
A ToolBox for Conservative XML Schema

Evolution and Document Adaptation

Joshua Amavi, Jacques Chabin, Mirian Halfeld Ferrari, and Pierre Réty

Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, FR-45067 Orléans, France
{joshua.amavi,jacques.chabin,mirian,pierre.rety}@univ-orleans.fr

Abstract. We propose an algorithm that computes a mapping to obtain
a conservative extension of original local schemas. This mapping ensures
schema evolution and guides the construction of a document translator.

1 Introduction

Our goal is to establish a multi-system environment composed by a global cen-
tral system which is a conservative evolution of local ones, capable of processing
changes that can then be transmitted to local systems. The communication
should be possible in both directions: local-to-global and global-to-local. We
allow independent local services to continue working on their own data, with
their own tools while permitting diagnosis and changes based on a general and
complete view of all services. This scenario requires tools for dealing with type
evolution and document adaptation. It can be useful as a temporary config-
uration, deferring complete integration until local systems are ready, or as a
flexible architecture adopted by the enterprise. In this context, we suppose that
S1, . . . , Sn are local systems which deal with sets of XML documentsX1, . . . , Xn,
respectively, and that inter-operate with a global, integrated system S. Each set
Xi conforms to schema or type constraints Di, while D is an extended type (of
S) that accepts any local document from Di. We assume that the global system
S may evolve to S′, accepting more documents or rejecting some original ones.
Our goal is to propose tools allowing automatic type transformation accompa-
nied by automatic document translation. We implement a platform1 where all
our proposed tools will be available (refer to [3] for details):

• ExtSchemaGenerator([5]) extends a given schema G, seen as a regular tree
grammar, into a new grammar G′ respecting the following property: the lan-
guage generated by G′ is the smallest set of unranked trees that contains the
language generated by G and the grammar G′ is a Local Tree Grammar (LTG)
or a Single-Type Tree Grammar (STTG).

1 From previous work: ExtSchemaGenerator , available on
http://www.univ-orleans.fr/

lifo/Members/rety/logiciels/RTGalgorithms.html XMLCorrector , available on
http://www.info.univ-tours.fr/~savary/English/xmlcorrector.html

H. Decker et al. (Eds.): DEXA 2014, Part I, LNCS 8644, pp. 299–307, 2014.
c© Springer International Publishing Switzerland 2014

http://www.univ-orleans.fr/lifo/Members/rety/logiciels/RTGalgorithms.html
http://www.univ-orleans.fr/lifo/Members/rety/logiciels/RTGalgorithms.html
http://www.info.univ-tours.fr/~savary/English/xmlcorrector.html

300 J. Amavi et al.

• XMLCorrector([2]) corrects an XML document w.r.t. schema constraints ex-
pressed as a DTD (or an LTG). The corrector reads the entire XML tree t to
propose solutions. XMLCorrector finds all solutions within a given threshold th.
• MappingGen: We propose an algorithm that applies the ideas of [5] to generate
a mapping from one schema G, seen as a regular tree grammar, to an extended
schemaG′ which will be an LTG. The resulting schema mappingm is a sequence
of operations on grammar rules that indicates, step by step, how to transform
G into G′ following the approach in [5]. Given a mapping m we can easily
compute its inverse m−1 or compose it to other mappings; allowing schemas to
evolve.
• XTraM : Based on a given mapping m (from schema S to T), we propose a
method to translate an XML document (or tree) t, valid w.r.t. S into a doc-
ument t′ valid w.r.t. T . The edit distance between t and t′ is no higher than
a given positive threshold th. Moreover, t′ is the closest tree to t, obtained by
changing t according to the schema modifications imposed by m. For each edit
operation on S, to obtain T , we analyse what should be the corresponding up-
date on document t. When this update violates validity, we use XMLCorrector
to propose corrections to the subtree involved in the update.

2 Schema Evolution

An XML document is an unranked tree, defined in the usual way as a mapping
t from a set of positions Pos(t) to an alphabet Σ. We deal with XML schema
represented as RTG (regular tree grammar) G = (N,Σ, S, P), where: N is a
finite set of non-terminals ; Σ is a finite set of terminals ; S is a set of start
symbols, where S ⊆ N and P is a finite set of production rules of the form
X → a [R], where X ∈ N , a ∈ Σ, and R is a regular expression over N . As
usual, in this paper, our algorithms start from grammars in reduced and normal
form. Among RTG we are interested in local tree grammars (LTG) which have
the same expressive power as DTD. We refer to [5] for details.

Conservative XML Type Extension (ExtSchemaGenerator). In order to com-
pute an LTG that extends minimally a given RTG, we follow the idea of ExtSche-
maGenerator, presented in [5]. This method is very simple when dealing with the
generation of an LTG from an RTG: replace each pair of competing non-terminals
by a new non-terminal, until there are no more competing non-terminals. The
regular expression of a new non-terminal rule is the disjunction of the regular
expressions associated to competing non-terminals.

Consider three hospital services (patient and treatment service, insurance ser-
vice and bill service), each one having its own LTG (or DTD) as schema. Fig-
ure 1(lines 1-5) shows the RTG obtained by the union of the production rules of
all these three grammars while Figure 1(lines 3-6) shows the resulting LTG. The
obtained LTG is an extension of the original RTG since it generates all trees
generated by the original RTG and possibly others as well (refer to example of
Figure 3). Clearly, the obtained grammar is also an extension of each hospital

A ToolBox for Conservative XML Schema 301

1 H1 → hospital[I∗
1] H2 → hospital[I∗

2] H3 → hospital[I∗
3]

2 I1 → info[P | T] I2 → info[C | Pol] I3 → info[B]

3 P → patient[S ·N · V ∗] C → cover[S · PN] B → bill[S · It∗ ·D]

4 V → visitInfo[Id · D] Pol → policy[PN · Id∗] It → item[Id · PZ]

5 T → treatment[Id · TN · PR] PR → procedure[T∗]

6 H1 → hospital[I∗
1 | I∗

1 | I∗
1] I1 → info[(P | T) | (C | Pol) | B]

Fig. 1. Lines 1-5 : RTG obtained from the union of production rules of grammars.
Lines 3-6 : LTG obtained by algorithm in [5] from the RTG (lines 1-5).

service grammar. In Figure 3(a) we find a document valid w.r.t. the billing local
schema. It is also valid w.r.t. the global schema of Figure 1(lines 3-6).

Schema Mappings. We say that a source schema (or grammar) evolves to a
target schema. A schema mapping is specified by an operation list, denoted as
an edit script, that should be performed on source schema in order to obtain the
target schema. We propose an algorithm that generates a mapping to translate
an RTG G into an LTG G′, following the lines of [5] . Our mapping is composed
by a sequence of edit operations that should be applied on the rules of grammar
G in order to obtain G′.

In the following definition, let ed be an edit operation defined on RTG G. We
denote by ed(G) the RTG obtained by applying ed on G. Each edit operation
is associated with a cost that can be fixed according to the user’s priority. The
cost of an edit script is the sum of the costs of the edit operations composing it.

Definition 1 (Edit Script). An edit script m = 〈ed1, ed2, . . . edn〉 is a se-
quence of edit operations edk where 1 ≤ k ≤ n. Let G be an RTG, an edit
script m = 〈ed1, ed2, . . . edn〉 is defined on G iff there exists a sequence of RTG
G0, G1, . . . , Gn such that: (i) G0 = G and (ii) ∀ 1 ≤ k ≤ n, edk is defined on
Gk−1 and edk(Gk−1) = Gk. Hence,m(G) = Gn. The empty edit script is denoted
〈〉. The cost of an edit script m is defined as cost(m) = Σn

i=1(cost(edi)). �

Definition 2 (SchemaMapping).A schemamapping is a tripleM=(S, T,m),
where S is the source schema, T is the target schema, and m is an edit script that
transforms S into T (i.e., m(S) = T). We say that M is syntactically specified by,
or, expressed by m. �

Edit Operations. In this section, the problem of changing one RTG into another
is treated as a tree editing problem.

Tree Representation for Production Rules. We represent the right-hand
side of a production rule X → a [R] as a tree denoted trX such that trX = a(tR).
The root of trX is the terminal a which has only one subtree tR. For example, in
Figure 2, the tree on the top left corner is trI with I → info[T.(Y.Co)].

Definition 3 (Well Formed Tree). A tree t representing the right-hand side
of a production rule is well formed iff the following conditions are verified: (i)
the root is a terminal symbol with only one child; (ii) the leaves nodes are in

302 J. Amavi et al.

N ∪ {ε} and (iii) the internal nodes are in the set {|, ., ∗} having exactly one
child (if it is in {∗}) or at least one child, in the other cases. �

Elementary Edit Operations. In [3], we define elementary edit operations
by using rewriting. Here we give an intuition of some of these operations. Given
an RTG G = (N,Σ, S, P) in normal form, an elementary edit operation ed is
a partial function that transforms G into a new RTG G′. The elementary edit
operation ed can be applied on G only if ed is defined on G. Below we distinguish
four types of elementary edit operations on RTG, where A ∈ N :

1. Edit operations to modify the set of start symbols S: set startelm(A) and
unset startelm(A) to add/delete the non-terminal A to/from S.

2. Edit operations to modify non-terminal or terminal symbols in a con-
tent model. For example, ins elm(X,A, u.i): (cf. Figure 2(ed1)) applies the

rewrite rule

op

x y

−→ op

x A y to insert A in the position u.i of tree rep-
resenting the production rule associate to X ;
del elm(X,A, u.i): (cf. Figure 2(ed2)) is the inverse operation. The other
operations are: rel root(X, a, b): (cf. Figure 2(ed3)) to rename the root
from a to b; rel elm(X,A,B, u): (cf. Figure 2(ed4)) to rename non-terminal
A at position u into B.

3. Edit operations to modify operator symbols in a content model are similar
to those described in the previous item, but apply on operator nodes. See
for instance Figure 2(ed5), (ed6) and (ed7).

4. Edit operations to modify the set of production rules P are: ins rule(A, a)
that adds the new production rule A → a [ε] to P and the non-terminal A
to S, where A �∈ N and del rule(A, a) its inverse.

After each edit operation, the sets Σ andN are automatically updated to contain
all and only the terminal (resp. non-terminal) symbols appearing in P .

Proposition 1. Let G and G′ be two RTG. There exist an edit script, composed
only by elementary edit operation, that transforms G into G′. �

Non-elementary Edit Operations. For readability and cost estimation,
we define short-cut operations, i.e., operations seen as a one-block oper-
ation but equivalent to a sequence of elementary edit operations, such as
ins tree(X,R, u.i), ins treerule(A, a,R) and inversely del tree(X,R, u.i),
del treerule(A, a,R).

Operation Cost. For each edit operation ed, we define a non-negative and
application-dependent cost. On the one hand, we assume that operations that
do not change the language generated by the RTG G on which they were applied,
are 0-cost. Their goal is just to simplify a given regular expression. For instance,
del opr(X, opr, u.i) where trX(u) = trX(u.i) = opr and del opr(X, opr, u.i)
where trX(u.i) ∈ {|, .} and trX(u.i) has exactly one child, are 0-cost operations.
On the other hand, we suppose that an elementary edit operation costs 1, while
a non-elementary edit operation costs 5.

A ToolBox for Conservative XML Schema 303

0
0.10.0

0.1.1 0.1.20.1.0

0
0.10.0

0.1.10.1.0

I : info

.
.

T
Y Nb Co

ε
info

T
Y Co

I :

.
.

ε

ed1

ins elm(I,Nb,0.1.1)

0.0 0.1

0

0.0 0.1 0.2 ed2

del elm(Af,Zp,0.1) .

Af : affiliation

Ct Afn

ε

.

Af : affiliation

Ct Zp Afn

ε

0
0.10.0

0.1.1 0.1.20.1.0

0
0.10.0

0.1.1 0.1.20.1.0

I : info

T
Y Nb Co

.
.

ε
I : information

T
Y Nb Co

.
.

ε

ed3

rel root(I,info,information)
00 .

Au

Paper*

Pu : publication

0.0

0.0.0

0.1

ε

ed4

rel elm(Pu,Pa,Paper,0.1)
.

Au

Pa*

Pu : publication

0.0

0.0.0

0.1

ε

00

0.1

0.1.1

.

Afn Ct

ε

0.0

0.1.0

|
0.2

0.2.10.2.0

Au : author

N

Em Tel

.

0.1 0.2 0.3

ε

0.1.1

0.0

0.1.0

Au : author

N

Afn Ct

Em Tel

.

. ed5

ins opr(Au,|,0.2,2)

0

0.0

0.1 0.2 0.3

0
0.10.0

0.1.1 0.1.20.1.0

informationI :

T Y Nb Co

.

εinformation

T
Y Nb Co

.

ε
I :

. ed6

del opr(I,.,0.1,3)

0

0.0

0

0.0

bibliography

*

Pu

Bib :
ε

Pu

.

Bib: bibliography
ε

ed7

rel opr(Bib,*,.,0)

Fig. 2. Example of elementary edit operations

Generating a Schema Mapping (MappingGen). Algorithm 1 generates a map-
ping that converts an RTG in an LTG by following the ideas in [5], explained in
Section 2. This algorithm starts by determining a set of competing non-terminals
ECa (lines 2-3). Then we can take arbitrarily in ECa, one of these non-terminals
(say X0) to represent all others, i.e., when merging rules of competing terminals,
one non-terminal name is chosen to represent the result of the merge (line 4).
Recall that edit operations always deal with a production rule in its tree-like
format. The new production rule of X0 is built in two steps. We add an OR op-
eration as the parent of its original regular expression reg(X0) (line 5) and then
we insert all regular expressions associated with its competing non-terminals as
siblings of reg(X0) (line 7). In line 8 we just replace, in all production rules,
non-terminals in ECa by X0. Original rules of non-terminals in ECa are deleted
(line 10) after, possibly, adjusting start symbols (line 9).

Proposition 2. Let m be the mapping obtained by Algorithm 1 from an RTG
G. The language L(m(G)) is the least LTL that contains L(G). Moreover, the
grammar m(G) equals the one obtained by ExtSchemaGenerator. �

Going Further with Mappings to Support Schema Evolution. In [6], it was
shown how two fundamental operators on schema mappings, namely composition
and inversion, can be used to address the mapping adaptation problem in the
context of schema evolution. Let M1 be a mapping between XML schemas S
and T . When S or T evolve, M1 shall be adapted. By using composition and
inversion operators, one can avoid mapping re-computation. We now precise the
notions of composition and inversion in our context.

304 J. Amavi et al.

Algorithm 1. A mapping for transforming an RTG into an LTG

Input: A Regular Tree Grammar G = (NT,Σ, S, P)
Output: An edit script m between G and the LTG G′ such that L(G) ⊆ L(G′)
1: m := 〈〉
2: for each terminal symbol a ∈ Σ do
3: ECa={X0, . . . , Xk} is a set of competing non-terminals where term(Xi) = a
4: Non-terminal X0 is choosed to represent X0, . . . , Xk

5: Add ins opr(X0, |, 0, 1) to m
6: for each non-terminal Xi ∈ {X1, . . . , Xk} do
7: Add ins tree(X0, reg(Xi), 0.i) to m
8: Add rel elm(Y,Xi, X0, u) to m, for all u where u is the position of Xi

in the rule Y → b [R] ∈ P
9: Add set startelm(X0) to m where X0 �∈ S and Xi ∈ S
10: Add del treerule(Xi, a, reg(Xi)) to m
11: end for
12: end for
13: return m

Definition 4 (Mapping composition and inversion). Given two mappings
M1 = (S, T,m1) and M2 = (T, V,m2), the composition of M1 and M2 is the
mapping M1 ◦M2 = (S, V,m1 .m2). If m1 = 〈ed1, · · · , edn〉, then the inverse of
mapping M1 is the mapping M−1

1 = (T, S,m−1
1) where m−1

1 = 〈ed−1
n , · · · , ed−1

1 〉
and ed−1

k (1 ≤ k ≤ n) is defined in [3]2.

3 Adapting XML Documents to a New Type

Correcting XML Documents (XMLCorrector) In [2], given a well-formed XML
tree t, a schema G and a non negative threshold th, XMLCorrector finds every
tree t′ valid w.r.t. G such that the edit distance between t and t′ is no higher
than th. Contrary to most other approaches, [2] considers the correction as an
enumeration problem rather than a decision problem and computes all the pos-
sible corrections on t. The algorithm, proved to be correct and complete in [2],
consists in fulfilling an edit distance matrix which stores the relevant edit opera-
tion sequences allowing to obtain the corrected trees. The theoretical exponential
complexity of XMLCorrector is related to the fact that edit sequences and the
corresponding corrections are generated and that the correction set is complete.

In this paper, contrary to [2], we do not consider all the possible corrections
on t. The correction of XML documents is guided by a given mapping. For each
edit operation on S, to obtain T , we analyse what should be the corresponding
update on document t. When this update violates validity, we use XMLCorrector
to propose corrections to the subtree involved in the update.

2 Notice that inverses are defined in the intuitive way as, for example,
ins elm(X,A,u) � del elm(X,A,u) or rel opr(X, p, q, u) � rel opr(X, q, p, u).

A ToolBox for Conservative XML Schema 305

Document Translation Guided by Mapping (XTraM). Our method consists in
performing a list of changes on XML documents, in accordance with the edit
operations found in the mapping. For example, adding or deleting a regular ex-
pression in a rule under the operator ’.’ is a mapping operation that provokes,
respectively, the insertion or the deletion of a subtree in an originally valid XML
tree (to maintain its validity). Similarly, renaming a non-terminal A by B, pro-
vokes the substitution of the subtree generated by A into the subtree generated
by B. When local correction on XML subtrees are needed, XMLCorrector is
used to ensure document validity.

(a) (b) (c)

bill

SSN item

trId price

info

hospital

date

bill

SSN item

trId price

info

date

patient

SSN name visitInfo

trId date

info

hospital
(ε,H1)

(1, I0.0.01)

(0.0, P 0.0.0)

(0, I0.0.01)

(1.0, B0.2)
patient

SSN name visitInfo

trId date

info

(0.0, P 0.0.0)

(0, I0.0.01)

patient

trId date

info

nameSSN visitInfo

(1, I0.0.01)

(1.0, P 0.0.0)

hospital
(ε,H1)

Fig. 3. (a) XML tree valid w.r.t. the billing local schema. (b) XML tree valid w.r.t.
the global schema of Figure 1(lines 3-6). (c) Tree resulting from the translation of (b)
into the patient local schema (cf. Figure 1(lines 1-5)). Trees (b) and (c) are annotated.

Consider an XML tree t valid w.r.t. schema S and a mapping m from S to T .
Our method can be summarized in two steps:

1. Since t belongs to the language L(S), it is possible to associate a non-terminal
A with each tree node position p generated by this non-terminal. We analyse
t, detect each non-terminal and annotate it with its corresponding position
u in the used production rule. This annotation respects the format (p,Au).
For example, in Figure 3(b), we notice that the tree node bill is generated
by the non-terminal B whose position in trI1 is 0.2, noted as (1.0, B0.2).

2. Each edit operation ed in m activates a set of modifications on t. When ed
transforms a grammar into a new grammar containing the previous one, the
set of modifications is empty. Otherwise, our method consists in traversing t
(marked as in step 1) in order to find the tree positions which may be affected
due to ed. Modifications on t are defined according to each edit operation
and are not detailed here due to the lack of space. Obviously, if no position
is affected, t does not change.

Figure 3(b) shows an XML document concerning patients and bills. This
document is valid w.r.t. the global schema but not valid w.r.t. to any local
schemas. Translating the document of Figure 3(b) into a document respecting
the patient schema we obtain the document of Figure 3(c).

306 J. Amavi et al.

4 Related Work and Concluding Remarks

Much other work deals with schema evolution. In [6] second order logic is needed
to express some mapping compositions. This approach is the basis of [1,8,12]. We
believe that the use of edit operations makes our approach simpler than theirs
and gets on well with our previous work concerning XML document correction.
Proposals, such as those in [7,9,10,4,11], use edit operations. ELaX [10] and
Exup [4] are a domain-specific language that proposes to handle modifications
on XSD and to express such modifications formally. An important originality
of our approach is the automatic generation of a conservative extension of an
RTG into an LTG and the fact that it may propose different solutions to be
chosen by the user. XTraM is guided by a mapping and produces documents
with corrections that do not exceed a threshold.

Our ToolBox offers schema evolution mechanisms accompanied by an auto-
matic adaptation of XML documents. Its conservative aspect guarantees great
flexibility when a global integrated system co-exists with local ones. A prototype,
implemented in Java, is been tested. As a first experiment, we have produced an
LTG, in 24ms, by merging the grammars obtained from dblp DTD3 and HAL
XSD4. MappingGen returned a 19-operation mapping. Then XTraM was used
to adapt a 52-node document valid w.r.t. the computed LTG toward the HAL
grammar, giving, in this case, 36 solutions in 22.6 s. As in this test, all possible
translations can be considered, but the user may also interfere in an intermediate
step, making choices before the end of the complete computation - guiding and,
thus, restricting the number of solutions.

References

1. Amano, S., Libkin, L., Murlak, F.: XML schema mappings. In: Proceedings of the
28th ACM Symposium on Principles of Database Systems, PODS 2009, pp. 33–42.
ACM, New York (2009)

2. Amavi, J., Bouchou, B., Savary, A.: On correcting XML documents with respect
to a schema. The Computer Journal 56(4) (2013)

3. Amavi, J., Chabin, J., Halfeld Ferrari, M., Réty, P.: A toolbox for conservative
XML schema evolution and document adaptation. CoRR abs/1406.1423 (2014)

4. Cavalieri, F., Guerrini, G., Mesiti, M.: Updating XML schemas and associated
documents through Exup. In: Proceedings of the IEEE 27th International Confer-
ence on Data Engineering, ICDE 2011, pp. 1320–1323. IEEE Computer Society,
Washington, DC (2011)

5. Chabin, J., Halfeld Ferrari, M., Musicante, M.A., Réty, P.: Conservative Type
Extensions for XML Data. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) TLDKS
IX. LNCS, vol. 7980, pp. 65–94. Springer, Heidelberg (2013)

6. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Schema mapping evolution through
composition and inversion. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.) Schema
Matching and Mapping, pp. 191–222. Springer (2011)

3 http://dblp.uni-trier.de/xml/dblp.dtd
4 http://import.ccsd.cnrs.fr/xsd/generationAuto.php?instance=hal

http://dblp.uni-trier.de/xml/dblp.dtd
http://import.ccsd.cnrs.fr/xsd/generationAuto.php?instance=hal

A ToolBox for Conservative XML Schema 307

7. Horie, K., Suzuki, N.: Extracting differences between regular tree grammars. In:
Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC
2013, pp. 859–864. ACM, New York (2013)

8. Jiang, H., Ho, H., Popa, L., Han, W.S.: Mapping-driven XML transformation. In:
Proceedings of the 16th International Conference on World Wide Web, WWW
2007, pp. 1063–1072. ACM, New York (2007)

9. Leonardi, E., Hoai, T.T., Bhowmick, S.S., Madria, S.K.: Dtd-diff: A change detec-
tion algorithm for dtds. Data Knowledge Engineering 61(2), 384–402 (2007)

10. Nösinger, T., Klettke, M., Heuer, A.: XML schema transformations. In: Decker,
H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part I. LNCS,
vol. 8055, pp. 293–302. Springer, Heidelberg (2013)

11. Suzuki, N., Fukushima, Y.: An XML document transformation algorithm inferred
from an edit script between DTDs. In: Proceedings of the 19th Conference on
Australasian Database, ADC 2008, vol. 75, pp. 175–184. Australian Computer
Society, Inc., Darlinghurst (2007)

12. Yu, C., Popa, L.: Semantic adaptation of schema mappings when schemas evolve.
In: Proceedings of the 31st International Conference on Very Large Data Bases,
VLDB 2005, pp. 1006–1017. VLDB Endowment (2005)

	A ToolBox for Conservative XML Schema
Evolution and Document Adaptation
	1 Introduction
	2 SchemaEvolution
	3 Adapting XML Documents to a New Type
	4 Related Work and Concluding Remarks
	References

