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Abstract

For a constructor-based rewrite system R, a regular set of ground terms E, and
assuming some additional restrictions, we build finite tree automata that recog-
nize the descendants of E, i.e. the terms issued from E by rewriting, according to
innermost, outermost, leftmost, and innermost-leftmost strategies.
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1 Introduction

Finite tree automata have already been applied to many areas of computer
science, and in particular to rewrite techniques (4). In comparison with more
sophisticated refinements (1; 6; 18; 14; 13; 16), finite tree automata are ob-
viously less expressive, but have plenty of good properties and lead to much
simpler algorithms from a practical point of view.

Because of potential applications to automated deduction and program vali-
dation (reachability, program testing), the problem of expressing by a finite
tree automaton the transitive closure of a regular set E of ground terms with
respect to a set of equations has been investigated (3). Moreover, the related
problem of expressing the set of descendants R∗(E) of E with respect to a
rewrite system R, has also been investigated (7; 17; 23; 5; 12; 15; 25; 24) 1

(and (2) for string rewriting). Unfortunately, it is undecidable whether a given
rewrite system preserves regularity (also called recognizability) or not (11),
and all previous papers define decidable subclasses. Except (15; 25; 24), they
assume that the right-hand-sides (both sides when dealing with sets of equa-
tions) of rewrite rules are shallow 2 , up to slight differences.

Réty’s work (19) does not always preserve recognizability (E is not arbitrary),
but allows rewrite rules forbidden by the other papers 3 . On the other hand,
the possibility of computing a superset of the set of descendants, only assuming
left-linearity, has been investigated in (9; 10).

Reduction strategies in rewriting and programming have drawn an increasing
attention within the last years, and matter both from a theoretical point of
view, if the computation result is not unique, and from a practical point of
view, for termination and efficiency. For a strategy st, expressing by a finite
tree automaton the st-descendants R∗

st(E) of E, can help to study st : in par-
ticular it allows to decide st-reachability since t1

st→∗ t2 ⇐⇒ t2 ∈ R∗
st({t1}),

and st-joinability since t1
st

↓ t2 ⇐⇒ R∗
st({t1})∩R∗

st({t2}) 6= ∅. More generally,
it can help with the static analysis of rewrite programs, and by extension, of
functional programs. For example, consider a functional language whose eval-
uation strategy is st, and consider a function f that sorts lists of elements.
Let E be the set of all lists, we can check that the data st-descendants 4 of
f(E) are sorted lists indeed, by checking that the intersection with the set

1 (15) computes sets of normalizable terms, which amounts to compute sets of
descendants by orienting the rewrite rules in the opposite direction.
2 Shallow means that every variable appears at depth at most one.
3 Like f(s(x))→ s(f(x)), or when the left-hand-side is not linear.
4 The data st-descendants can be computed as the intersection of the set of st-
descendants and the set of data-terms.
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of non-sorted lists 5 is empty. This paper is an extension of (19) that takes
some strategies into account. As far as we know, the problem of expressing
sets of descendants according to some strategies had not been addressed yet.
We build finite tree automata that can express the sets of descendants of E
with respect to a constructor-based rewrite system R, according to innermost,
outermost, leftmost and innermost-leftmost strategies, assuming :

1. E is the set of ground constructor-instances (also called data-instances)
of a given linear term t (i.e. E = {tθ}).

2. Every rewrite rule is linear (both sides).
3. In right-hand-sides, there are no nested defined-functions, and arguments

of defined-functions are either variables or ground terms.

and, for outermost strategy :

4. There are no critical pairs between rules of R.

and, for leftmost strategy :

5. There are no permutative rewrite rules.

and, for leftmost and innermost-leftmost strategies :

6. Every rewrite rule is variable-preserving. However, by transforming R,
Restriction 6 can be weakened into Restriction 6’ : every rewrite rule is
left-variable-preserving 6 .

The first three restrictions are necessary to obtain regular languages (see
counter-examples in (19)). The others are necessary (according to the strat-
egy) so that the automaton we build recognizes exactly the set of descendants.

Note that the counter-examples of (19) still hold if one of the four strategies
we consider, is used. However, there are examples where the set of descendants
is not regular, whereas it is regular if a strategy is used.

Example 1.1 Let R = {f(s(x)) → s(f(x)), a → a}, and E = {(f s)∗(a)}.
Then R∗(E) is not regular because R∗(E) ∩ s∗f ∗(a) = snfn(a), whereas
R∗

in(E) = E is regular (in means innermost).

5 On a finite domain, the set of non-sorted lists is a regular language.
6 if x ∈ V ar(l)∩ V ar(r) and y ∈ V ar(l)− V ar(r), then x occurs in l on the left of
y.
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2 Preliminaries

2.1 Usual Notions : Term Rewriting and Tree Automata

The reader familiar with term rewriting and tree automata may skip this
subsection.

Let C be a finite set of constructors and F be a finite set of defined-function
symbols (functions in a shortened form). For c ∈ C ∪F , ar(c) is the arity of c.
Terms are denoted by letters s, t. A data-term is a ground term (i.e. without
variables) that contains only constructors. TC is the set of data-terms, TC∪F is
the set of ground-terms. For a term t, V ar(t) is the set of variables appearing
in t, Pos(t) is the set of positions of t, Pos(t) is the set of non-variable positions
of t, PosF (t) denotes the set of defined-function positions of t. t is linear if
each variable of t appears only once in t. For p ∈ Pos(t), t|p is the subterm
of t at position p, t(p) is the top symbol of t|p, and t[t′]p denotes the subterm
replacement. For positions p, p′, p ≥ p′ means that p is located below p′, i.e. p =
p′.v for some position v, whereas p‖p′ means that p and p′ are incomparable,
i.e. ¬(p ≥ p′) ∧ ¬(p′ ≥ p). The term t contains nested functions if there exist
p, p′ ∈ PosF (t) s.t. p > p′. The domain dom(θ) of a substitution θ is the set
of variables x s.t. xθ 6= x.

A rewrite rule is an oriented pair of terms, written l → r. A TRS (term
rewrite system) R is a finite set of rewrite rules. lhs stands for left-hand-side,
rhs for right-hand-side. R is constructor-based if every lhs l of R is of the form
l = f(t1, . . . , tn) where f ∈ F and t1, . . . , tn contain only constructors and
variables. The rewrite relation →R is defined as follows : t→R t′ if there exist
p ∈ Pos(t), a rule l → r ∈ R, and a substitution θ s.t. t|p = lθ and t′ = t[rθ]p
(also denoted by t→[p,l→r,θ] t′). →∗

R denotes the reflexive-transitive closure of
→R. t is irreducible if ¬(∃t′ | t→R t′). t′ is a normal-form of t if t→∗

R t′ and
t′ is irreducible. t →[p] t′ is innermost (resp. leftmost, outermost) if ∀v > p
(resp. ∀v occurring strictly on the left of p, ∀v < p) t|v is irreducible.

A (bottom-up) finite tree automaton is a quadruple A = (C ∪ F, Q, Qf , ∆)
where Qf ⊆ Q are sets of states and ∆ is a set of transitions of the form
c(q1, . . . , qn)→ q where c ∈ C ∪F and q1, . . . , qn, q ∈ Q, or of the form q1 → q
(empty transition). Sets of states are denoted by letters Q, S, D, and states by
q, s, d. →∆ (also denoted →A) is the rewrite relation induced by ∆. A ground
term t is recognized by A into q if t→∗

∆ q. L(A) is the set of terms recognized
by A into any states of Qf . A derivation t →∗

∆ q where q ∈ Qf is called a
successful run on t. The states of Qf are called final states. A is deterministic
if whenever t →∗

∆ q and t →∗
∆ q′ we have q = q′. A set E of ground terms is

regular if there exists a finite automaton A s.t. E = L(A). For a unary symbol
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s ∈ C, s∗ will denote arbitrarily many (possibly zero) occurrences of s.

2.2 Specific Notations

For a set of states Q, a Q-substitution σ is a substitution s.t. ∀x ∈ dom(σ),
xσ ∈ Q.

Given a term t, we define moreover :

Definition 2.1 Let p ∈ Pos(t). Succt(p) are the nearest function positions
below p :

Succt(p) = {p′ ∈ PosF (t) | p′ > p ∧ ∀q ∈ Pos(t) (p < q < p′ ⇒ q /∈ PosF (t))}

Definition 2.2 Let p, p′ ∈ Pos(t). p � p′ means that p occurs strictly on the
left of p′, i.e. p = u.i.v, p′ = u.i′.v′, where i, i′ ∈ IN and i < i′.

2.3 Nesting Automata and Discrimination

Intuitively, the automaton A discriminates position p into state q means that
along every successful run on t ∈ L(A), t|p (and only this subterm) is rec-
ognized into q. This property allows us to modify the behavior of A below
position p without modifying the other positions, by replacing all transitions
used below position p by those of another automaton A′.

Definition 2.3 Let us consider the derivation t0 →
∗
∆ tn (1).

The sub-derivation ti →
∗
∆ tj of (1) composed of empty-transitions is length-

max if :

¬ (ti−1 → ti via an ε-transition) ∧ ¬ (tj → tj+1 via an ε-transition)

Definition 2.4 The automaton A = (C ∪ F, Q, Qf , ∆) discriminates the po-
sition p into the state q if

• L(A) 6= ∅,

• and ∀t ∈ L(A), p ∈ Pos(t),

• and for each successful derivation t →∗
∆ qf (1) where qf ∈ Qf , and for

each sub-derivation t[q1]p′ →
∗
∆ t[qn]p′ of (1) composed of empty transition

and length-max, we have

- qn = q if p′ = p,

- ∀i ∈ {1 . . . n}, (qi 6= q) otherwise.
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In this case we define the automaton A|p = (C ∪ F, Q, {q}, ∆).

Lemma 2.5 L(A|p) = {t|p | t ∈ L(A)}.

Proof : Let A be an automaton s.t. A = (C ∪ F, Q, Qf , ∆) discriminates p
into q ∈ Q.

- Let t ∈ L(A). By Definition 2.4, there exists a derivation : t→∗
∆ t[q]p →

∗
∆

qf where qf ∈ Qf .
Then, t|p →

∗
∆ q, and finally t|p ∈ L(Ap). So, It is complete.

- Let s ∈ L(A|p) then s→∗
∆ q. Since L(A) 6= ∅, let t′ ∈ L(A).

By Definition 2.4, there exists a derivation : t′ →∗
∆ t′[q]p →

∗
∆ qf .

Thus, t = t′[p ← s] →∗
∆ t′[q]p →

∗
∆ qf . Then t ∈ L(A) and t|p = s. So, it

is correct.

Definition 2.6 Let A = (C∪F, Q, Qf , ∆) be an automaton that discriminates
position p into state q, and let A′ = (C ∪ F, Q′, Q′

f , ∆
′) s.t. Q ∩ Q′ = ∅ and

L(A′) 6= ∅. We define

A[A′]p = (C ∪ F, Q ∪Q′, Qf , ∆′′)

where ∆′′ = ∆ \ {l→ q}

∪ ∆′ ∪ {q′f → q | q′f ∈ Q′
f}

Lemma 2.7 L(A[A′]p) = {t[t′]p | t ∈ L(A), t′ ∈ L(A′)}, and A[A′]p still dis-
criminates p into q. Moreover, if A discriminates another position p′ s.t. p′ 6≥
p, into the state q′, then A[A′]p still discriminates p′ into q′.

Proof : By construction of A[A′]p (see Definition 2.6), transition rules of
∆ used above p are not changed and transition rules of ∆′ are not changed
either. Moreover Q∩Q′ = ∅, and the only transitions that mix states of Q and
states of Q′ are of the form q′f → q. Then the last sub-item of Definition 2.4
is satisfied. On the other hand, if s→∗ qf is a successful derivation of A[A′]p,
it is of the form s →∗

∆′ s[q′f ]p → s[q]p →
∗
∆ qf . Then the last-but-one sub-item

of Definition 2.4 is satisfied. Therefore A[A′]p still discriminates p into q.

- Let t ∈ L(A) and t′ ∈ L(A′). By Definition 2.4, there exists a derivation :
t→∗

∆ t[q]p →
∗
∆ qf where qf ∈ Qf .

Moreover, since t′ ∈ L(A′), t′ →∗
∆′ q′f where q′f ∈ Q′

f .
Then, t[t′]p →

∗
∆′ t[q′f ]p.

According to Definition 2.6, q′f → q ∈ ∆′′. Then, t[q′f ]p → t[q]p →
∗
∆ qf .

Finally, t[t′]p ∈ L(A[A′]p). So, it is complete.

- Let s ∈ L(A[A′]p). Since A[A′]p discriminates p into q, by Definition 2.4,
there exists : s→∗ s[q]p →

∗ qf where qf ∈ Qf .

- According to Definition 2.6, q′f → q ∈ ∆′′ and the only transitions
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reaching q are of the form q′f → q. Then, s→∗ s[q′f ]p → s[q]p →
∗ qf .

Moreover, there are no transition rules that reduce states of Q into q ′f .
Then, more precisely, s→∗

∆′ s[q′f ]p → s[q]p →
∗ qf . And so, s|p →

∗
∆′ q′f

i.e. s|p ∈ L(A′).

- On the other hand, suppose that s[q]p →
∗ qf uses transition rule(s)

from ∆′. Then, it would have to eliminate states of Q′ by means of
transition q′f → q. According to Definition 2.4, ¬ (s[q]p →

∗ qf via ε
-transition at position p), thus applying this transition would be at
position different of p. Then, s[q]p →

∗ . →∗
∆′ s′[q′f ]p′ → s′[q]p′ with

p′ 6= p. Now, this is impossible because A[A′]p discriminates p into q.
Then, s[q]p →

∗
∆ qf .

Since A discriminates p into q, there exists t′ s.t. t′ →∗
∆ q, Let us

write t = s[t′]p, then t ∈ L(A). And then we have, s = t[s|p]p which
is of the wanted form. So, it is correct.

Lemma 2.8 Let A, B be automata, and let A∩B be the classical automaton
used to recognize intersection, whose states are pairs of states of A and B.
If A discriminates p into qA, B discriminates p into qB, and L(A)∩L(B) 6= ∅,
then A∩ B discriminates p into (qA, qB).

Proof : Let t ∈ L(A ∩ B).

- since t ∈ L(A), p ∈ Pos(t)

- for any successful run on t, t→∗
∆A∩B

t[(q′A, q′B)]p′ →
∗ (qfA, qfB) (1)

for each sub-derivation of (1) t[(q′1A, q′1B)]p′ →
∗
∆A∩B

t[(q′nA, q′nB)]p′ verifying
Definition 2.3 :

- if p′ = p then from discrimination ofA and B, q′nA = qA and q′nB = qB
- if p′ 6= p then from discrimination of A and B, ∀i ∈ {1, . . . , n},

(q′iA 6= qA) and (q′iB 6= qB).

2.4 Particular Automata

2.4.1 Starting Automaton

Let us define the initial automaton, i.e. the automaton that recognizes the set
of data-instances of a given linear term t.

Definition 2.9 We define the automaton Adata that recognizes the set of data-
terms T(C):

Adata = (C, Qdata, Qdataf
, ∆data)
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where

∣

∣

∣

∣

∣

∣

∣

Qdata = Qdataf
= {qdata} and

∆data = {c(qdata, . . . , qdata)→ qdata | c ∈ C}.

Given a linear term t, we define the automaton Atθ that recognizes the set of
data-instances of t : Atθ = (C ∪ F, Qtθ, Qtθf

, ∆tθ) where

Qtθ = {qp | p ∈ Pos(t)} ∪ {qdata}

Qtθf
= {qε} (qdata if t is a variable)

∆tθ =











t(p)(s1, . . . , sn)→ qp | p ∈ Pos(t), si =

∣

∣

∣

∣

∣

∣

∣

qdata if t|p.i is a variable

qp.i otherwise











∪∆data

Note that Atθ discriminates each position p ∈ Pos(t) into qp. On the other
hand, Atθ is not deterministic, whenever there is p ∈ Pos(t) s.t. t|p is a
constructor-term. Indeed for any data-instance t|pθ, t|pθ →

∗
[∆tθ] qp and t|pθ →

∗
[∆tθ]

qdata.

2.4.2 Irreducible ground Terms at Position p

Let us now define an automaton that recognizes the terms irreducible at po-
sitions ≥ p.

Definition 2.10 Let IRRp(R) = {s ∈ TC∪F | p ∈ Pos(s) and s|p is irreducible}.

To prove the regularity of IRRp(R), we need some more definitions.

Definition 2.11 Let RED(R) be the language of reducible terms:

RED(R) = {s | ∃p′ ∈ Pos(s) s→[p′,l→r,σ] s′}

Lemma 2.12 (8) If R is left-linear, RED(R) is a regular language. (An
automaton that recognizes RED(R) is given in Appendix A).

Lemma 2.13 IRRε(R) = RED(R). Therefore, IRRε(R) is a regular lan-
guage.

Thanks to an automaton that recognizes IRRε(R), we can now build an au-
tomaton that recognizes IRRp(R).

Theorem 2.14 Let t be a term, and p ∈ Pos(t). IRRp(R) is a regular lan-
guage and is recognized by an automaton that discriminates every position
p′ ∈ Pos(t) s.t. p′ 6> p.
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Proof : Let Airrε = (C ∪ F , Qε, Qεf , ∆ε) be an automaton that recognizes
IRRε(R).
Let p = p1. . . . .pk with p1, . . . , pk ∈ IN− {0}

and ∀i pi ≤Maxf∈F∪C(ar(f))
The length of position p is length(p) = k.
We define Airr as follows :
Airr = (C ∪ F, Qirr, Qirrf , ∆irr) where

Qirr = {qany, qrec} ∪v<p {q
v} ∪v∈Pos(t)\{v′ |v′≤p} {q

v
any} ∪Qε

Qirrf = {qε} and

∆irr = {s(S1, . . . , Sn)→ qj | s ∈ F ∪ C, ar(s) ≥ plength(j)+1

qj ∈ Qirr, Si =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

qj.i if j.i < p

qrec if j.i=p

qj.i
any otherwise

} if p 6= ε

∪ {qf → qrec | qf ∈ Qεf} if p 6= ε

∪ {qf → qε | qf ∈ Qεf} if p = ε

∪ {s(S1, . . . , Sn)→ qj
any | s ∈ F ∪ C, qj

any ∈ Qirr,

Si =

∣

∣

∣

∣

∣

∣

∣

qj.i
any if j.i ∈ Pos(t)

qany otherwise
}

∪ {s(qany, . . . , qany)→ qany | s ∈ F ∪ C}

∪∆ε

Airr recognizes IRRp(R) indeed, because:
t|p reducible i.e. ∃ u position s.t u ≥ p and t→[u] t′.

- qany recognizes any terms.

- qw recognize t|w for w < p.

We have written ar(s) ≥ plength(j)+1 to ensure that p ∈ Pos(t). For example,
if p = 1.2.1 and s(. . .)→ q1, then s should have an arity ≥ 2.
Obviously, Airr discriminates p into qrec (into qε if p = ε), and each p′ ∈ Pos(t)
s.t. p′ 6≥ p into qp′

any (qp′ if p′ < p).

2.5 Descendants

t′ is a descendant of t if t →∗
R t′. If E is a set of ground terms, R∗(E) de-

notes the set of descendants of elements of E. R∗
in(E) (resp. R∗

out(E), R∗
left(E),

R∗
ileft(E)) denotes the set of descendants of E, according to an innermost (resp.

outermost, leftmost, innermost-leftmost) strategy.
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Definition 2.15 t →+
[p,rhs′s] t′ means that t′ is obtained by rewriting t at po-

sition p, plus possibly at positions coming from the rhs’s.
Formally, there exist some intermediate terms t1, . . . , tn and some sets of po-
sitions P (t), P (t1), . . . , P (tn) s.t.

t = t0 →[p0,l0→r0] t1 →[p1,l1→r1] . . .→[pn−1,ln−1→rn−1] tn →[pn,ln→rn] tn+1 = t′

where

- p0 = p and P (t) = {p},

- ∀j, pj ∈ P (tj),

- ∀j, P (tj+1) = P (tj)\{p
′ | p′ ≥ pj} ∪ {pj.w | w ∈ PosF (rj)}.

Remark : P (tj) contains only function positions. Since there are no nested
functions in rhs’s, p, p′ ∈ P (tj) implies p‖p′.

Definition 2.16 Given a language E and a position p, we define R∗
p(E) as

follows

R∗
p(E) = E ∪ {t′ | ∃t ∈ E, t→+

[p,rhs′s] t′}

Example 2.17 Let R = {f(x) → s(x), g(x) → s(h(x)), h(x) → p(f(x))}
where F = {f, g, h} and C = {s, a}. The symbols(s) that are eligible for
rewriting, are underlined :

R∗
1(f(h(g(a)))) = f(h(g(a))) ∪ f(p(f(g(a)))) ∪ f(p(s(g(a))))

An insight into the algorithm underlying the following result is given in Sub-
section 3.1 as an example, and a formal description is in Appendix B. The
resultant automaton is different from the starting one only at positions below
p, and in the general case, is built by nesting automata.

Theorem 2.18 (19) Let R be a rewrite system satisfying Restrictions 1 to
3. If E is recognized by an automaton that discriminates position p into some
state q, and possibly p′ into q′ for some p′ ∈ Pos(t) s.t. p′ 6≥ p and some state
q′, then so is R∗

p(E).

3 Innermost Descendants : R∗
in(E)

3.1 Example

Let a, s be constructors and f be a function, s.t. a is a constant, and s, f
are unary symbols. Let t = f(s(f(s(y)))) and Atθ be the automaton that
recognizes the language E = {f(s(f(s(s∗(a)))))} of the data-instances of t.

12



Atθ can be summarized by writing :
qε

f (
q1

s (
q1.1

f (
q1.1.1

s (
qdata

s∗ (a)))))

which means that

∆tθ = {a→ qdata, s(qdata)→ qdata, s(qdata)→ q1.1.1,

f(q1.1.1)→ q1.1, s(q1.1)→ q1, f(q1)→ qε}

where qε is the accepting state.
Consider now the rewrite system R = {f(s(x))→ s(x)}.
Obviously, R∗

in(E) = E ∪ f(s(s(s∗(a)))) ∪ s(s(s∗(a))).

We can make two remarks:

- When rewriting E, some instances of rhs’s of rewrite rules are introduced
by rewrite steps. So, to build an automaton that can recognize R∗

in(E), we
need to recognize the instances of rhs’s into some states, without making
any confusion between the various potential instances of the same rhs.

- When the starting term has nested functions, according to the innermost
strategy, we first have to rewrite innermost function positions.

Note that here, we can rewrite E at positions ε and 1.1. According to the
previous remark, we start from position 1.1.

Now, we calculate R∗
1.1(E).

(1) f(s(f(s(s∗(a)))))→[1.1,x/s∗(a)] f(s(s(s∗(a))))

The language that instantiates the rewrite rule variable x is s∗(a) (recognized

into qdata). Therefore, we encode the first version of the rhs:
dε

qdata
s (

qdata
x ) by

adding state dε
qdata

and the transition s(qdata)→ dε
qdata

.

We can simulate the rewrite step, by adding transitions again. This step is
called saturation in the following. Consider (1) again. Since f(s(x)) is the rule
lhs, and f(s(qdata)) →

∗
∆tθ

q1.1, we add the transition dε
qdata
→ q1.1 so that the

instance of the rhs by qdata is also recognized into q1.1, i.e. s(s∗(a))→∗ q1.1.
So, R∗

1.1(E) = E ∪ f(s(s(s∗(a)))) is recognized by the automaton.

Now, rewriting terms of R∗
1.1(E) at position ε is allowed only if position 1.1 is

normalized. Consider E ′ = R∗
1.1(E)∩IRR1.1(R) where IRR1.1(R) is the ground

terms irreducible at position 1.1, over the TRS R. Thus E ′ = f(s(s(s∗(a)))),
and let us calculate R∗

ε (E
′).

Let A′ = (C ∪ F , Q′, {q′ε}, ∆′) be an automaton that recognizes the language
E ′ where ∆′ = {a → qdata, s(qdata) → qdata, s(qdata) → q′1.1, s(q′1.1) →
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q′1, f(q′1)→ q′ε} where q′ε is the accepting state.

(2) f(s(s(s∗(a))))→[x/s(s∗(a))] s(s(s∗(a)))

The language that instantiates x is s(s∗(a)) (recognized into q′1.1). Therefore,

we encode the second version of the rhs :
dε

q′1.1

s (
q′1.1

x ) by adding state dε
q′1.1 and

the transition s(q′1.1)→ dε
q′1.1 .

By saturation, since f(s(x)) is the rule lhs and f(s(q ′1.1)) → q′ε, we add the
transition dε

q′1.1 → q′ε so that s(s(s∗(a)))→∗ q′ε.

So, R∗
ε(E

′) = E ′ ∪ s(s(s∗(a))) is recognized by the automaton.

E ′ contains only terms normalized at position 1.1, which is not required by
the innermost strategy when no rewrite step is applied at position ε.
Therefore, R∗

in(E) = R∗
ε (E

′) ∪ R∗
1.1(E) = R∗

ε (R
∗
1.1(E) ∩ IRR1.1(R)) ∪R∗

1.1(E).

Remark : In the previous example, the starting term has nested functions.
When it is not the case, every rewrite step is innermost, because rhs’s have
no nested functions either.

3.2 Algorithm

In general t may have more than two function positions. To generalize, we
need the following notion.

Definition 3.1 Given a language L and a position p, R∗
in,p(L) is the set of

innermost descendants of L over the TRS R, reducing positions below (or equal
to) p, i.e.

R∗
in,p(L) = {s′ | ∃s ∈ L, s→∗

[u1,...,un] s′ by an innermost strategy, ∀i (ui ≥ p)}

For a language L, let L|p = {s|p | s ∈ L, p ∈ Pos(s)}.

Lemma 3.2 Let R be a constructor-based TRS satisfying Restrictions 1 to 3,
and E be the data-instances of a given linear term t.
Let p ∈ PosF (t), and L be a language s.t. L|p = E|p, and that is recognized
by an automaton A that discriminates every position p′ ∈ PosF (t) | p′ ≥ p.
Then,

R∗
in,p(L) = R∗

p(L) if Succt(p) = ∅

Otherwise, let Succt(p) = {p1, . . . , pn}, and in this case

R∗
in,p(L) =

∣

∣

∣

∣

∣

∣

∣

R∗
p[R

∗
in,p1

(. . . (R∗
in,pn

(L)) . . .) ∩pi∈Succt(p) IRRpi
(R)]

∪ R∗
in,p1

(. . . (R∗
in,pn

(L)) . . .)
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and R∗
in,p(L) is recognized by an automaton A′ s.t. if p′ ∈ Pos(t), p′ 6> p, and

A discriminates p′ into q′, then A′ also discriminates p′ into q′.

Proof : By noetherian induction on (PosF (t), >).

- If Succt(p) = ∅, then ∀s ∈ L, ∀p′ ∈ Pos(s), (p′ > p =⇒ s(p′) ∈ C).
And since rhs’s have no nested functions, R∗

p(L) = R∗
in,p(L).

We get A′ by Theorem 2.18.

- Let Succt(p) = {p1, . . . , pn}. Let us define :

R∗
in,>p(L) =

{s′ | ∃s ∈ L, s→∗
[u1,...,un] s′ by an innermost strat., ∀i (ui > p)}

Let s ∈ L. Either a rewrite step is applied at position p, and the strategy
is innermost only if we first normalize s below position p by an inner-
most derivation, or no rewrite step is applied at position p. And since no
defined-function occurs along any branches between p and pi :

R∗
in,p(L) = R∗

p[R
∗
in,>p(L) ∩pi∈Succt(p) IRRpi

(R)] ∪ R∗
in,>p(L)

Now, note that ∀i, j ∈ {1 . . . n}, (i 6= j =⇒ pi||pj). Moreover rewrite
steps at incomparable positions can be commuted. Then obviously :

R∗
in,>p(L) = R∗

in,p1
(. . . (R∗

in,pn
(L) . . .))

L is recognized by an automaton A that discriminates every p′ ∈
PosF (t) s.t. p′ ≥ p. For each i, pi > p, then A discriminates every
p′ ∈ PosF (t) s.t. p′ ≥ pi. By induction hypothesis, R∗

in,pn
(L) is rec-

ognized by an automaton A′
n that still discriminates p and every posi-

tion p′ s.t. p′ ≥ pi, i = 1, . . . , n − 1, R∗
in,pn−1

(R∗
in,pn

(L)) is recognized by
an automaton A′

n−1 that still discriminates p and every position p′ s.t.
p′ ≥ pi, i = 1, . . . , n − 2, R∗

in,p1
(. . . (R∗

in,pn
(L) . . .)) is recognized by an

automaton A′
1 that still discriminates p.

By Theorem 2.14, IRRpi
(R) is recognized by an automaton that dis-

criminates every position p′ ∈ PosF (t) s.t. p′ 6> pi, then necessarily p.
By lemma 2.8, ∩pi∈Succt(p)IRRpi

(R) is recognized by an automaton that
discriminates p.

Therefore R∗
in,p1

(. . . (R∗
in,pn

(L)) . . .) ∩pi∈Succt(p) IRRpi
(R) is recognized

by an automaton that discriminates p, and from Theorem 2.18, so is
R∗

p[R
∗
in,p1

(. . . (R∗
in,pn

(L)) . . .) ∩pi∈Succt(p) IRRpi
(R)]. Moreover discrimina-

tion of positions p′ 6> p is preserved. Finally, by union, we obtain an
automaton that discriminates p and preserves the discrimination of posi-
tions p′ 6> p.
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Theorem 3.3 Let R be a constructor-based TRS satisfying the restrictions 1
to 3, and E be the data-instances of a given linear term t.

R∗
in(E) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R∗
in,ε(E) if t(ε) ∈ F

R∗
in,p1

(. . . (R∗
in,pn

(E) . . .))

with Succt(ε) = {p1, . . . , pn}
otherwise

and R∗
in(E) is effectively recognized by an automaton.

Proof : We have two cases:

- If t(ε) ∈ F , obviously R∗
in(E) = R∗

in,ε(E).

- If t(ε) /∈ F , ∀i, j ∈ {1 . . . n}, (i 6= j =⇒ pi||pj), and rewrite steps at
incomparable positions can be commuted. Then

R∗
in(E) = R∗

in,p1
(. . . (R∗

in,pn
(E) . . .)).

The automaton comes from Definition 2.9 and from applying Lemma 3.2 (sev-
eral times in the second case).

Example 3.4 Let E be the data-instances of t = f(g(x), h(g(y))) and

R = {f(x, y)→ y, h(x)→ s(x), g(x)→ x}

where F = {f, g, h} and C = {s, a}

∗ will symbolize the data-terms that instantiate t.
t(ε) ∈ F , we so calculate R∗

in,ε(E) where E = {f(g(∗), h(g(∗)))}.
R∗

in,ε(E) = R∗
ε [R

∗
in,1(R

∗
in,2(E)) ∩ IRR1(R) ∩ IRR2(R)] ∪ R∗

in,1(R
∗
in,2(E)).

We have to compute R∗
in,2(E).

Succt(2) = {2.1}
So, R∗

in,2(E) = R∗
2[R

∗
in,2.1(E) ∩ IRR2.1(R)] ∪R∗

in,2.1(E)
where R∗

in,2.1(E) = E ∪ {f(g(∗), h(∗))}.
R∗

in,2(E) = R∗
2[f(g(∗), h(∗))] ∪ R∗

in,2.1(E)
= {f(g(∗), h(∗))}∪{f(g(∗), s(∗))}∪R∗

in,2.1(E) (denoted by E1).
Now, we can compute R∗

in,1(R
∗
in,2(E)).

Succt(1) = ∅.
So, R∗

in,1(E1) = R∗
1(E1)

= E1 ∪ {f(∗, h(∗))} ∪ {f(∗, s(∗))} ∪ {f(∗, h(g(∗)))} (denoted by
E2).
R∗

in,ε(E) = R∗
ε [E2 ∩ IRR1(R) ∩ IRR2(R)] ∪ E2

= R∗
ε [{f(∗, s(∗))}] ∪ E2

= {f(∗, s(∗))} ∪ {s(∗)} ∪ E2
Finally, we obtain R∗

in(E) = E∪{f(g(∗), h(∗))}∪{f(g(∗), s(∗))}∪{f(∗, h(∗))}∪
{f(∗, s(∗))} ∪ {f(∗, h(g(∗)))} ∪ {s(∗)}.
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4 Outermost Descendants : R∗
Out(E)

This section is structured as follows : the method is introduced and explained
thanks to a detailed example, which also informally gives the notions used by
the algorithm. Then the algorithm is given (Subsection 4.2) as well as smaller
examples. In particular, Counter-example 4.4 shows why the TRS must not
have critical pairs. The notions are formally defined (which is very technical)
after the algorithm, since the reader do not need to read technical details to
understand it. The proofs are given in last.

As shown in the following example, the principle of the method is paradoxically
to rewrite in a innermost way, to compute outermost descendants.

4.1 Example

Warning : To help the reader, a picture is given at the end of the example.

Let E = {g(f(s(a)))} and R = {g(x) → h(x), h(p(x)) → g(x), f(s(x)) →
p(f(x))}, where f, g, h ∈ F and a, p, s ∈ C. Obviously, the outermost descen-
dants of E over R are : E ∪ {h(f(s(a))), h(p(f(a))), g(f(a)), h(f(a))}.

Let i be a positive integer. In a term t, we say that a defined-function position
p is at level i if there are i defined-function positions (including p), along the
branch going from the root of t to position p. For example, if t = s(f(p(g(a)))),
f occurs at level 1, and g occurs at level 2 (s, p are constructors).
OutFi(t) will denote the set of defined-function positions of t, at level i.
OutF1(t) is sometimes abbreviated into OutF (t).
In the following, we underline terms that are outermost descendants of E over
R.

Paradoxically, to compute R∗
out(E), we first rewrite at level 2. More precisely,

we compute E ′ = g[R∗
out(f(s(a)))]. In this example, f(s(a)) has no nested

defined-functions, then E ′ = g[R∗(f(s(a)))] = {g(f(s(a))), g(p(f(a)))}.

Secondly, we rewrite E ′ at level 1. We obtain 7 :

E ′′ = E ′ ∪ {h(f(s(a))), h(p(f(a))), g(f(a)), h(f(a))}

Let us notice that g(p(f(a))) is not an outermost descendant. We have to get
rid of it. To do it, we mark symbols of E with M (and not rewrite rules)

7 Here, it turns out that E ′′ = R∗(E). It is not true if E has more than two nested
defined-functions.
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to locate in descendants, symbols coming from E. Therefore, the symbols
that are not labeled with M come from rhs’s of rewrite rules. Thus, let E =
{gM(fM(sM(aM)))}. Then

E ′′ = {gM(fM(sM(aM))), gM(p(f(aM))),

h(fM(sM(aM))), h(p(f(aM))), g(f(aM)), h(f(aM))}

And we keep only terms satisfying the following condition (denoted by (I)) :
∀p ∈ OutF1(t)

- ¬ (t→p),

- or all symbols of t occurring strictly below p are labeled with M .

Let t be the term of E, and t′′ ∈ E ′′. Then t′′ is a descendant of t : there exists
a non-necessarily outermost derivation t →∗ t′′ (2). Since R is linear, we can
change the order of rewrite steps of (2), in the hope of getting a outermost
derivation. We have shown (see correction proof) that if t′′ satisfies (I) and R
has no critical pairs, then we can get a outermost derivation from t to t′′ in
this way. Consequently t′′ is an outermost descendant.

In the following, the set of terms satisfying (I) is denoted by IRR′
OutF (R).

Then, we keep only E ′′′ = E ′′ ∩ IRR′
OutF (R) =

{gM(fM(sM(aM))), h(fM(sM(aM))), h(f(aM))}

Unfortunately, the outermost descendants h(p(f(aM))) and g(f(aM)) are miss-
ing. Moreover, if we rewrite elements of E ′′′ at level 1, we do not obtain them.

This is why we introduce the label ok, to indicate which defined-functions at
level 2 can be reduced in one step, respecting the outermost strategy, i.e. the
positions q ∈ OutF2(t) such that ¬ (∃p ∈ OutF1(t), (p < q ∧ t→p)). Thus

E ′′′ = {gM(fM(sM(aM))), h(fM,ok(sM(aM))), h(f ok(aM))}

Now, we rewrite positions labeled with ok in one step, and we obtain the miss-
ing term h(p(f(aM))).

In the following, this one-step rewriting of ok-positions is denoted by R
‖?

p∈OutF ok
2

.

Let E ′′′′ = E ′′′∪{h(p(f(aM)))}. Unfortunately, g(f(aM)) is still missing. Now,
we need to rewrite terms of E ′′′′ at level 1 (which respects the outermost strat-
egy) to get R∗

out(E) exactly. We get E ′′′′ ∪ {g(f(aM))} = R∗
out(E).
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The picture below gives the outermost derivation.

gM

fM

sM

aM

















h

fM,ok

sM

aM

h

p

f

aM

g

f

aM

h

f ok

aM



















[ε ∈ OutF1] [1 ∈ OutF2] [ε ∈ OutF1] [ε ∈ OutF1]

6∈ IRR′
outF . However,

the application of R
||?

p∈OutF ok
2

allows to obtain it.

6∈ IRR′
outF . However,

the application of R∗
p∈OutF1

allows to obtain it

Remark : In the general case, the scheme between parenthesis may occur
several times (for example if the starting language is g(f(s∗(a)))).

4.2 Algorithm

Theorem 4.1 Let R be a constructor-based TRS that satisfies restrictions 1
to 3 and 4. Let E be the data-instances of a given linear term t, and EM be
the set obtained from E by labeling every symbol with M . Let L be a language
s.t. L = EM |p for some p ∈ Pos(t).

If L contains only constructor-terms then R∗
out(L) = L

else if L = cM

L1 Ln

where cM is a constructor, then

R∗
out(L) = cM

R∗
out(L1) R∗

out(Ln)

else L = fM

L1 Ln

where fM ∈ F M then

R∗
out(L) =

R∗
p∈OutF1

(R
‖?

p∈OutF ok
2

[ (R∗
ε( fM

R∗
out(L1) R∗

out(Ln)

))ok ∩ IRR
′

OutF (R) ])

If L = EM |p for p ∈ PosV ar(t) then L contains only constructor-terms.
Consequently, recursivity of R∗

out terminates, and we can build and automaton
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that recognizes R∗
out(E

M) in this way. To get R∗
out(E) we just have to remove

labels.

Remark : According to the definition of IRR′
OutF , if L = f(L1, . . . , Ln) where

f ∈ F and L1, . . . , Ln contain only constructors, then R∗
out(L) = R∗

ε (L).

Notation : In the examples below, f, g as a node of a tree means that we
can have either f or g at this position.

Example 4.2 M-labels are not necessary in this example. For simplicity, they
are omitted. Let R = {f(s(x))→ h(x), h(x)→ s(f(x)), g(x)→ s(g(x))} and
E = {f(g(s∗(a)))}.
The outermost descendants of E are : {s∗(f(s?(g(s∗(a))))), s∗(h(g(s∗(a))))}.

step 1 : f(R∗
out(g(s∗(a)))) = { f

s∗

g

s∗(a)

} (denoted by L1).

step 2 : R∗
ε (L1) = L1 ∪ { s∗

f, h

s∗

g

s∗(a)

} (denoted by L2).

step 3 : after intersection we obtain { f

g

s∗(a)

} ∪ { s∗

f

g

s∗(a)

} (denoted by L3).

step 4 : by applying R
‖
p∈OutF2

on L3, we obtain L3 ∪ { s∗

f

s?

g

s∗(a)

} (denoted by L4).

step 5 : by applying R∗
p∈outF1

on L4, we finally obtain L4 ∪ { s∗

h

g

s∗(a)

}.

Example 4.3 In this example we see the usefulness of labels.
Let R = {f(s(x))→ s(f(x)), g(x)→ s(h(x)), h(x)→ p(x)} and let
E = {f(s(g(s∗(a))))}.
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The outermost descendants of E are :
{f(s(g(s∗(a)))), s(f(g(s∗(a)))), s(f(s(h(s∗(a))))), s(s(f(h(s∗(a))))),
s(s(f(p(s∗(a)))))}.

Below, ∗M will denote sM∗(aM).
Recall that the algorithm deals with innermost function at first.

step 1 : fM(sM(R∗
out(g

M(∗M)))) = {fM

sM

gM

∗M

, fM

sM

s

h

∗M

, fM

sM

s

p

∗M

} (denoted by L1).

step 2 : R∗
ε (L1) = L1 ∪ { s

f

gM

∗M

, s

f

s

h

∗M

, s

s

f

h

∗M

, s

f

s

p

∗M

, s

s

f

p

∗M

}

step 3 : after labeling with ok and intersection, we obtain
{fM

sM

gM

∗M

, s

f

gM ok

∗M

, s

s

f

hok

∗M

, s

s

f

p

∗M

} (denoted by L3).

step 4 : by applying R
‖
p∈OutF2

on L3, we obtain L3 ∪ { s

f

s

h

∗M

} (denoted by L4)

step 5 : R∗
p∈outF1

applied on L4 gives nothing else.

Counter-example 4.4 This counter-example shows that if R contains crit-
ical pairs (i.e. restriction 4 is not satisfied) the algorithm is not correct : it
generates some non-outermost descendants.

Let R = {f(s(x))
r1
→ f(x), f(s(s(x)))

r2
→ g(x), g(s(x))

r3
→ s(g(x))} and con-

sider the following derivation (as in the previous example, ∗M will denote
sM∗(aM)) :
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fM

gM

∗M

→[1,r3] fM

s

g

∗M

→[1.1,r3] fM

s

s

g

∗M

→[ε,r2] g

g

∗M

This derivation is not outermost, and we cannot change the order of rewrite
steps. Actually, even using r1, g(g(∗M)) cannot be reached by an outermost
derivation : it is not an outermost descendant. However, g(g(∗M)) belongs to
IRR′

OutF (R), and then will be returned by the algorithm.

4.3 Formal Definitions

Definition 4.5 Given a term t, OutF1(t) are the outermost elements of PosF (t),
and OutF2(t) are the outermost elements of PosF (t)− OutF1(t).
OutF1(t) = {p ∈ PosF (t) | ¬ (∃ q ∈ PosF (t) s.t. q < p)}
OutF1(t) = PosF (t)− OutF1(t)
OutF2(t) = {p ∈ PosF (t) | p ∈ OutF1(t) ∧ ¬ (∃ q ∈ OutF1(t) s.t. q < p)}

Example 4.6 Let F = {f, g, h}

t = f

g

h

a

h

a

OutF1(t) = {ε}

OutF1(t) = {1, 1.1, 2}

OutF2(t) = {1, 2}

Remark : To each function f in F , we associate a new defined function f ok.
Let F ok be the set of functions labeled with ok.
Label “ok” will be used for locating some positions of OutF2 that can be
rewritten (in one step) respecting the outermost strategy.
Let OutF ok

2 (t) = {p ∈ Pos(t) | t(p) ∈ F ok}

Definition 4.7 Let us define an automaton AF−ε = (C ∪ F ∪ F ok, QF−ε,
Qf

F−ε, ∆F−ε) that describes the language of term t on Σ = C ∪ F ∪ F ok where
at most one defined-function symbol of level 2 (i.e. ∈ OutF2(t)) is labeled with
ok. Formally :
L(AF−ε) = {t | t(ε) ∈ PosF (t) ∧ ∀p ∈ Pos(t) ((t(p) ∈ F ok)⇒ (p ∈ OutF2(t) ∧
∀q 6= p, t(q) 6∈ F ok))}.
Let QF−ε = {qany, qany−ok, qε

F−ε} and Qf
F−ε = {qε

F−ε}.
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∆F−ε is the following set of transitions :

{f(qany, . . . , qany)→ qε
F−ε | f ∈ F}

∪ {s(qany, . . . , qany)→ qany | s ∈ C ∪ F}

∪ f(qany, . . . , qany, qany−ok, qany, . . . , qany)→ qε
F−ε | f ∈ F}

∪ {s(qany, . . . , qany, qany−ok, qany, . . . , qany)→ qany ok | s ∈ C}

∪ {f ok(qany, . . . , qany)→ qany−ok | f
ok ∈ F ok}

Definition 4.8 Let A be an automaton. Aok is the automaton obtained from
A by adding label “ok” randomly on the defined-functions. This can be effected
by the following transformation of the set of transitions ∆ of A:
∀f ∈ F, ∀f(q1, . . . , qn)→ q ∈ ∆, add f ok(q1, . . . , qn)→ q.
If L is the language recognized by A, we denote by Lok the language recognized
by Aok.

Definition 4.9 Consider again the automaton Airrε that recognizes the set of
terms that are not reducible at position ε, on the signature of R. Let Airr ok =
(Airrε)

ok.

IRR′
OutF (R) is the language of terms t s.t. each position p ∈ OutF1(t) satisfies :

either t 6→p or t|p comes from the starting language E. In the first case, we
can reduce (in one step) one arbitrary p′ ∈ OutF2(t) s.t. p′ > p, respecting the
outermost strategy. We locate such p′ by labelling the symbol of t occurring
at p′ with ok. Moreover, in both cases, if t ∈ IRR′

OutF (R) is a descendant of
E obtained by a non-outermost derivation, then t can also be obtained from
E by an outermost derivation (see correctness proof). In the second case, to
check that t|p comes from E, we introduce another label M . If a symbol is
labelled with M , this will mean that it comes from E.

Definition 4.10 Let CM (resp. F M) be the set of constructors (resp. defined-
functions) labelled with M .
Let AirrF−ε be the automaton obtained by intersection between Airr ok and
AF−ε.
Let A′

irrF−ε = (C ∪ CM ∪ F ∪ F M ∪ F ok, Q′
irrF−ε, Q′f

irrF−ε, ∆′
irrF−ε) be the

automaton obtained by modifying AirrF−ε in order to add some labels M ran-
domly on the symbols of recognized terms.

Definition 4.11 Let us define the language :
IRR′

OutF (R) = {t | ∀p ∈ OutF1(t)(t 6→p ∨∀u > p, t(u) ∈ CM ∪ F M) ∧
∀v ∈ Pos(t) ((v > p ∧ t(v) ∈ F ok) ⇒ (v ∈ OutF2(t) ∧ t 6→p ∧¬(∃w ∈
PosF (t), w > p ∧ w 6= v ∧ t(w) ∈ F ok)))},
which is recognized by the automaton :

AIRR′
OutF

= (C ∪ CM ∪ F ∪ F M ∪ F ok, QIRR′
OutF

, Qf
IRR′

OutF
, ∆IRR′

OutF
)

23



where QIRR′
OutF

=Q′
irrF−ε ∪ {qout, qoutM , qM , qε

irr′
outF
} and Qf

IRR′
OutF

={qε
irr′

outF
},

and where ∆IRR′
OutF

is the following set of transitions :

∆′
irrF−ε

∪ {q′εirrF−ε → qε
irr′

outF
| q′εirrF−ε ∈ Q′f

irrF−ε}

∪ {s(X1, . . . , Xn)→ qε
irr′

outF
| s ∈ C ∪ CM , ∀i Xi = qout ∪ qoutM}

∪ {s(X1, . . . , Xn)→ qout | s ∈ C ∪ CM , ∀i Xi = qout ∪ qoutM}

∪ {q′εirrF−ε → qout | q
′ε
irrF−ε ∈ Q′f

irrF−ε}

∪ {f(qM , . . . , qM)→ qoutM | f ∈ F ∪ F M}

∪ {s(qM , . . . , qM)→ qM | s ∈ CM ∪ F M}

∪ {qoutM → qε
irr′

outF
}

Example 4.12 Let R = {f(x, y)→ c(g(x), h(y)), g(s(x))→ s(g(x)),
h(s(s(s(x)))) → s(h(x)), i(s(x))→ s(i(x))}.
The following terms are in IRR′

OutF (R):

c

g

sM

iM

sM(aM)

h

sM

iM

sM(aM )

, c

g

iok

s(a)

h

s

iok

s(a)

Definition 4.13 R
‖?

p∈OutF ok
2

(t) means parallel rewrite in at most one step at

function positions identified by an ok label. By construction, these positions
are in OutF2(t).

Formally, R
‖?

p∈OutF ok
2 (t)

= {t′ | t→∗
[p1,...,pn] t′ ∧ p1, . . . , pn ∈ OutF ok

2 (t)}.

It consists in doing single saturation process on the TRS Rok where Rok =
{l′ → r | l→ r ∈ R ∧ l′ = l[ε← l(ε)ok]}.

Definition 4.14 (labeled-term rewriting)
Let s be a term that may contain symbols labeled with M . s →[p,l→r,σ] s′ if
there exists a term lM obtained from l by labeling some positions with M , s.t.
s|p = lMσ and s′ = s[p ← rσ]. Note that r does not contain label M (because
it does not come from the starting language E). However, if r is a variable
(collapsing rewrite rule), the label of top symbol of rσ has to be removed, in
order to remember that a rewrite step has been done at position p, i.e. with
respect to the starting language, s′|p has been modified.
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Example 4.15 Let R = {f(x, y)→ c(g(x), h(y)), h(x)→ x}.

fM

sM

i

sM(aM)

sM

iM

sM(aM)

→[ε] c

g

sM

i

sM(aM)

h

sM

iM

sM(aM)

→[2] c

g

sM

i

sM(aM)

s

iM

sM(aM)

4.4 Correctness Proof

Recall that we consider only constructor-based TRS’s. The following lemmas
show that (R∗

ε (f
M (R∗

out(L1), . . . , R∗
out(Ln)))ok ∩ IRR

′

outF (R) is correct. By
construction, ok locates positions of OutF2 that can be reduced, respecting
the outermost strategy, and moreover rewriting p ∈ OutF1 is necessarily out-
ermost.

Definition 4.16 A derivation s0 →p0 s1 . . . sn →pn
sn+1 is outermost at level

2 if :

∀i, ¬ (∃q ∈ OutF1(si) s.t. q < pi ∧ si →q).

Example 4.17 Let R = {f(x)
1
→ s(f(x)), h(x)

2
→ s(i(x)), i(x)

3
→ s(x),

g(s(x))
4
→ s(x)} and t = f(g(h(x))). Let E be the set of data-instances of t,

E = {f(g(h(s∗(a))))}.

f

g

h

s∗(a)

→[1.1, 2, x=s∗(a))] f

g

s

i

s∗(a)

→[1, 4, x=i(s∗(a)))] f

s

i

s∗(a)

Notation : Let us denote by τ a fictitious position s.t.

s→τ t means that s = t.

Definition 4.18 Let s0 →p0,l0→r0 s1 →p1,l1→r1 s2.
p0 admits a residue q into s2, which is denoted by res(p0, s2), if :

- p0 = p1.v.w where v = occ(x, l1)

- and if occ(x, r1) exists then v′ = occ(x, r1) and q = p1.v
′.w

otherwise, q = τ .
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Remark : Due to the linearity of TRS, the residue q is unique, and p0 ≥
p1 ∧ (q ≥ p1 or q = τ).

Example 4.19 R = {f(s(x))
r1→ c(a, f(x)), g(x)

r2→ x}.

f

s

g

s∗(a)

→[1.1, r2] f

s

s∗(a)

→[ε, r1] s2 = c

a f

s∗(a)

res(1.1, s2) = 2.1.

Definition 4.20 A derivation in two steps s0 →p0,l0→r0 s1 →p1,l1→r1 s2 is
without residue if p0||p1 or p0 does not admit a residue into s2.

Lemma 4.21 Let us consider the following derivation :

s0 →p0,l0→r0 s1 →p1,l1→r1 s2 (1)

where p0 admits a residue q into s2. Then, (1) can be commuted into

s0 →p1,l1→r1 s′1 →q,l0→r0 s2 (2)

which is a derivation without residues. Moreover, if (1) is outermost at level
2 then so is (2).

Example 4.22 Let us take the same TRS and derivation as example 4.19.
Then, this derivation can be commuted into:

f

s

g

s∗(a)

→[ε, r1] c

a f

g

s∗(a)

→[2.1, r2] c

a f

s∗(a)

Proof : The only non-trivial point is that (1) outermost at level 2 implies
the same property for (2). p0 admits a residue q into s2 means that:

- (i) p0 = p1.v.w where v = occ(x, l1),

- (ii) and either occ(x, r1) exists and q = p1.v
′.w where v′ = occ(x, r1),

either it doesn’t exist and q = τ .

By (i), p1 < p0. Since (1) can be commuted into (2), we see that s0 →p1.
Then, according to the fact that (1) is outermost at level 2, we deduce that
p1 ∈ OutF1(s0).
The case q = τ is so trivial.
Now, let us see for q = p1.v

′.w.
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- either, ∀u s.t. v′ < u < w, p1.u is not a function position. So, if PosF (r1)
is empty, q ∈ OutF1(s

′
1), otherwise, since there is not nested-functions

in rhs’s, q ∈ OutF2(s
′
1).

- or, there are function(s) position(s) between p1.v
′ and p1.w.

So, q ∈ OutF1(s′1). Obviously, these function(s) position(s) are irre-
ducible because of the fact that (1) is outermost at level (2). Then, q
is the first function position in level 2 that can be rewritten in s′1.

Definition 4.23 A derivation s0 →
∗ sn is said to be without residues if any

sub-derivation in two steps is without residue. A 1-step derivation is conven-
tionally without residue.

Definition 4.24 Let us consider the following derivation :

t0 →[p0,l0→r0] t1 → t2 → . . .→pn−1 tn.

p0 admits a residue qn into tn if :
res(p0, t2) = q2 ∧ ∀i ∈ {3, . . . , n}, ∃qi ∈ Pos(ti), qi = res(qi−1, ti)

Lemma 4.25 Let us consider the following derivation:

s0 →p0 s1 →p1 . . . sn →pn
sn+1 (1)

where p0 admits a residue qn+1 into sn+1 and s1 →
∗ sn+1 is a derivation

without residues. (1) can be commuted into :

s0 →p1 s′1 →p2 s′2 . . .→pn
s′n →qn+1 sn+1 (2)

where (2) is without residues. Moreover, (1) outermost at level 2 implies that
(2) is an outermost derivation at level 2 too.

Proof : The proof follows from Lemma 4.21. Let us remark that all residues
founded up to the previous last are 6= τ at the aim that qn+1 exists.
s0 →p0 s1 →p1 s2 is an outermost derivation at level 2 s.t. res(p0, s2) = q2

and can be commuted into s0 →p1 s1 →q2 s2 that is outermost at level 2 and
without residues.
s′1 →q2 s2 →p2 s3 is an outermost derivation at level 2 s.t. res(q2, s3) = q3

and can be commuted into s′1 →p2 s′2 →q3 s2 that is outermost at level 2 and
without residues.
....
By induction, s′n−1 →qn

sn →pn
sn+1 is an outermost derivation at level 2 s.t.

res(qn, sn+1) = qn+1 and can be commuted into s′n−1 →pn
s′n →qn+1 sn+1 that

is outermost at level 2 and without residues.
So, we finally obtain the expected property.

Lemma 4.26 A derivation with residue(s) can always be transformed into a
derivation without residues by commutation. Moreover, if the initial derivation
is outermost at level 2 then this property is preserved.
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Proof : Let s0 →
∗ sn+1 be a derivation with residue(s). Let us consider the

biggest i s.t. si →
∗ sn+1 is with residue and si+1 →

∗ sn+1 is without residues.
Now, let us take si →

∗ sn+1 and consider the biggest j s.t. pi admits a residue
p′j into sj. Then, si →

∗ sn+1 satisfies the assumptions of Lemma 4.25, therefore
it can be commuted into a derivation without residues. In this way, we get
a derivation si →

∗ sn+1 without residues. Moreover, the outermost at level 2
property is preserved.
Now, we apply Lemma 4.25 again if necessary.

Lemma 4.27 Let R be a TRS without critical pairs. Let s0 →
∗ sn be a deriva-

tion without residues, outermost at level 2 and s.t. ∀p ∈ OutF1(sn), sn 6→p.
Then, s0 →

∗ sn is outermost.

The following counter-example shows why we need to forbid critical pairs.

Counter-example 4.28 Let R = {f(s(x))
r1
→ f(x), f(s(s(x)))

r2
→ g(x),

g(s(x))
r3
→ s(g(x))} and let us see the following derivation:

f

g

s∗(a)

→[1,r3] f

s

g

s∗(a)

→[1.1,r3] f

s

s

g

s∗(a)

→[ε,r2] g

g

s∗(a)

This derivation is outermost at level 2 and does not have any residues. More-
over, the last term is irreducible at outermost function position ε. However,
this derivation is not outermost. Let us remark that the TRS has critical pairs.

Proof : (of Lemma 4.27). Let us suppose that s0 →
∗ sn is not outermost.

Let us consider si →pi
si+1 the last non-outermost step of the derivation. So,

si+1 →
∗ sn is outermost. By hypothesis, si →pi

si+1 is not outermost but
is outermost at level 2. Then, ∃ p ∈ OutF1(si) s.t. si →[p,l→r] with p < pi.
Because of the constructor discipline, pi = p.q.w where q = occ(x, l), and
si+1 →[p,l→r].
Since si+1 →[pi+1,li+1→ri+1] si+2 is outermost, we have pi+1||p or pi+1 < p or
pi+1 = p:

- pi+1 < p is impossible because p ∈ OutF1(si+1).

- pi+1 = p means that we have pi = p.q.w = pi+1.q.w where q = occ(x, l).
Since the rewrite system is without critical pairs, li+1 = l then q =
occ(x, li+1). So, pi admits a residue into si+2, but by hypothesis, the
derivation s0 →

∗ sn is without residues.

- pi+1||p is possible. We prove in the same way that pi+2||p...,pn−1||p.
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Then, sn|p = si+1|p, so sn →p. This is impossible since according to the hy-
pothesis ∀p ∈ OutF1(sn), sn 6→p.

Lemma 4.29 Let R be a non-collapsing TRS without critical pairs. Let s0 →
∗

sn be a derivation without residues, outermost at level 2 and s.t. ∀p ∈ OutF1(sn),
either sn 6→p, or ∀q > p, sn(q) is M-labeled . Then, s0 →

∗ sn is outermost.

Proof : For the case sn 6→p, it is enough to use Lemma 4.27.
Otherwise, like in the proof of Lemma 4.27, we suppose that s0 →

∗ sn is
not outermost and we consider si →pi

si+1 the last non-outermost step of
the derivation. So, si+1 →

∗ sn is outermost. And, we can show that ∃ p ∈
OutF1(si) s.t. si →[p,l→r] with p < pi and si+1 →[p,l→r]. We have also sn|p =
si+1|p.
By definition, the labeled symbols come from the starting language and the
non-labeled ones come from a rhs. si →pi

means (since there is no rhs equal to a
variable) that ∃q > p s.t. si(q) non-labeled and so, ¬(∀q > p, sn(q) M-labeled).

4.5 Completeness Proof

Recall that we consider only constructor-based TRS’s.
Let us consider the property P on terms, defined by :

P (t) = (∀p ∈ OutF1(t), t 6→p ∨ ∀u > p, t(u) ∈ CM ∪ F M)

Note that ¬P (t) = (∃p ∈ OutF1(t), t →p ∧ ∃u > p, t(u) not labeled). Let
s0 ∈ TCM∪F M s.t. s0(ε) ∈ F M , and let us consider the outermost derivation
s0 →

∗ sn. Let us take the biggest i s.t. P (si), i.e. s0 →
∗ si →

∗
[pi,...,pn−1]

sn and
∀j > i, ¬P (sj). According to Lemma 4.39, we can suppose that ∀j > i, pj ∈
OutF1(sj).
According to Corollary 4.37 applied to s0 →

∗ si (let us suppose that s0(ε) =
fM), we obtain that si ∈ R∗

ε(f
M(R∗

out(s0|1), . . . , R
∗
out(s0|k))). Moreover, P (si),

then we have si ∈ IRR′
outF (R).

According to Lemma 4.44 applied on si →
∗ sn, it exists a derivation of the

form si →
‖
p∈OutF2

→∗
p∈OutF1

sn.
Then, sn ∈ R∗

out(s0).

The following is for proving Corollary 4.37 and Lemmas 4.39 and 4.44.

Definition 4.30 Let us consider the following derivation :

s0 →[p0,l0→r0] s1 →[p1,l1→r1] s2 (1)

We say that p1 has an antecedent‖ q1 into s0 (denoted by q1 = ant‖(p1, s0)),
if :
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- either p1‖p0 and so, q1 = p1

- or, p1 = p0.q.w where q = occ(x, r0) and q1 = p0.q
′.w where q′ =

occ(x, l0).

Remark : Do not confuse antecedent‖ (defined above) with antecedent (de-
fined in section 5. The only difference is : p1‖p0 (in antecedent‖) is replaced by
p1 / p0 (in antecedent).

Lemma 4.31 Let us consider the following derivation :

s0 →p0∈OutF1(s0),l0→r0 s1 →p1,l1→r1 s2 (1)

where p1 admits an antecedent‖ q1 into s0. Then, (1) can be commuted into :

s0 →q1,l1→r1 s′1 →p0,l0→r0 s2 (2)

Moreover, if (1) is outermost then (2) is outermost at level 2.

Proof : Obviously, in (2), p ∈ OutF1(s
′
1). Let us show the second prop-

erty (the first is trivial). Let suppose that (1) is outermost and p1 admits an
antecedent‖ q1 into s0 then,

- either p1‖p0 and so, q1 = p1, then it is trivial.

- or, p1 = p0.q.w where q = occ(x, r0) and q1 = p0.q
′.w where q′ = occ(x, l0).

In (1), p1 ∈ PosF (s1) s.t. ¬(∃q ∈ PosF (s1) q < p1 ∧ s1 →q) because
(1) is outermost. l0 does not contain nested defined-functions (because of
the constructor discipline) then, ¬(∃u p0 < u < p0.q

′; u ∈ PosF (s0)).
Moreover, ¬(∃v ∈ PosF (s0) p0.q

′ ≤ v < p0.q
′.w; s0 →v), otherwise

∃v′ ∈ PosF (s1) p0.q ≤ v′ < p0.q.w; s0 →v′ that contradicts the fact that
(1) is outermost.

So, (2) is outermost at level 2.

Lemma 4.32 Suppose s0(ε) ∈ F ∪ F M .
Let us consider the following derivation :

s0 →
∗
[ε,rhs′s] sn →pn

sn+1 (1)

s.t. pn admits an antecedent‖ q into s0. Then (1) can be commuted into :

s0 →pn
s′n →

∗
[ε,rhs′s] sn+1 (2)

Moreover, if (1) is outermost then (2) is outermost at level 2.

Proof : The proof comes from Lemma 4.31. By induction on the length of
s0 →

∗
[ε,rhs′s] sn.

- if length = 0, (2)=(1) and the result is trivial.

- otherwise, suppose (1) = (s0 →ε s1 →p1 s2 → . . . →pn−1 sn →pn
sn+1).
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By applying Lemma 4.31 on the last two steps, we get
s0 →ε s1 →p1 s2 → . . . sn−1 →qn−1 s′n →pn

sn+1 (1′) where qn−1 =
ant‖(pn, sn−1).
If (1) is outermost then so is (1’).
We get (2) by applying the induction hypothesis on s0 →

∗
sn−1

in (1’).

Remark : If pn admits an antecedent‖ into sn−1, then pn admits an antecedent‖

into s0.

Lemma 4.33 Suppose s0(ε) ∈ F ∪ F M .
Let us consider the following derivation :

s0 →
∗
[ε,rhs′s] sn →pn

sn+1 (1)

s.t. pn does not admit an antecedent‖ into sn−1. Then, (1) is a derivation of
the form :

s0 →
∗
[ε,rhs′s] sn+1 (2)

Proof : Let us suppose that [ε, rhs′s] = [ε, p1, . . . pn−1], and let li → ri be the
rewrite rule used in the step si → si+1. pn does not admit an antecedent‖ into
sn−1. Then, pn < pn−1 or pn = pn−1.q where q ∈ PosF (pn−1). By construction,
pn−1 ∈ OutF1(sn), therefore the case pn < pn−1 is impossible. Thus necessarily,
pn = pn−1.q, which shows that (1) is of the form s0 →

∗
[ε,rhs′s] sn+1.

Lemma 4.34 Let us consider the following derivation :

s0 →∗
[ε,rhs′s] sn →∗ sk (1)

Then (1) can be commuted into :

s0 →
∗
6=ε s′i →

∗
[ε,rhs′s] sk (2)

Moreover, if (1) is outermost then (2) is outermost at level 2.

Proof : By induction on the length of the derivation sn →
∗
pn

sk. Let us
suppose that (1) is outermost at level 2.

- if length = 0 then it is proved.

- else

- if sn →pn
sn+1 is s.t. pn admits an antecedent‖ into sn−1, and so into

s0 according to the previous remark, then we apply Lemma 4.32. We
obtain the following derivation that is outermost at level 2 :

s0 → 6=ε s′1 →
∗
[ε,rhs′s] sn+1 →

∗ sk (1′)

- else, according to Lemma 4.33, (1) is of the form :

s0 →
∗
[ε,rhs′s] sn+1 →

∗ sk (1′)
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The length of the end of the derivation (i.e. sn+1 →
∗ sk) has decreased, we

can then use the induction-hypothesis.

Example 4.35 R = {f(s(x))→ s(f(x)), g(s(x))→ s(g(x))}

f

s

g

s

a

→ε s

f

g

s

a

→1.1 s

f

s

g

a

→1 s

s

f

g

a

can be commuted into f

s

g

s

a

→1.1 f

s

s

g

a

→ε s

f

s

g

a

→1 s

s

f

g

a

Lemma 4.36 Let s0 be a term s.t. s0(ε) ∈ F ∪ F M .
If s0 →

∗ s′ is outermost, then this derivation can be commuted into s0 →
∗
p6=ε

s′′ →∗
[ε,rhs′s] s′, which is outermost at level 2.

Proof : Let us consider the outermost derivation s0 →
∗ s′ where s0(ε) ∈

F ∪ F M . Let us take the smallest i s.t. s0 →
∗ si →ε si+1 →

∗ s′. By Lemma
4.34 applied on si →

∗ s′, we obtain s0 →
∗
p6=ε s′′ →∗

[ε,rhs′s] s′, which is outermost
at level 2.

Corollary 4.37 Let s0 = f(s1, . . . , sn), and s0 →
∗ s′ be an outermost deriva-

tion. Then,

s′ ∈ R∗
ε( f

R∗
out(s1) R∗

out(sn)

)

Remark : Recall that the property P is defined at the beginning of Section
4.5.

Lemma 4.38 Let us suppose that s0(ε) ∈ F ∪ F M , and that there are not
critical pairs.
Let s0 →p0 s1 be an outermost derivation s.t. P (s0) and ¬P (s1). Then, s0 6→ε

Proof : If s0 →[ε,l→r,σ] s′ then ∀u > ε, s0(u) ∈ CM ∪ F M then ∀x, xσ ∈
TCM∪F M , then

∀q ∈ OutF1(s
′), ∀u > q, s′(u) ∈ CM ∪ F M (P ′(s′)).

Since s0 →p1 s1 is outermost and s0 →ε s′, we have p0 = ε. And since there
are not critical pairs, s′ = s1. Then, we have ¬P (s′) (because ¬P (s1)) and
P ′(s′), and it is impossible.

Lemma 4.39 Let us suppose that s0(ε) ∈ F ∪ F M and there are not critical
pairs. Let s0 →p1 s1 →

∗ sn (1) be an outermost derivation s.t. P (s0) and
∀i ∈ {1, . . . , n} ¬P (si).
If it exists i ∈ {1, . . . , n− 1} s.t. si →pi

si+1 satisfies pi 6∈ OutF1(si), then pi

admits an antecedent‖ q into s0 and we can commute (1) into :
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s0 →q s′1 →p0→ . . . s′i → si+1 →
∗ sn (2) s.t. (2) is outermost and P (s′1) and

∀j ∈ {2, . . . , i} ¬P (s′i).

Proof : Let us consider the smallest i s,t, pi 6∈ OutF1(si). si →pi
si+1 being

outermost, so outermost at level 2, it is obvious that s0 →q s′1 is outermost
at level 2. On the other hand, according to Lemma 4.38, s0 6→, then s0 →q s1

is outermost.

Example 4.40 Let R = {f(x, s(y))→ c(h(x), f(a, y)), g(s(x))→ s(s(g(x)))}.

f

g

s

a

g

s

a

→2 f

g

s

a

s

s

g

a

→ε c

h

g

s

a

f

a s

g

a

→1.1 c

h

s

s

g

a

f

a s

g

a

ant‖(1.1, s0) = 1, then it can be commuted into

f

g
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a

g

s

a

→1 f

s

s

g

a

g

s

a
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s

s

g

a
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s

g

a

→ε c

h

s

s

g

a

f

a s

g

a

Lemma 4.41 Let us suppose that there are no critical pairs and let us con-
sider the following outermost derivation :

s0 →p0 s1 →
∗
[p1,...,pn−1]

sn (1)

s.t. s0(ε) ∈ F ∪ F M , P (s0) and ∀k ∈ {1, . . . , n}, ¬P (sk) and suppose that
∀k ∈ {1, . . . , n − 1} pk ∈ OutF1(sk) Then, (1) is of the form s0 →

?
p∈OutF2

s1 →
∗
p∈OutF1

sn.

Proof : We have P (s0) so,

- According to Lemma 4.38, s0 6→ε : since ¬P (s1) and since there are not
nested functions in lhs’s then p0 ∈ OutF2(s0). So, (1) is of the form
s0 →

?
p∈OutF2

s1 →
∗
p∈OutF1

sn.

Definition 4.42 →∗
[≥p] denotes a derivation of the form →p1 . . . →pn

s.t.
∀i, pi ≥ p.
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Lemma 4.43 Let us consider the following outermost derivation :

s0 →q0∈OutF1(s0) s1 → . . .→qn−1∈OutF1(sn−1) sn (1)

s.t. OutF1(s0) = {p1, . . . , pk}. Then, (1) can be commuted into :

s0 →
∗
[≥p1]

s1 . . .→∗
[≥pk] sn (2)

s.t. (2) is outermost.

Proof : It is trivial.

Lemma 4.44 Let us suppose that there are not critical pairs and let us con-
sider the following outermost derivation :

s0 → s1 →∗ sn (1)

where P (s0) and ∀k ∈ {1, . . . , n} ¬P (sk). Then, (1) can be commuted into :

s0 →
‖
p∈OutF2

s′ →∗
p∈OutF1

sn (2)

Remark : If |OutF1(s0)| = 1 then (2)=(1).

Proof : Let OutF1(s0) = {p1, . . . , pk}. By Lemma 4.43, (1) can be commuted
into

s0 →
∗
[≥p1]

si . . . sj →
∗
[≥pk] sn (1)

By Lemma 4.41 applied on each sub-derivation, we obtain that each sub-
derivation is of the form s0 →

?
p∈OutF2

→∗
p∈OutF1

, . . .
To obtain (2), we have to transfer every position of OutF2 in the beginning of
the derivation (it changes nothing because of incomparability). And, finally,

we obtain s0 →
‖
p∈OutF2

s′ →∗
p∈OutF1

sn.

5 Leftmost Descendants : R∗
left(E)

5.1 Algorithm

Recall that R is assumed to satisfy Restriction 6’ (left-variable preserving).
We can transform it so that Restriction 6 (variable preserving) is satisfied, in
the following way. A new binary constructor eat is introduced, and eat(t, t′)
intuitively means that we want to keep t as the result, and to get rid of t′. Be-
cause of the leftmost strategy, the term to be kept has to be the left argument
of eat. By introducing eat into the rhs, we can transform a rule which is not
variable-preserving into a variable-preserving one. Then, by introducing more
rewrite rules, we extend the existing defined-functions to take the new con-
structor eat into account. The method is explained by the following example,
and an algorithm is given in Appendix D.
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Example 5.1 Let R = {f(s(s(x)), y)→ x}.
After running the algorithm, we obtain the following TRS :
R = {f(s(s(x)), y)→ eat(x, y), f(eat(s(s(x)), x1), y)→ eat(x, eat(x1, y)),

f(s(eat(s(x), x1.1)), y)→ eat(x, eat(x1.1, y)),
f(eat(s(eat(s(x), x1.1.1)), x1), y)→ eat(x, eat(x1.1.1, eat(x1, y)))}.

R∗
p(E) does not take the leftmost strategy into account. We will use R∗/

p (E)
instead.

Definition 5.2 Given a language E and a position p, we define R∗/
p (E) as

follows

R∗/
p (E) = E ∪ {t′ | ∃t ∈ E, t→+

[p,rhs′s] t′ by leftmost rewriting}

Example 5.3 R = {f(x)→ s(x), g(x, y)→ c(h(x), f(y)), h(x)→ f(x)}
R∗/

1 ({f(g(a, b))}) = {f(g(a, b))}∪ {f(c(h(a), f(b)))}∪ {f(c(f(a), f(b)))}∪
{f(c(s(a), f(b)))} ∪ {f(c(s(a), s(b)))}

Theorem 5.4 Let R be a rewrite system satisfying restrictions 1,2, 3, and 6,
and E be the set of data-instances of a given linear term t. If E is recognized
by an automaton that discriminates position p into the state q, and possibly p′

into q′ for some p′ ∈ Pos(t) s.t. p′ 6≥ p, and some states q′, then so is R∗/
p (E).

Proof : Building an automaton and proving its correctness is not easy. See
Subsection 5.2.

Definition 5.5 Given a language L and a position p, we define :

R∗
left,p(L) = {s′ | ∃s ∈ L, s→∗

[u1,...,un] s′ by a leftmost strat. with ∀i, ui ≥ p}

Lemma 5.6 Let R be a constructor-based TRS satisfying restrictions 1 to 3,
5 and 6, and E be the set of data-instances of a given linear term t.
Let p ∈ PosF (t), and L be a language s.t. L|p = E|p, and that is recognized by
an automaton that discriminates every position p′ ∈ PosF (t) | p′ ≥ p.Then,

R∗
left,p(L) = R∗/

p (L) if Succt(p) = ∅

Otherwise, let Succt(p) = {p1, . . . , pn} with p1 / . . . / pn

R∗
left,p(L) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R∗/
p [R∗

left,p1
(L)]

∪ R∗/
p [R∗

left,p2
((R∗

left,p1
(L) ∩ IRRp1(R)))]

∪ . . . ∪ R∗/
p [R∗

left,pn
(. . . (R∗

left,p1
(L) ∩ IRRp1(R)) . . . ∩ IRRpn−1(R))]

and R∗
left,p(L) is recognized by an automaton A′ s.t. if p′ ∈ Pos(t), p′ 6> p

and A discriminates p′ into q′, then A′ also discriminates p′ into q′.
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Proof :

- If Succt(p) = ∅, then ∀s ∈ L, ∀p′ ∈ Pos(s), (p′ > p =⇒ s(p′) ∈ C). p
is the only function position of s|p. In rhs’s, it may have several function
position that are incomparable (in opposition with nested). R∗/

p (L) com-
pute leftmostly. Therefore, R∗/

p (L) = R∗
left,p(L).

We get A′ by Theorem 5.4.

- Let Succt(p) = {p1, . . . , pn} with p1/. . ./pn. Let s ∈ L. ∀ i ∈ {1, . . . , n}, s
can be rewritten leftmostly at position pi, but descendants at position pi−1

must have computed and normalized at this position before, since pi−1/pi.
Let us note L1 set of terms obtained from s after leftmost rewriting at
position p1,. . ., Ln set of terms obtained from s after leftmost rewriting
at position pn. We have:
L1 = R∗

left,p1
(L)

L2 = R∗
left,p2

(R∗
left,p1

(L) ∩ IRRp1(R))
. . .
Ln = R∗

left,pn
(Ln−1 ∩ IRRpn−1(R)).

Remark : Those descendants are obtained by left-basic rewriting.
L1, . . . , Ln can be possibly rewritten at position p. R∗/

p (L1)∪. . .∪R
∗/
p (Ln) =

R∗
left,p(L).

L is recognized by an automaton A that discriminates every position
p′ ∈ PosF (t) s.t. p′ ≥ p and so, since ∀i ∈ {1, . . . , n}, pi > p, every
position p′ s.t. p′ ≥ pi.
By induction hypothesis, L1 is recognized by an automaton A1 that dis-
criminates p and every position p′ ∈ PosF (t)s.t. p′ 6> p1 and so, in partic-
ular, every position p′ ≥ pi ∀i ∈ {2, . . . , n} and every position p′ 6> p. By
Theorem 5.4, R∗/

p (L1) is recognized by an automaton that discriminates
positions p′ 6> p.
By Theorem 2.14, IRRpi

(R) is recognized by an automaton that discrim-
inates every position p′ ∈ PosF (t) s.t. p′ 6> pi (p′ 6> p1 for IRRp1(R), . . . ,
p′ 6> pn for IRRpn

(R)). For j ∈ {1, . . . , n}, let us suppose that Lj−1 is
recognized by an automaton that discriminates every position p′ 6> pj−1

(i.e. positions that are discriminated before computing R∗
left,pj−1

(. . .) mi-
nus positions that are below pj−1). By Lemma 2.8, Lj−1 ∩ IRRpj−1

(R) is
recognized by an automaton that discriminates every position p′ 6> pj−1,
so in particular p′ ≥ pj. Lj is recognized by an automaton that discrimi-
nates every position p′ 6> pj (i.e. positions that are discriminated before
computing R∗

left,pj
(. . .) minus positions that are below pj) and in partic-

ular every position p′ 6> p. By Theorem 5.4, R∗/
p (Lj) is recognized by an

automaton that discriminates every position p′ 6> p.
Finally, by union, we obtain an automaton that discriminates p and pre-
serves discrimination of positions p′ 6> p.
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Theorem 5.7 Let R be a constructor-based TRS satisfying restrictions 1 to
3, 5 and 6, and E be the set of data-instances of a given linear term t.

R∗
left(E) = R∗

left,ε(E) if t(ε) ∈ F

Otherwise, let Succt(p) = {p1, . . . , pn} with p1 / . . . / pn

R∗
left(E) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R∗
left,p1

(E)

∪ R∗
left,p2

((R∗
left,p1

(L) ∩ IRRp1(R)))

∪ . . . ∪ R∗
left,pn

(. . . (R∗
left,p1

(L) ∩ IRRp1(R)) . . . ∩ IRRpn−1(R))

and R∗
left(E) is effectively recognized by an automaton.

Proof : We have two cases:

- If ε ∈ PosF (t), obviously R∗
left(E) = R∗

left,ε(E).

- If ε 6∈ PosF (t), and Succt(p) = {p1, . . . , pn} with p1 / . . . / pn, ∀ i, j s.t.
pi / pj, leftmost descendants at position pj can be computed after have
normalized those at position pi. Then obviously,R∗

left(E) = R∗
left,p1

(E) ∪
. . .
∪ R∗

left,pn−1
(. . . (R∗

left,p1
(L) ∩ IRR1(R))) . . .) ∪ . . .

∪ R∗
left,pn

(. . . (R∗
left,p1

(L) ∩ IRR1(R))) . . .)

To remove eat, we replace each transition of the form eat(q, q ′) → q′′ by
q → q′′.

Example 5.8 Let R = {f(x)→ s(x), h(x, y)→ c(f(x), g(y)), g(x)→ s(x)}
and E = {h(g(s∗(a)), f(s∗(a)))}. For clarity, we denote s∗(a) by ∗.
R∗

left(E) = R∗
left,ε(E) = R∗/

ε (R∗
left,1(E)) ∪ R∗/

ε (R∗
left,2(R

∗
left,1(E) ∩ IRR1(R)).

- R∗
left,1(E) = R∗/

1 (E)

= E ∪ {h(s(∗), f(∗))} denoted by L1.

- R∗
left,2(R

∗
left,1(E) ∩ IRR1(R)) = R∗

left,2({h(s(∗), f(∗))}
= {h(s(∗), f(∗)} ∪ {h(s(∗), s(∗)} denoted by L2

Finally, we obtain leftmost descendants which are :
L1 ∪ L2 ∪ {c(f(g(∗)), g(f(∗)))} ∪ {c(s(g(∗)), g(f(∗)))} ∪ {c(s(s(∗)), g(f(∗)))}
∪ {c(s(s(∗)), s(f(∗)))} ∪ {c(s(s(∗)), s(s(∗)))} ∪ {c(f(s(∗)), g(s(∗)))} ∪
{c(s(s(∗)), g(s(∗)))} ∪ {c(f(s(∗)), g(f(∗)))}.
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5.2 Recognizing R∗/
p (E)

Missing proofs are given in Appendix C.

5.2.1 Commutation of Rewriting and Left-Basic Derivations

In a leftmost strategy, before rewriting at some position p, the subterms oc-
curring on the left of p must be rewritten into normal forms, by leftmost
derivations too. However, in order to avoid a loop when building the automa-
ton, we normalize these subterms by derivations without strategy, and we
show that the normal forms obtained by leftmost derivations and by arbitrary
derivations are the same. For this, we show that an arbitrary derivation can
always be transformed into a left-basic derivation (see Definition 5.13), and
that a left-basic derivation leading to a normal form is leftmost.

The following figure shows the links between lemmas and theorems. Theo-
rem 5.7 corresponds to the final result.

Theorem 5.17 Theorem 5.19

Corollary 5.20

Theorem 5.4

Lemma 5.6; Theorem 5.7

By the two following Lemmas, we see how to commute a derivation (in two
steps, next in several steps). Commutation is based on the notion of an-
tecedent.

Definition 5.9 Let t→[q,l→r] t′ be a rewrite step, and let v′ ∈ Pos(t′).
v ∈ Pos(t) is an antecedent of v′ in t (denoted by ant(v′, t)) through this step
if:

- v′ / q and v = v′,

- or ∃p′ ∈ PosV ar(r) with r|p′ = x s.t. v′ = q.p′.w and v = q.p′′.w where
p′′ is a position of x in l.
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Remark : Since lhs’s are linear, the antecedent (if exists) is unique.

Definition 5.10 Let us consider the following derivation:

t0 →[p0,l0→r0] t1 → . . . tn →[pn,ln→rn] tn+1 (1)

v0 ∈ Pos(t0) is an antecedent of vn+1 ∈ Pos(tn+1) through this derivation if
∃v1 ∈ pos(t1), . . . , vn ∈ Pos(tn) s.t. ∀i ∈ {0, ..., n}, vi is an antecedent of vi+1

through step ti → ti+1.

Lemma 5.11 Let R be a linear TRS and s, t, u be terms. If

s→[p,g→d] t→[q,l→r] u (1)

is a derivation in two steps s.t. q admits an antecedent in s denoted by p0.
Then, (1) can be commuted into:

s→[p0,l→r] t′ →[p,g→d] u′ (2)

Now, let us suppose restrictions 6 and 5. Then, if (1) is leftmost, (2) is left-
most.

Remark : R being linear, g → d is linear and so d is linear, consequently
u′ = u, i.e, the last term of derivation is preserved by commutation (20).
Moreover, in (2), p does not have an antecedent in s.

Lemma 5.12 Let R be a linear TRS. If

t0 →[p0,l0→r0] t1 → . . . tn−1 →[pn−1,ln−1→rn−1] tn →[pn,ln→rn] tn+1 (1)

is a derivation s.t. pn admits an antecedent qn−1 in t0. Then, (1) can be com-
muted in:

t0 →[qn−1,ln→rn] t′1 →[p0,l0→r0] . . . t′n →[pn−1,ln−1→rn−1] t′n+1 (2)

with t′n+1 = tn+1 and p0 has no antecedent in t0.
Now, let us suppose restrictions 6 and 5. Then, if (1) is leftmost, (2) is leftmost
too.

Now, let us define the notion of left-basic derivation.

Definition 5.13 Let us consider the following derivation:

t0 →[p0,l0→r0] t1 → . . . tn →[pn,ln→rn] tn+1 (1)

This derivation is said to be left-basic if there exist sets of positions B(t0),
B(t1), . . ., B(tn) for the terms t0, t1, . . . , tn s.t.

- B(t0) = PosF (t0)

- ∀j, pj ∈ B(tj)

- ∀j, B(tj+1) = {p′ | p′ ≤ pj} ∪ {pj.v | v ∈ PosF (rj)} ∪ {p
′ | pj / p′}
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Note that leftmost-innermost implies left-basic. The converse is false in the
general case.

Counter-example 5.14
Let R = {f(x) → s(f(x)), h(x, y) → c(f(x), s(g(y))), g(x) → x} and let
E = {h(s∗(a), s∗(a))}. Consider the following derivation :

E →[ε] c(f(s∗(a)), s(g(s∗(a))))→[2.1] c(f(s∗(a)), s(s∗(a)))

This derivation is left-basic but is not leftmost-innermost because of the
rewrite step at position 2.1 since position 1 is not normalized.

Lemma 5.15 Let us consider the following derivation:

t0 →[p0,l0→r0] t1 → . . . tn →[pn,ln→rn] tn+1 (1)

then, (1) is left-basic if and only if ∀i ∈ {1, . . . , n}, pi has no antecedent in
ti−1.

Lemma 5.16 Let us consider the following left-basic derivation:

t0 →[p0,l0→r0] t1 → . . . tn (1)

followed by the non-left-basic step:

tn →[pn,ln→rn] tn+1

Let us remark that pn admits an antecedent in tn−1. Let j ≤ n be the smallest
integer s.t. pn admits an antecedent in tj.
Then, the following derivation obtained by commutation:

t0 →[p0,l0→r0] t1 → . . . tj →[q,ln→rn] t′j+1 →[pj ,lj→rj ] t′j+2 → . . .

. . .→ t′n →[pn−1,ln−1→rn−1] tn+1 (2)

is left-basic.

Theorem 5.17 Let R be a linear TRS. If t0 →
∗ tn (1) then, t0 →

∗ tn (2) by
a left-basic derivation. Now, let us suppose restrictions 6 and 5. Then, if (1)
is leftmost, (2) is leftmost too.

Lemma 5.18 Let R be a given constructor-based TRS and let us assume
restriction 6. Let us consider the following left-basic derivation:

t0 →[p0,l0→r0] t1 → . . . tn →[pn,ln→rn] tn+1 (1)

and let j ∈ {0, . . . , n}. If ∃ p′ ∈ Pos(tj)−B(tj) s.t. tj(p
′) ∈ F , then ∀k > j,

∃p′k ∈ Pos(tk)− B(tk) s.t. tk|p′
k

= tj|p′.

Theorem 5.19 Let R be a given constructor-based TRS and let us assume
restriction 6. Let us consider the following left-basic derivation:

t0 →
∗ tn+1 s.t. tn+1 = t0 ↓ (1)
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Then, (1) is leftmost.

Corollary 5.20 Let R be a given constructor-based TRS and let us assume
restrictions 2 and 6. The normal forms of a given term t obtained by a leftmost
rewrite strategy are the same as those obtained without rewrite strategy.

Proof : Obviously, it comes from Theorems 5.17 and 5.19.

5.2.2 The Automaton

To build an automaton that recognizes R∗/
p (E), we modify the method used for

recognizing R∗
p(E) (in Appendix B) in a non-trivial way. Notions introduced

in this subsection are illustrated by Example 5.27.

Definition 5.21 Let Dsat and ∆sat
d be the set of states and transitions ob-

tained as in Definition B.3 by replacing each state di,p
σ ∈ D by di,p

sat,σ.

The goal of these two similar encodings of rhs’s is to recognize the instances
of rhs’s thanks to (D, ∆d), and their descendants thanks to (Dsat, ∆sat

d ) and
∆sat generated by the saturation process defined below:

Definition 5.22 (saturation)
Let ∆sat be the set of transitions added in the following way :
whenever there are li → ri ∈ R, a (Q ∪ Qarg)-substitution σ s.t. dom(σ) =
V ar(li) ∪ V ar(ri) and liσ →

∗
∆tθ∪∆arg∪∆sat

d
q′ where q′ ∈ {q} ∪ Dsat, then add

the transition di,ε
sat,σ|V ar(ri)

→ q′.

Notation : ∆sat∗
d = ∆sat

d ∪∆sat.

Remark : Let us note B′ = (C ∪ F, Q ∪ Qarg ∪Dsat, {q}, ∆ ∪ ∆arg ∪∆sat∗
d ).

Then, L(B′) = R∗
ε(L(A|p)) i.e the same as R∗/

ε (L(A|p)) except that the rewrite
steps are not necessarily leftmost (see (19) for more details and explanations,
here only sat differs).

We create another rhs’s encoding. So, it permits us to have descendants of
instances of rhs’s obtained by a leftmost strategy. For example, consider the
rhs c(f(x), g(y)). We check that instances of f(x) are reduced to their normal
forms, by any strategy (thanks to Corollary 5.20), before reducing instances
of g(y) by a leftmost strategy.

Definition 5.23 Let us recall that the construction of Airr (and Qirr) is given
in the proof of Theorem 2.14. We consider the set of states:

Dspec = D ∪Dsat ∪Dsat ×Qirr

and the following set of transitions where (d...
...q

irr denotes the pair (d...
..., q

irr)):
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∆spec =
⋃

li→ri∈R

⋃

p∈Pos(ri)/(PosF (ri)∪Arg(ri))

⋃

k∈{1,...,ar(ri(p))}

{ri(p)(X1, . . . , Xn)→ di,p
sat,σ1∪...∪σn

| ∀j, σj is any Q′-substitution

s.t. dom(σj) = V ar(ri|p.j),

where ∀j, Xj =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xσj , q
irr if j < k

xσj otherwise

∣

∣

∣

∣

∣

∣

∣

ri(p.j) is any variable x

di,p.j
sat,σj

if j = k

di,p.j
sat,σj

qirr if j < k

di,p.j
σj

otherwise

}

∪ {ri(p)(X1, . . . , Xn)→ di,p
sat,σ | li → ri ∈ R, p ∈ PosF (ri),

σ is any Q′-substitution s.t. dom(σ) = V ar(ri|p)

where ∀j, Xj =

∣

∣

∣

∣

∣

∣

∣

xσ | ri(p.j) is any variable x

qi,p.j ∈ Qarg otherwise
}

∪ {xσ → di,ε
sat,σ | li → ri ∈ R, ri is any variable x,

σ is any Q′-substitution s.t. dom(σ) = {x}}

Thus, riσ is also recognized into the state di,ε
sat,σ.

Now, we define an automaton that recognizes R∗/
p (L(A)).

Definition 5.24 We define B/ an automaton s.t.:

B/ = (C ∪ F, Q/, Q/
f , ∆

/)

where Q/ = Q ∪Dspec ∪Qarg ∪ (Q ∪Qarg)×Qirr and Qf = {q} and
∆/ = ∆d ∪∆sat∗

d ⊗∆irr ∪∆spec ∪∆sat ∪∆arg.
∆sat∗

d ⊗ ∆irr is obtained by running the automaton intersection algorithm on
transition sets ∆sat∗

d and ∆irr. Thus it encodes normal-forms of instances of
rhs’s.

Lemma 5.25 L(B/) = R∗/
ε (L(A|p)).

Proof : The proof comes from Corollary 5.20 and (19).

Corollary 5.26 L(A[B/]p) = R∗/
p (L(A)).

Example 5.27 Let R = {f(x)
r1
→ s(x), h(x, y)

r2
→ c(f(x), g(y)), g(x)

r3
→

s(x)} and t = h(x, y). We consider only instances of t by constructors a, s, i.e.
E = {h(s∗(a), s∗(a))}.
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We are looking for an automaton that recognized R∗/
ε (E). For sake of simplic-

ity we denote by σ any substitution.
The only leftmost derivation is: E →[ε,r2,σ] c(f(s∗(a)), g(s∗(a)))→[1,r1,σ]

c(s(s∗(a)), g(s∗(a))) →[2,r3,σ] c(s(s∗(a)), s(s∗(a))). In the following, we give
only sets of transitions.

∆tθ = {a → qdata, s(qdata) → qdata, h(qdata, qdata) → qε} where final state is
qε. Let us define B/.
∆d = {c(dr2,1

σ , dr2,2
σ ) → dr2,ε

σ , f(qdata) → dr2,1
σ , g(qdata) → dr2,2

σ , s(qdata)
→ dr1,ε

σ , s(qdata)→ dr3,ε
σ }.

∆spec = {c(dr2,1
sat,σ, d

r2,2
σ ) → dr2,ε

sat,σ, c(dr2,1
sat,σq

irr, dr2,2
sat,σ) → dr2,ε

sat,σ, f(qdata) → dr2,1
sat,σ,

g(qdata)→ dr2,2
sat,σ, s(qdata)→ dr1,ε

sat,σ, s(qdata)→ dr3,ε
sat,σ}.

∆sat
d = {c(dr2,1

sat,σ, d
r2,2
sat,σ) → dr2,ε

sat,σ, f(qdata) → dr2,1
sat,σ, g(qdata) → dr2,2

sat,σ, s(qdata)

→ dr1,ε
sat,σ, s(qdata)→ dr3,ε

sat,σ}.

∆sat = {dr2,ε
sat,σ → qε, dr1,ε

sat,σ → dr2,1
sat,σ, dr3,ε

sat,σ → dr2,2
sat,σ}.

For the following set, we give only what we will use: ∆sat∗
d ⊗∆irr ⊇ {s(qdata)→

dr3,ε
sat,σqirr,

s(qdata)→ dr1,ε
sat,σqirr, dr1,ε

sat,σq
irr → dr2,1

sat,σqirr}.

Leftmost descendants are recognized indeed. In particular, the non-leftmost
descendants c(f(s∗(a)), s(s∗(a))) are not recognized because s(s∗(a)) is rec-
ognized into the state dr2,2

sat,σ. This state appears in a lhs only in transition

c(dr2,1
sat,σqirr, dr2,2

sat,σ)→ dr2,ε
sat,σ of ∆spec and in a transition of ∆sat

d (but transitions
of ∆sat

d do not belong to the final set of transitions, see previous definition).
And using c(dr2,1

sat,σq
irr, dr2,2

sat,σ) → dr2,ε
sat,σ requires that the first argument is nor-

malized, which does not hold for f(s∗(a)).

6 Innermost-Leftmost Descendants : R∗
ileft(E)

In this section, we will use R∗/
p again to take leftmost strategy into account.

Recall that restriction 6 can be weakened into restriction 6’ by transforming
TRS R using a new constructor eat. See Section 5 for details.

Definition 6.1 Given a language L and a position p, let us define :
R∗

ileft,p(L) = {t′ | ∃t ∈ L, t→∗
[u1,...,un] t′ by an innermost−leftmost strategy,
and ∀i (ui ≥ p)}

Lemma 6.2 Let R be a constructor-based TRS satisfying the restrictions 1
to 3 and 6, and E be the data-instances of a given linear term t.
Let p ∈ PosF (t) and L be a language s.t. L|p = E|p, and that is recognized
by an automaton A that discriminates every position p′ ∈ PosF (t) | p′ ≥ p.
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Then,

R∗
ileft,p(L) = R∗/

p (L) if Succt(p) = ∅

Otherwise, let Succt(p) = {p1, . . . , pn} s.t. p1 � . . . � pn, and in this case

R∗
ileft,p(L) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R∗/
p [R∗

ileft,pn
(. . . (R∗

ileft,p1
(L) ∩ IRRp1(R)) . . .) ∩ IRRpn

(R)]

∪ R∗
ileft,p1

(L) ∪R∗
ileft,p2

(R∗
ileft,p1

(L) ∩ IRRp1(R)) ∪ . . .

. . . ∪ R∗
ileft,pn

(. . . (R∗
in,p1

(L) ∩ IRRp1(R)) . . .)

and R∗
ileft,p(L) is recognized by an automaton A′ s.t. if p′ ∈ Pos(t), p′ 6> p,

and A discriminates p′ into q′, then A′ also discriminates p′ into q′.

Proof : By noetherian induction on (PosF (t), >).

- If Succt(p) = ∅, then ∀s ∈ L, ∀p′ ∈ Pos(s), (p′ > p =⇒ s(p′) ∈ C). And
since p is a leftmost position and rhs’s have no nested defined functions,
R∗/

p (L) = R∗
ileft,p(L).

We get A′ by Theorem 2.18.

- Let Succt(p) = {p1, . . . , pn}, s.t. p1 � . . . � pn.
Let s ∈ L. Either no rewrite step is applied at position p, either a rewrite
step is applied at position p and the strategy is innermost-leftmost only
if we first normalize s below p by innermost-leftmost derivation.
To compute innermost-leftmost descendants at position pn, since pn−1 �

pn, we first calculate those at position pn−1 and normalize it,. . ., to com-
pute innermost-leftmost descendants at position p2, since p1 �p2, we first
calculate those at position p1 and normalize it. So, we search

B = R∗
ileft,pn

(. . . (R∗
ileft,p1

(L) ∩ IRRp1(R)) . . .)

∀p′ position s.t. p′ occurs strictly on the left of pn, ∀s
′ ∈ B, s′ is normal-

ized in p′. Then, obviously,
R∗

ileft,p(L) = R∗
p[R

∗
ileft,pn

(. . . (R∗
ileft,p1

(L) ∩ IRRp1(R)) . . .) ∩ IRRpn
(R)]

∪R∗
ileft,p1

(L)∪ . . .∪ R∗
ileft,pn

(. . . (R∗
ileft,p1

(L)∩ IRRp1(R)) . . .)
L is recognized by an automatonA that discriminates every p′ ∈ PosF (t)
s.t. p′ ≥ p and so, since ∀i ∈ {1, . . . , n} pi > p, every p′ s.t. p′ ≥ pi. By
induction hypothesis, R∗

ileft,p1
(L) is recognized by an automaton A1 that

still discriminates p and every position p′ s.t. p′ 6> p1 and so every p′

s.t. p′ ≥ pi, i = 2, . . . , n. By Theorem 2.14, IRRpi
(R) is recognized by

an automaton that discriminates every position p′ ∈ PosF (t) s.t. p′ 6>
pi (p′ 6> p1 for IRRP1(R), . . .). So, by Lemma 2.8, R∗

ileft,p1
(L)∩IRRp1(R)

is recognized by an automaton that discriminates every position p′ ∈
PosF (t) s.t. p′ 6> p1, . . . , R∗

ileft,pn
(. . .) is recognized by an automaton An

that still discriminates p and every position p′ s.t. p′ 6> pn (i.e positions
that are discriminated before computing R∗

ileft,pn
(. . .) except those below

pn). By Lemma 2.8, R∗
ileft,pn

(L) ∩ IRRpn
(R)is recognized by an automa-

ton that discriminates every position p′ ∈ PosF (t) s.t. p′ 6> pn and in
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particular p′ 6> p and by Theorem 2.18, so is R∗
p[R

∗
ileft,pn

(. . . (R∗
ileft,p1

(L)∩
IRRp1(R)) . . .) ∩ IRRpn

(R)]. Finally, by union, we effectively obtain an
automaton that still discriminates position p′ 6> p.

Theorem 6.3 Let E be the data-instances of a linear term t and let R a
constructor-based TRS satisfying the restrictions 1 to 3 and 6.

R∗
ileft(E) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R∗
ileft,ε(E) if ε ∈ PosF (t)

R∗
ileft,p1

(E) ∪ . . .∪

R∗
ileft,pn

(. . . (R∗
ileft,p1

(E) ∩ IRRp1) . . .)

with Succt(ε) = {p1, . . . , pn} s.t. p1 � . . . � pn

otherwise

and R∗
ileft(E) is effectively recognized by an automaton.

Proof : We have two cases:

- If ε ∈ PosF (t), obviously R∗
ileft(E) = R∗

ileft,ε(E).

- If ε 6∈ PosF (t), ∀i, j s.t. pi � pj, innermost-leftmost descendants at
position pj can be computed after to have normalized those at position pi.
Then obviously, R∗

ileft(E) = R∗
ileft,p1

(E)∪ . . .∪R∗
ileft,pn

(. . . (R∗
ileft,p1

(E)∩
IRRp1) . . .)

The automaton comes from Definition 2.9 and by applying Lemma 6.2.

Example 6.4 Let E be the set of data-instances of t = f(g(x), h(y)) and

R = {f(x, y)→ s(f(x, y)), h(x)→ s(x), g(x)→ x}.

∗ will symbolize the data-terms that instantiate t.
t(ε) ∈ F , we so calculate R∗

ileft,ε(E) where E = {f(g(∗), h(∗))}.
R∗

ileft,ε(E) = R∗
ε [R

∗
ileft,2(R

∗
ileft,1(E) ∩ IRR1(R)) ∩ IRR2(R)]

∪R∗
ileft,1(E) ∪R∗

ileft,2(R
∗
ileft,1(E) ∩ IRR1(R)).

We have to compute R∗
ileft,1(E). So, R∗

ileft,1(E) = R∗
1(E) = E ∪ f(∗, h(∗))

Now, we can compute R∗
ileft,2(R

∗
ileft,1(E) ∩ IRR1(R)).

R∗
ileft,2(f(∗, h(∗)) = f(∗, s(∗)) ∪ f(∗, h(∗))

So, R∗
ε(f(∗, s(∗))) = s∗(f(∗, s(∗)))

Finally, we obtain R∗
ileft(E) = s∗(f(∗, s(∗))) ∪ E ∪ f(∗, h(∗)).
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7 Conclusion

Let us make the following remarks.

- Expressing the descendants with strategies, is (much) more difficult than
expressing them without a strategy.

- Restrictions 4, 5, 6 are necessary for our algorithms. But we do not know
whether they are really necessary to get regular languages. This is an
open question.

- R∗
p does not respect the leftmost strategy, except if every rewrite-rule

rhs contains at most one defined-function. In this case we can compute
leftmost and innermost-leftmost descendants by replacing R∗/

p with R∗
p,

and consequently, we do not have to assume Restriction 6.

To study lazy evaluation, it would be interesting to express the descendants
for the leftmost-outermost strategy. It seems easier to introduce “leftmost”
inside our computation of outermost descendants, rather than the opposite.

If the (strong) restrictions we need cannot be satisfied in some practical cases,
two new research directions are then possible :

- either using approximations (generating a super-set of the descendants),

- or using a more-expressive class of tree languages.
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Appendix

A RED(R)

We define Ared as follows :

Ared = (C ∪ F , Qred, Qredf , ∆red) where
Qred = {qany, qrec} ∪w∈Pos(li) {q

i,w
rec}

Qredf = {qrec} and

∆red = {li(p
′)(S1, . . . , Sn)→ qi,p′

rec | li → ri ∈ R, p′ ∈ pos(li)

Sj =

∣

∣

∣

∣

∣

∣

∣

qi,p′.j
rec if li(p

′.j) 6= variable

qany otherwise
}

∪ {qi,ε
rec → qrec}

∪ {s(qany, . . . , qany)→ qany | s ∈ F ∪ C}

∪ {s(qany, . . . , qany, qrec, qany, . . . , qany)→ qrec | s ∈ F ∪ C, ar(s) ≥ 1}

Ared recognizes RED(R) indeed, because:
t|ε reducible i.e. ∃ u position s.t u ≥ ε and t→[u,l→r] t′.

- qany recognizes any terms (subterms of t at positions incomparable with
u, as well as instances of variables of l).

- qi,ε
rec recognizes lσ (subterms of t at position u).

- qrec recognizes C[lσ] (subterms of t at positions v s.t. ε ≤ v ≤ u).

Example A.1 Let F ∪ C = {f \1, g\2, s\1} and

R = {f(s(x))→ s(f(x)), g(x, y)→ s(x)}.

The automaton that recognizes RED(R) contains:

f(q1,1
rec)→ q1,ε

rec, s(qany)→ q1,1
rec, g(qany, qany)→ q2,ε

rec, q1,ε
rec → qrec,

q2,ε
rec → qrec, f(qany)→ qany, s(qany)→ qany, g(qany, qany)→ qany,

f(qrec)→ qrec, s(qrec)→ qrec, g(qany, qrec)→ qrec, g(qrec, qany)→ qrec

For example, we have g(s(a), f(s(a))) and f(g(s(a), s(a))) ∈ L(Ared)
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B Recognizing R∗
p(E)

It may occur that the matches used in rewrite steps instantiate the variables
by languages not recognized into states of AE. I.e the instances are not always
(sub)terms of E. Let us see the following example:

Example B.1 let E be the set of data-instances of t = g(a) and let us con-
sider the following TRS :

R = {g(x)
r1
→ h(x, b), h(x, y)

r2
→ c(x, y)}

. Atθ can be summarized by writing :
qε

g (
q1

a) (which means that g(a) →∆tθ

g(q1) →∆tθ
qε). The rewrite steps issued from E are g(a) →[ε,r1,x/a] h(a, b)

→[ε,r2,x/a y/b] c(a, b). Unfortunately, Qtθ = {qε, q1} and the language recog-
nized into qε (resp. q1) is g(a) (resp. a).Thus, we do not have any states that
can recognize {b}. This comes from the fact that {b} is provided by the rhs
r1. Therefore, we need to encode {b} by additional states.
So, we give the following definition.

Definition B.2 The non-variable arguments of functions in rhs’s are encoded
by the set of states Qarg and the set of transitions ∆arg as defined below :

Qarg = {qi,p | li → ri ∈ R, p ∈ Arg(ri)}

∆arg = {ri(p)(qi,p.1, . . . , qi,p.n)→ qi,p | qi,p ∈ Qarg}

where Arg(ri) are the non-variable argument positions in ri, i.e.

Arg(ri) = {p ∈ Pos(ri) | ∃pfct ∈ PosF (ri), p > pfct}

Now, we define how to encode a version of each instantiated rhs.
Let A = (C ∪ F, Q, Qf , ∆) an automaton that discriminates the position p
into the state q, s.t. Q ∩ Qarg = ∅. Let Q′ = Q ∪ Qarg. We use states of the
form dp

σ where σ is a Q’-substitution, because rhs’s may contain variables.

Definition B.3 The rhs’s of rewrite rules are encoded by the sets of states
Qarg and

D = {di,p
σ | li → ri ∈ R, p ∈ Pos(ri)\Arg(ri),

σ is a Q′-substitution s.t. dom(σ) = V ar(ri|p)}
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and the set of transitions

∆d = {ri(p)(X1, . . . , Xn)→ di,p
σ1∪...∪σn

| li → ri ∈ R,

p ∈ Pos(ri)\Arg(ri), ri(p) ∈ C

∀j, σj is any Q′-substitution s.t. dom(σj) = V ar(ri|p.j),

where ∀j, Xj =

∣

∣

∣

∣

∣

∣

∣

xσj | ri(p.j) is any variable x

di,p.j
σj

otherwise
}

∪ {ri(p)(X1, . . . , Xn)→ di,p
σ | li → ri ∈ R, p ∈ PosF (ri),

σ is any Q′-substitution s.t. dom(σ) = V ar(ri|p)

where ∀j, Xj =

∣

∣

∣

∣

∣

∣

∣

xσ | ri(p.j) is any variable x

qi,p.j ∈ Qarg otherwise
}

∪ {xσ → di,ε
σ | li → ri ∈ R, ri is any variable x,

σ is any Q′-substitution s.t. dom(σ) = {x}}

Thus, riσ and only it, is recognized into the state di,ε
σ .

Now, we define an automaton that recognizes R∗
p(L(A)).

Definition B.4 Let A = (C ∪ F, Q, Qf , ∆) be an automaton that discrimi-
nates the position p into the state q, and s.t. Q ∩Qarg = ∅. We define :
A′′ = (C ∪ F, Q′′, Q′′

f , ∆
′′) where Q′′ = Q ∪ Qarg ∪ D, Q′′

f = {q}, ∆′′ =
∆ ∪∆arg ∪∆d.

Note that L(A′′) = L(A|p) and A′′ discriminates the position ε into q. This
property is necessary in the saturation process defined below, to ensure that
the first rewrite step is performed at position ε on the terms recognized by
A′′, i.e. at position p on the terms recognized by A.

Now, we can define the saturation process.

Definition B.5 (saturation)
Let B be the automaton obtained from A′′ by adding transitions in the following
way : whenever there are li → ri ∈ R, a (Q∪Qarg)-substitution σ s.t. dom(σ) =
V ar(li) ∪ V ar(ri) and liσ →

∗
∆′′ q′ where q′ ∈ {q} ∪ D add the transition

di,ε
σ|V ar(ri)

→ q′.

Lemma B.6 L(B) = R∗
ε(L(A|p))

For proof, see (19).
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Corollary B.7 L(A[B]p) = R∗
p(L(A))

Remark : From Lemma 2.7, if A discriminates p’6> p into q′, then A[B]p also
discriminates p′ into q′.

C Proofs on Rewriting Commutation and Left-basic Derivations

C.1 Proof of Lemma 5.11

The fact that p has no antecedent it’s obvious because of Definition 5.9. Either
p occurs on the right of p0, either p occurs on top of p0.
Now, let us show that (1) leftmost⇒ (2) leftmost.
Let (1) leftmost. Let us classify V ar(r) from left to right. if |V ar(r)| = n
then V ar(r) = {x1, . . . , xn}. Since (1) is leftmost, let us denote by xi = x
the first variable instantiated by a term containing a defined-function. Then,
∀j ∈ {1 . . . (i− 1)}, σ(xj) do not contain function.
Let us suppose that p0 are not a leftmost position in s. This is possible only if
∃ a function that occurs on the left of x in l instantiated by a term containing
a function. Now it happens that it is not possible because of prohibition of
permutative rules (see restriction 5) and because of variable preserving TRS
(see restriction 6). Then, if we classify V ar(l) from left to right, we obtain the
same order as V ar(r). Hence, (2) is leftmost.

C.2 Proof of Lemma 5.12

This proof follows from Lemma 5.11.
Let ant(pn, tn−1) = q0 ⇒ tn−1 →[pn−1,ln−1→rn−1] tn →[pn,ln→rn] tn+1 commutes
itself into tn−1 →[q0,ln→rn] t′n →[pn−1,ln−1→rn−1] tn+1. And pn−1 has not an-
tecedent in tn−1, and it is leftmost.
Let ant(q0, tn−2) = q1 ⇒ tn−2 →[pn−2,ln−2→rn−2] tn−1 →[q0,ln→rn] t′n commutes
itself into tn−2 →[q1,ln→rn] t′n →[pn−2,ln−2→rn−2] t′n. And pn−2 has not antecedent
in tn−2, and it is leftmost.
. . .
By induction, let ant(qn−2, t0) = qn−1 ⇒ t0 →[p0,l0→r0] t1 →[qn−2,ln→rn] t′2 com-
mutes itself into t0 →[qn−1,ln→rn] t′1 →[p0,l0→r0] t′2. And p0 has not antecedant
in t0 and it is leftmost.
Hence, we obtain (2).
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C.3 Proof of Lemma 5.15

Let (1) be a left-basic derivation.
Let us suppose that ∃ i ∈ {1 . . . n} s.t. pi has an antecedent in ti−1. By Def-
inition 5.13, pi ∈ B(ti) where ∀j, B(ti) = {p′ | p′ ≤ pi−1} ∪ {pi−1.v | v ∈
PosF (ri−1)} ∪ {p

′ | pi−1 / p′}. Let ant(pi, ti−1) = q.
By Definition 5.9,

(1) q ∈ Pos(ti−1)
(2) - pi / pi−1 and pi = q or, (A)

- ∃p′ ∈ PosV ar(ri−1) with ri−1|p′ = x s.t. pi = pi−1.p
′.w and q =

pi−1.p
′′.w where p′′ is an occurrence of variable x in li−1. (B)

It happens that (B) is impossible because of Definition 5.13; pi would occur
in forbidden position. (A) is impossible too, not(pi / pi−1) else the derivation
is not left-basic.
Hence, ∀i ∈ {1 . . . n}, pi has not an antecedent in ti−1.

Let ∀i ∈ {1 . . . n}, pi has not an antecedent in ti−1.
¬(pi/pi−1) else we find an antecedent, and pi 6= pi−1.p

′.w where p′ ∈ PosV ar(ri−1)
(ri−1|p′ = x) because else we find q = pi−1.p

′′.w where p′′ is an occurrence of x
in pi−1.
Hence, it is left-basic.

C.4 Proof of Lemma 5.16

Let ant(pn, tn−1) = q0. Derivation can be commuted and we obtain:
t0 → t1 → . . . tj → tn−1 →[q0] t′n →[pn−1] tn+1 where pn−1 has not antecedent
in tn−1 according to Lemma 5.11.
By induction, let j < n the smaller integer s.t. pn admits an antecedent in tj.
Let denote by q this antecedent. By Lemma 5.12, we can commute and we
obtain:
t0 → . . . tj →[q,ln→rn] t′j+1 →[pj ] . . . → t′n →[pn−1] tn+1 (4) and pj has not
antecedent in tj.
q has not an antecedent in tj−1 since according to the remark j < n is the
smaller integer s.t. pn admits an antecedent in tj. Moreover, since (1) is left-
basic, t0 → . . . tj is left-basic. And since ∀i ∈ {j + 1 . . . n − 1} pi has not
antecedent in ti for the derivation tj →[q] t′j+1 →[pj ] . . .→ t′n →[pn−1] tn+1 (3)
then (3) is left-basic according to Lemma 5.15. And, since q has not antecedent
in tj−1 then (4) is left-basic.
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C.5 Proof of Lemma 5.17

Let i ∈ {1 . . . n} s.t. t0 → . . . ti be a left-basic derivation and t0 → . . . ti → ti+1

(1’) be a non-left-basic.
By running of Lemma 5.16, (1’) can be commuted in t0 → . . . tj →[q] t′j+1 →
. . . t′i → ti+1 (2’) with ant(pi, tj) = q and (2’) is left-basic. And by Lemma 5.12,
(2’) is leftmost if (1’) is leftmost.
We use Lemma 5.16, many times are necessary, and so t0 →

∗ tn by a left-basic
derivation. We proceed in the same way with Lemma 5.12, and (2) is leftmost
if (1) is leftmost.

C.6 Proof of Lemma 5.18

Let t0 →[p0,l0→r0] t1 → . . . tn →[pn,ln→rn] tn+1 (1) be a left-basic derivation, and
let j ∈ {0, . . . , n}.
Let p′ ∈ Pos(tj) − B(tj) s.t. tj(p

′) ∈ F . Let us take k = j + 1. By absurd,
let us suppose that ¬(∃p′k ∈ Pos(tk) − B(tk) s.t. tk|p′

k
= tj|p′). I.e. ∀p′k ∈

Pos(tk) − B(tk) s.t. tk|p′
k
6= tj|p′. Then, we have to remove tj|p′ during the

rewriting step.

- if p′ / pj then this is impossible.

- if p′ below pj, p′ ∈ PosV ar(lj), seeing the constructor-based system, then
the rewrite rule lj → rj should have to eliminate variables. It happens
that we have a restrictions removing this model of rules.

By induction, we obtain the result for k = j + 2, . . . , n.

C.7 Proof of Theorem 5.19

By absurd, let us suppose that ∃j, p′ s.t. tj →[p′] u with p′ / pj. According to
Lemma 5.18, 6 ∃k > j s.t. pk = p′. Then, p′ 6∈ B(tj+1) and tj+1 ∈ F . According
to Lemma 5.18, ∃p′n+1 ∈ Pos(tn+1) s.t. tn+1|p′n+1

= tj|p
′. That contradicts the

fact as tn+1 be normalized.
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D Transforming R to Satisfy Restriction 6

Transfom(R)
init : R′ = ∅
∀l → r ∈ R, if V ar(l) = V ar(r) then add l → r to R′

else r′ := Construct r(l → r);
add l → r′ to R′

endif
let C(l) be a stack that contains all constructor pos. of l.
if |C(l)| 6= ∅ then Build(l → r, C(l), R′) endif

R := R′

Construct r(l→ r)
EraseV ar := V ar(l)− V ar(r) where |V ar(l)| = n and |V ar(r)| = m.
r := eat(r, xm+1)
For i := m + 2 to n do r := r[2← eat(r|2, xi)]

Build(l → r, stack, R′)
p := head(stack); stack := pop(stack);
if not empty(stack) then Build(l→ r, stack, R′) endif
l′ := l[p← eat(l|p, xp)]; r′ := Construct r(l′ → r); Add l′ → r′ to R′

stack := Shift(stack, p);
if not empty(stack) then Build(l′ → r, stack, R′) endif

In the following function, Shift(stack, p) raises all positions which are under
p in stack by a depth of 1. For example, if p = 2 and, 2.1, 2.2 and 1 are in
stack, after running this function, 2.1.1, 2.1.2 and 1 are in stack.
Shift(stack, p)

∀q ∈ stack s.t. ∃w and q = p.w replace q by p.1.w
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Example D.1 Let us take again the TRS of example 5.1.

Transform(f(s(s(x)), y)→ x)

init : R′ = ∅

r′ = Construct r(l→ r) = eat(x, y); R′ = {f(s(s(x)), y)→ eat(x, y)}

C(l) = {1, 1.1}

Build(l→ r, C(l), R′)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p = 1; stack = {1.1}

Build(l → r, {1.1}, R′)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p = 1.1; stack = ∅

l′ = l[1.1← eat(l|1.1, x1.1)]; r′ = Construct r(l′ → r)

add f(s(eat(s(x), x1.1)), y)→ eat(x, eat(x1.1, y)) to R′.

l′ = l[1← eat(l|1, x1)]; r′ = Construct r(l′ → r)

add f(eat(s(s(x)), x1), y)→ eat(x, eat(x1, y)) to R′

stack = Shift(stack, 1) = {1.1.1}

Build(l′ → r, {1.1.1}, R′)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p = 1.1.1; stack = ∅

l′′ = l′[1.1.1← eat(l′|1.1.1, x1.1.1)]; r′ = Construct r(l′′ → r)

add f(eat(s(eat(s(x), x1.1.1)), x1), y)→ eat(x, eat(x1.1.1, eat(x1, y))) to R′

R = R′
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