rightarrow g(h(a)) \), we consider the rewrite-rule’s left-hand side \(f(x) \). We can see that \(P(f(x)) \rightarrow_{\text{Prog}} Q(x) \) and \(P(f(x)) \rightarrow_R P(g(h(x))) \). Then the clause \(P(g(h(x))) \leftarrow Q(x) \) is called critical pair\(^3\). This

\(^2\) We assume that the clause and \(G \) have distinct variables.

\(^3\) In former work, a critical pair was a pair. Here it is a clause since we use logic programs.
critical pair is not convergent (in Prog) because $\neg(P(g(h(x))) \rightarrow_{\text{Prog}}^{\ast} Q(x))$.
To get the descendants, the critical pairs should be convergent. Let $\text{Prog}' = \text{Prog} \cup \{P(g(h(x))) \leftarrow Q(x)\}$. Now the critical pair is convergent in Prog', and note that the predicate P of Prog' generates $R^*(I)$.

For technical reasons4, we consider only normalized CS-programs, and Prog' is not normalized. The critical pair can be normalized using a new predicate symbol, and replaced by normalized clauses $P(g(y)) \leftarrow Q_1(y)$. $Q_1(h(x)) \leftarrow Q(x)$. This is the role of Function norm in the completion algorithm below.

In general, adding a critical pair (after normalizing it) into the CS-program may create new critical pairs, and the completion process may not terminate. To force termination, two bounds predicate-limit and arity-limit are fixed. If predicate-limit is reached, Function norm should re-use existing predicates instead of creating new ones. If a new predicate symbol is created whose arity5 is greater than arity-limit, then this predicate has to be cut by Function norm into several predicates whose arities do not exceed arity-limit. On the other hand, for a fixed6 CS-program, the number of critical pairs may be infinite. Function removeCycles modifies some clauses so that the number of critical pairs is finite.

Definition 4 (comp as in [1]). Let arity-limit and predicate-limit be positive integers. Let R be a left-linear rewrite system, and Prog be a finite, normalized and preserving CS-program. The completion process is defined by:

Function $\text{comp}_R(\text{Prog})$

$\text{Prog} = \text{removeCycles}(\text{Prog})$

while there exists a non-convergent critical pair $H \leftarrow B$ in Prog do

$\text{Prog} = \text{removeCycles}(\text{Prog} \cup \text{norm}_{\text{Prog}}(H \leftarrow B))$

end while

return Prog

The following results show that an over-approximation of the descendants is computed.

Theorem 2 ([1]). Let Prog be a normalized and preserving CS-program and R be a left-linear rewrite system.
If all critical pairs are convergent, then $\text{Mod}(\text{Prog})$ is closed under rewriting by R, i.e. $(A \in \text{Mod}(\text{Prog}) \land A \rightarrow_{R}^{\ast} A') \implies A' \in \text{Mod}(\text{Prog})$.

Theorem 3 ([1]). Let R be a left-linear TRS and Prog be a normalized preserving CS-program. Function comp always terminates, and all critical pairs are convergent in $\text{comp}_R(\text{Prog})$. Moreover, $R^*(\text{Mod}(\text{Prog})) \subseteq \text{Mod}(\text{comp}_R(\text{Prog}))$.

3 Fixing [1]

The hypotheses mentioned in Definition 4 and Theorems 2 and 3 are not sufficient to ensure the computation of an over-approximation.

4 Critical pairs are computed only at root positions.

5 The number of arguments.

6 i.e. without adding new clauses in the CS-program.
Indeed, let us describe two counter-examples that are strongly connected.

Example 4. Let $	ext{Prog} = \{ P(f(x), f(x)) \leftarrow Q(x) \cdot Q(a) \leftarrow . \cdot Q(b) \leftarrow . \}$ and $R = \{ a \rightarrow b \}$. Prog is preserving and normalized as required in Theorem 2. R is ground and consequently, left-linear. There is only one critical pair $Q(b) \leftarrow .$, which is convergent. $P(f(a), f(a)) \in \text{Mod}(\text{Prog})$ and $P(f(a), f(a)) \rightarrow_R P(f(b), f(a))$. However $P(f(b), f(a)) \notin \text{Mod}(\text{Prog})$.

The copying nature of Prog is problematic in Example 4 in the sense that it prevents the predicate symbol P from having two different terms right under. Another problem is that a non-right-linear rewrite rule (but left-linear) may generate a copying critical pair, i.e. copying CS-clauses. Consequently, even if the starting program is not copying, it may become copying during the completion algorithm. Example 5 illustrates this problem.

Example 5. $\text{Prog} = \{ P(f(x)) \leftarrow Q(x) \cdot Q(a) \leftarrow . \}$ and $R = \{ f(x) \rightarrow g(x, x) \}$. There is one critical pair $P(g(x, x)) \leftarrow Q(x)$, which is copying. Thus $\text{comp}_R(\text{Prog})$ is copying.

Actually, the hypotheses of Definition 4 have to be stronger i.e. the TRS must be linear in order to prevent the introduction of copying clauses by the completion process, and the starting program must be non-copying. On the other hand, the preserving assumption is not needed anymore.

Definition 5 (New comp). Let arity-limit and predicate-limit be positive integers. Let R be a linear rewrite system, and Prog be a finite, normalized and non-copying CS-program. The completion process is defined by:

Function $\text{comp}_R(\text{Prog})$

- $\text{Prog} = \text{removeCycles}(\text{Prog})$
- while there exists a non-convergent critical pair $H \leftarrow B$ in Prog do
 - $\text{Prog} = \text{removeCycles}(\text{Prog} \cup \text{norm}_{\text{Prog}}(H \leftarrow B))$
- end while
- return Prog

Thus, a new version of Theorem 2 is given below:

Theorem 4. Let R be a left-linear\(^7\) rewrite system and Prog be a normalized non-copying CS-program.

If all critical pairs are convergent, then $\text{Mod}(\text{Prog})$ is closed under rewriting by R, i.e. $(A \in \text{Mod}(\text{Prog}) \land A \rightarrow_R A') \implies A' \in \text{Mod}(\text{Prog})$.

Proof. Let $A \in \text{Mod}(\text{Prog})$ s.t. $A \rightarrow_{\rightarrow_R} A'$. Then $A_i = C[\sigma(l)]$ for some $i \in \mathbb{N}$ and $A' = A[i \leftarrow C[\sigma(r)]]$.

Since resolution is complete, $A \sim^* \emptyset$. Since Prog is normalized, resolution consumes symbols in C one by one, thus $G_0 = A \sim^* G_k \sim^* \emptyset$ and there exists

\(^7\)From a theoretical point of view, left-linearity is sufficient when every critical pair is convergent. However, to make every critical pair convergent by completion, full linearity is necessary (see Theorem 5).
an atom $A'' = P(t_1, \ldots, t_n)$ in G_k and j s.t. $t_j = \sigma(l)$ and the top symbol of t_j is consumed (or t_j disappears) during the step $G_k \rightsquigarrow G_{k+1}$. Since $Prog$ is non-copying, $t_j = \sigma(l)$ admits only one antecedent in A.

Consider new variables x_1, \ldots, x_n s.t. $\{x_1, \ldots, x_n\} \cap Var(l) = \emptyset$, and let us define the substitution σ' by $\forall i, \sigma'(x_i) = t_i$ and $\forall x \in Var(l), \sigma'(x) = \sigma(x)$.

Then $\sigma'(P(x_1, \ldots, x_{j-1}, l, x_{j+1}, \ldots, x_n)) = A''$, and according to resolution (or narrowing) properties $P(x_1, \ldots, l, \ldots, x_n) \sim_{\emptyset}^* \emptyset$ and $\theta \leq \sigma'$.

This derivation can be decomposed into: $P(x_1, \ldots, l, \ldots, x_n) \sim_{\emptyset}^* G' \sim_{\theta_2} G \sim_{\emptyset}^* \emptyset$ where $\theta = \theta_3 \circ \theta_2 \circ \theta_1$, and s.t. G' is not flat and G is flat\(^8\). $P(x_1, \ldots, l, \ldots, x_n) \sim_{\emptyset}^* G' \sim_{\theta_2} G$ can be commuted into $P(x_1, \ldots, l, \ldots, x_n) \sim_{\emptyset}^* B' \sim_{\gamma_2} G$ s.t. B is flat, B' is not flat, and within $P(x_1, \ldots, l, \ldots, x_n) \sim_{\emptyset}^* B' \sim_{\gamma_2} B$ resolution is applied only on non-flat atoms, and we have $\gamma_3 \circ \gamma_2 \circ \gamma_1 = \theta_2 \circ \theta_1$. Then $\gamma_2 \circ \gamma_1 P(x_1, r, \ldots, x_n))$ B is a critical pair. By hypothesis, it is convergent, then $\gamma_2 \circ \gamma_1 P(x_1, r, \ldots, x_n)) \rightarrow^* B$. Note that $\gamma_3(B) \rightarrow^* G$ and recall that $\theta_3 \circ \gamma_2 \circ \gamma_1 = \theta_3 \circ \theta_2 \circ \theta_1 = \theta$. Then $\theta(P(x_1, r, \ldots, x_n)) \rightarrow^* \theta_3(G) \rightarrow^* 0$, and since $\theta \leq \sigma'$ we get $P(t_1, \ldots, \sigma(r), \ldots, t_n) = \sigma(P(x_1, \ldots, r, \ldots, x_n)) \rightarrow^* 0$. Recall that $\sigma(l)$ has only one antecedent in A. Therefore $A' \sim^* G_k A'' \rightarrow^* P(t_1, \ldots, \sigma(r), \ldots, t_n) \sim^* \emptyset$, hence $A' \in Mod(Prog)$.

By trivial induction, the proof can be extended to the case of several rewrite steps.

Consequently, one can update Theorem 3 as follows:

Theorem 5. Let R be a linear rewrite system and $Prog$ be a normalized non-copying CS-program. Function comp_R always terminates, and all critical pairs are convergent in $\text{comp}_R(Prog)$. Moreover, $R^*(\text{Mod}(Prog)) \subseteq \text{Mod}(\text{comp}_R(Prog))$.

References

\(^8\) Since \emptyset is flat, a flat goal can always be reached, i.e. in some cases $G = \emptyset$.