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Abstract. To check a system, some verification techniques consider a
set of terms I that represents the initial configurations of the system,
and a rewrite system R that represents the system behavior. To check
that no undesirable configuration is reached, they compute an over-
approximation of the set of descendants (successors) issued from I by R,
expressed by a tree language. Their success highly depends on the qual-
ity of the approximation. Some techniques have been presented using
regular tree languages, and more recently using non-regular languages
to get better approximations: using context-free tree languages [16] on
the one hand, using synchronized tree languages [2] on the other hand.
In this paper, we merge these two approaches to get even better approx-
imations: we compute an over-approximation of the descendants, using
synchronized-context-free tree languages expressed by logic programs.
We give several examples for which our procedure computes the descen-
dants in an exact way, whereas the former techniques compute a strict
over-approximation.

Keywords: Term rewriting · Tree languages · Logic programming ·
Reachability

1 Introduction

To check systems like cryptographic protocols or Java programs, some verifica-
tion techniques consider a set of terms I that represents the initial configura-
tions of the system, and a rewrite system R that represents the system behavior
[1,13,14]. To check that no undesirable configuration is reached, they compute
an over-approximation of the set of descendants1 (successors) issued from I by
R, expressed by a tree language. Let R∗(I) denote the set of descendants of I,
and consider a set Bad of undesirable terms. Thus, if a term of Bad is reached
from I, i.e. R∗(I) ∩ Bad �= ∅, it means that the protocol or the program is
flawed. In general, it is not possible to compute R∗(I) exactly. Instead, one com-
putes an over-approximation App of R∗(I) (i.e. App ⊇ R∗(I)), and checks that
App ∩ Bad = ∅, which ensures that the protocol or the program is correct.

However, I, Bad and App have often been considered as regular tree lan-
guages, recognized by finite tree automata. In the general case, R∗(I) is not
1 I.e. terms obtained by applying arbitrarily many rewrite steps on the terms of I.
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regular, even if I is. Moreover, the expressiveness of regular languages is poor.
Then the over-approximation App may not be precise enough, and we may have
App∩Bad �= ∅ whereas R∗(I)∩Bad = ∅. In other words, the protocol is correct,
but we cannot prove it. Some work has proposed CEGAR-techniques (Counter-
Example Guided Approximation Refinement) to conclude as often as possible
[1,4,6]. However, in some cases, no regular over-approximation works [5].

To overcome this theoretical limit, the idea is to use more expressive lan-
guages to express the over-approximation, i.e. non-regular ones. However, to be
able to check that App ∩ Bad = ∅, we need a class of languages closed under
intersection and whose emptiness is decidable. Actually, if we assume that Bad
is regular, closure under intersection with a regular language is enough. The
class of context-free tree languages has these properties, and an approximation
technique using context-free tree languages has been proposed in [16]. On the
other hand, the class of synchronized tree languages [17] also has these proper-
ties, and an approximation technique using synchronized tree languages has been
proposed in [2]. Both classes include regular languages, but they are incompara-
ble. Context-free tree languages cannot express dependencies between different
branches, except in some cases, whereas synchronized tree languages cannot
express vertical dependencies.

We want to use a more powerful class of languages that can express the two
kinds of dependencies together: the class of synchronized-context-free tree-(tuple)
languages [21,22], which has the same properties as context-free languages and
as synchronized languages, i.e. closure under union, closure under intersection
with a regular language, decidability of membership and emptiness.

In this paper, we propose a procedure that always terminates and that com-
putes an over-approximation of the descendants obtained by a linear rewrite sys-
tem, using synchronized-context-free tree-(tuple) languages expressed by logic
programs. Compared to our previous work [2], we introduce “input arguments”
in predicates, which is a major technical change that highly improves the qual-
ity of the approximation, and that requires new results and new proofs. This
work is a first step towards a verification technique offering more than regular
approximations. Some on-going work is discussed in Section 5 in order to make
this technique be an accepted verification technique.

The paper is organized as follows: classical notations and notions manipulated
throughout the paper are introduced in Section 2. Our main contribution, i.e.
computing approximations, is explained in Section 3. Finally, in Section 4 our
technique is applied to examples, in particular when R∗(I) can be expressed in
an exact way neither by a context-free language, nor by a synchronized language.
For lack of space, all proofs are in [3].

Related Work: The class of tree-tuples whose overlapping coding is recognized
by a tree automaton on the product alphabet [7] (called “regular tree relations”
by some authors), is strictly included in the class of rational tree relations [19].
The latter is equivalent to the class of non-copying2 synchronized languages [20],
which is strictly included in the class of synchronized languages.
2 Clause heads are assumed to be linear.
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Context-free tree languages (i.e. without assuming a particular strategy for
grammar derivations) [23] are equivalent to OI (outside-in strategy) context-
free tree languages, but are incomparable with IO (inside-out strategy) context-
free tree languages [11,12]. The IO class (and not the OI one) is strictly included
in the class of synchronized-context-free tree languages. The latter is equivalent
to the “term languages of hyperedge replacement grammars”, which are equiva-
lent to the tree languages definable by attribute grammars [9,10]. However, we
prefer to use the synchronized-context-free tree languages, which use the well
known formalism of pure logic programming, for its implementation ease.

Much other work computes the descendants in an exact way using regular
tree languages (in particular the recent paper [8]), assuming strong restrictions.

2 Preliminaries

Consider a finite ranked alphabet Σ = {a, b, f, g, h, . . .} and a set of variables
Var = {x, y, z, . . .}. Each symbol f ∈ Σ has a unique arity, denoted by ar(f).
The notions of first-order term, position and substitution are defined as usual.
Given σ and σ′ two substitutions, σ ◦ σ′ denotes the substitution such that for
any variable x, σ◦σ′(x) = σ(σ′(x)). TΣ denotes the set of ground terms (without
variables) over Σ. For a term t, Var(t) is the set of variables of t, Pos(t) is the
set of positions of t. For p ∈ Pos(t), t(p) is the symbol of Σ ∪ Var occurring at
position p in t, and t|p is the subterm of t at position p. The term t is linear if
each variable of t occurs only once in t. The term t[t′]p is obtained from t by
replacing the subterm at position p by t′. PosVar(t) = {p ∈ Pos(t) | t(p) ∈ Var},
PosNonVar(t) = {p ∈ Pos(t) | t(p) �∈ Var}.

A rewrite rule is an oriented pair of terms, written l → r. We always assume
that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a finite
set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The
rewrite relation →R is defined as follows: t →R t′ if there exist a position p ∈
PosNonVar(t), a rule l → r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ =
t[θ(r)]p. →∗

R denotes the reflexive-transitive closure of →R. t′ is a descendant of
t if t →∗

R t′. If E is a set of ground terms, R∗(E) denotes the set of descendants
of elements of E. The rewrite rule l → r is left (resp. right) linear if l (resp. r)
is linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right)
linear. R is linear if R is both left and right linear.

In the following, we consider the framework of pure logic programming, and
the class of synchronized-context-free tree-tuple3 languages [21,22], which is pre-
sented as an extension of the class of synchronized tree-tuple languages defined
by CS-clauses [17,18]. Given a set Pred of predicate symbols; atoms, goals, bod-
ies and Horn-clauses are defined as usual. Note that both goals and bodies are
sequences of atoms. We will use letters G or B for sequences of atoms, and A
for atoms.
Definition 1. The tuple of terms (t1, . . . , tn) is flat if t1, . . . , tn are variables.
The sequence of atoms B is flat if for each atom P (t1, . . . , tn) of B, (t1, . . . , tn)
3 For simplicity, “tree-tuple” is sometimes omitted.
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is flat. B is linear if each variable occurring in B (possibly at subterm position)
occurs only once in B. Note that the empty sequence of atoms (denoted by ∅) is
flat and linear.

A Horn clause P (t1, . . . , tn) ← B is normalized if ∀i ∈ {1, . . . , n}, ti is a variable
or contains only one occurrence of function-symbol. A program is normalized if
all its clauses are normalized.

Example 2. Let x, y, z be variables. The sequence of atoms P1(x, y), P2(z) is
flat, whereas P1(x, f(y)), P2(z) is not flat. The clause P (x, y) ← Q(x, y) is
normalized (x, y are variables). The clause P (f(x), y) ← Q(x, y) is normalized
whereas P (f(f(x)), y) ← Q(x, y) is not.

Definition 3. A logic program with modes is a logic program such that a mode-
tuple m ∈ {I,O}n is associated to each predicate symbol P (n is the arity of P ).
In other words, each predicate argument has mode I (Input) or O (Output).
To distinguish them, output arguments will be covered by a hat.
Notation: Let P be a predicate symbol. ArIn(P ) is the number of input argu-
ments of P , and ArOut(P ) is the number of output arguments. Let B be a
sequence of atoms (possibly containing only one atom). In(B) is the input
part of B, i.e. the tuple composed of the input arguments of B. ArIn(B) is
the arity of In(B). V arin(B) is the set of variables that appear in In(B).
Out(B), ArOut(B), and V arout(B) are defined in a similar way. We also define
V ar(B) = V arin(B) ∪ V arout(B).

Example 4. Let B = P (̂t1, ̂t2, t3), Q(̂t4, t5, t6). Then, Out(B) = (t1, t2, t4) and
In(B) = (t3, t5, t6).

Definition 5. Let B = A1, . . . , An be a sequence of atoms. We say that Aj 
Ak (possibly j = k) if ∃y ∈ V arin(Aj) ∩ V arout(Ak). In other words an input
of Aj depends on an output of Ak. We say that B has a loop if Aj + Aj for
some Aj (�+ is the transitive closure of �).

Example 6. Q(x̂, s(y)), R(ŷ, s(x)) (where x, y are variables) has a loop because
Q(x̂, s(y))  R(ŷ, s(x))  Q(x̂, s(y)).

Definition 7. A Synchronized-Context-Free (S-CF) program Prog is a logic
program with modes, whose clauses H ← B satisfy:

– In(H).Out(B) ( . is the tuple concatenation) is a linear tuple of variables, i.e.
each tuple-component is a variable, and each variable occurs only once,

– and B does not have a loop.

A clause of an S-CF program is called S-CF clause.

Example 8. Prog = {P (x̂, y) ← P ( ̂s(x), y)} is not an S-CF program because
In(H).Out(B) = (y, s(x)) is not a tuple of variables. Prog′ = {P ′( ̂s(x), y) ←
P ′(x̂, s(y))} is an S-CF program because In(H).Out(B) = (y, x) is a linear tuple
of variables, and there is no loop in the clause body.
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Definition 9. Let Prog be an S-CF program. Given a predicate symbol P
without input arguments, the tree-(tuple) language generated by P is LProg(P )=
{t∈(TΣ)ArOut(P ) |P (t)∈Mod(Prog)}, where TΣ is the set of ground terms over
the signature Σ and Mod(Prog) is the least Herbrand model of Prog. LProg(P )
is called Synchronized-Context-Free language (S-CF language).

Example 10. Prog={S( ̂c(x, y)) ← P (x̂, ŷ, a, b).
P ( ̂f(x), ̂g(y), x′, y′) ← P (x̂, ŷ, h(x′), i(y′)). P (x̂, ŷ, x, y) ←} is an S-CF program.
The language generated by S is LProg(S) = {c(fn(hn(a)), gn(in(b))) | n ∈ IN},
which is not synchronized (there are vertical dependencies) nor context-free.

Definition 11. The S-CF clause H ← B is non-copying if the tuple Out(H).
In(B) is linear. A program is non-copying if all its clauses are non-copying.

Example 12. The clause P ( ̂d(x, x), y) ← Q(x̂, p(y)) is copying whereas P ( ̂c(x),
y)←Q(x̂, p(y)) is non-copying.

Remark 13. An S-CF program without input arguments is actually a CS-program
(composed of CS-clauses) [17], which generates a synchronized language4. A non-
copying CS-program such that every predicate symbol has only one argument
generates a regular tree language5. Conversely, every regular tree language can
be generated by a non-copying CS-program.

Definition 14. Given an S-CF program Prog and a sequence of atoms G,

– G derives into G′ by a resolution step if there exists a clause6 H ← B in Prog
and an atom A ∈ G such that A and H are unifiable by the most general unifier
σ (then σ(A) = σ(H)) and G′ = σ(G)[σ(A) ← σ(B)]. It is written G �σ G′.
We consider the transitive closure �+ and the reflexive-transitive closure �∗

of �. If G1 �σ1 G2 and G2 �σ2 G3, we write G1 �∗
σ2◦σ1

G3.
– G rewrites into G′ (possibly in several steps) if G �∗

σ G′ s.t. σ does not
instantiate the variables of G. It is written G →∗

σ G′.

Example 15. Let Prog = {P (x̂1, ̂g(x2)) ← P ′(x̂1, x̂2). P (̂f(x1), x̂2) ← P ′′(x̂1,
x̂2).}, and consider G = P (f(x), y). Thus, P (f(x), y)) �σ1 P ′(f(x), x2) with
σ1 = [x1/f(x), y/g(x2)] and P (f(x), y)) →σ2 P ′′(x, y) with σ2 = [x1/x, x2/y].

In the remainder of the paper, given an S-CF program Prog and two
sequences of atoms G1 and G2, G1 �∗

Prog G2 (resp. G1 →∗
Prog G2) also denotes

that G2 can be derived (resp. rewritten) from G1 using clauses of Prog. Note
that for any atom A, if A → B then A � B. On the other hand, A �σ B implies
σ(A) → B. Consequently, if A is ground, A � B implies A → B.

It is well known that resolution is complete.

Theorem 16. Let A be a ground atom. A ∈ Mod(Prog) iff A �∗
Prog ∅.

4 Initially, synchronized languages were presented using constraint systems (sorts of
grammars) [15], and later using logic programs. CS stands for “Constraint System”.

5 In this case, the S-CF program can easily be transformed into a finite tree automaton.
6 We assume that the clause and G have distinct variables.
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3 Computing Descendants

To make the understanding easier, we first give the completion algorithm in
Definition 17. Given a normalized S-CF program Prog and a linear rewrite sys-
tem R, we propose an algorithm to compute a normalized S-CF program Prog′

such that R∗(Mod(Prog)) ⊆ Mod(Prog′), and consequently R∗(LProg(P )) ⊆
LProg′(P ) for each predicate symbol P . Some notions, as strong coherence, will
be explained later.

Definition 17 (comp). Let arity-limit and predicate-limit be positive integers.
Let R be a linear rewrite system, and Prog be a finite, normalized and non-
copying S-CF program strongly coherent with R. The completion process is
defined by:

Function compR(Prog)
Prog = removeCycles(Prog)
while there exists a non-convergent critical pair H ← B in Prog do

Prog = removeCycles(Prog ∪ normProg(H ← B))
end while
return Prog

Let us explain this algorithm.
The notion of critical pair is at the heart of the technique. Given an S-CF

program Prog, a predicate symbol P and a rewrite rule l → r, a critical pair,
explained in details in Section 3.1, is a way to detect a possible rewriting by
l → r for a term t in a tuple of LProg(P ). A convergent critical pair means
that the rewrite step is already handled i.e. if t →l→r s then s is in a tuple
of LProg(P ). Consequently, the language of a normalized CS-program involving
only convergent critical pairs is closed by rewriting.

To summarize, a non-convergent critical pair gives rise to an S-CF clause.
Adding the resulting S-CF clause to the current S-CF program makes the crit-
ical pair convergent. But, let us emphasize on the main problems arising from
Definition 17, i.e. the computation may not terminate and the resulting S-CF
clause may not be normalized. Concerning the non-termination, there are mainly
two reasons. Given a normalized S-CF program Prog, 1) the number of critical
pairs may be infinite and 2) even if the number of critical pairs is finite, adding
the critical pairs to Prog may create new non-convergent critical pairs, and
so on.

Actually, as in [2], there is a function called removeCycles whose goal is to get
finitely many critical pairs from a given finite S-CF program. For lack of space,
many details on this function are given in [3]. Basically, given an S-CF program
Prog having infinitely many critical pairs, removeCycles(Prog) is another S-CF
program that has finitely many critical pairs, and such that for any predicate
symbol P , LProg(P ) ⊆ LremoveCycles(Prog)(P ). The normalization process pre-
sented in Section 3.2 not only preserves the normalized nature of the computed
S-CF programs but also allows us to control the creation of new non-convergent
critical pairs. Finally, in Section 3.3, our main contribution, i.e. the computation
of an over-approximating S-CF program, is fully described.
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3.1 Critical Pairs

Definition 18. Let Prog be a non-copying S-CF program and l → r be a left-
linear rewrite rule. Let x1, . . . , xn be distinct variables such that {x1, . . . , xn} ∩
V ar(l) = ∅. If there are P and k s.t. the kth argument of P is an output, and
P (x1, . . . , xk−1, l, xk+1, . . . , xn) �+

θ G where7

1. resolution steps are applied only on atoms whose output is not flat,
2. Out(G) is flat and
3. the clause P (t1, . . . , tn) ← B used in the first step of this derivation satisfies
tk is not a variable8

then the clause θ(P (x1, . . . , xk−1, r, xk+1, . . . , xn)) ← G is called critical pair.
Moreover, if θ does not instantiate the variables of In(P (x1, . . . , xk−1, l, xk+1,
. . . , xn)) then the critical pair is said strict.

Example 19. Let Prog be the S-CF program defined by:
Prog = {P (x̂) ← Q(x̂, a). Q( ̂f(x), y) ← Q(x̂, g(y)). Q(x̂, x) ← .} and consider
the rewrite system: R = {f(x) → x}. Note that L(P ) = {fn(gn(a)) | n ∈ IN}.

We have Q( ̂f(x), y) �Id Q(x̂, g(y)) where Id denotes the substitution that
leaves every variable unchanged. Since Out(Q(x̂, g(y))) is flat, this generates the
strict critical pair Q(x̂, y) ← Q(x̂, g(y)).

Lemma 20. A strict critical pair is an S-CF clause. In addition, if l → r is
right-linear, a strict critical pair is a non-copying S-CF clause.

Definition 21. A critical pair H ← B is said convergent if H →∗
Prog B.

The critical pair of Example 19 is not convergent.
Let us recall that the completion procedure is based on adding the non-

convergent critical pairs into the program. In order to preserve the nature of the
S-CF program, the computed non-convergent critical pairs are expected to be
strict. So we define a sufficient condition on R and Prog called strong coherence.

Definition 22. Let R be a rewrite system. We consider the smallest set of
consuming symbols, recursively defined by: f ∈ Σ is consuming if there exists a
rewrite rule f(t1, . . . , tn) → r in R s.t. some ti is not a variable, or r contains at
least one consuming symbol.

The S-CF program Prog is strongly coherent with R if 1) for all l → r ∈ R, the
top-symbol of l does not occur in input arguments of Prog and 2) no consuming
symbol occurs in clause-heads having input arguments.

In R = {f(x) → g(x), g(s(x)) → h(x)}, g is consuming and so is f . Thus
Prog={P ( ̂f(x), x) ← .} is not strongly coherent with R. Note that a CS-program
(no input arguments) is strongly coherent with any rewrite system.
7 Here, we do not use a hat to indicate output arguments because they may occur
anywhere depending on P .

8 In other words, the overlap of l on the clause head P (t1, . . . , tn) is done at a non-
variable position.
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Lemma 23. If Prog is a normalized S-CF program strongly coherent with R,
then every critical pair is strict.

So, we come to our main result that ensures to get the rewriting closure when
every computable critical pair is convergent.

Theorem 24. Let R be a linear rewrite system, and Prog be a non-copying
normalized S-CF program strongly coherent with R. If all strict critical pairs are
convergent, then for every predicate symbol P without input arguments, L(P ) is
closed under rewriting by R, i.e. (t ∈ L(P ) ∧ t →∗

R t′) =⇒ t′ ∈ L(P ).

3.2 Normalizing Critical Pairs – normProg

If a critical pair is not convergent, we add it into Prog, and the critical pair
becomes convergent. However, in the general case, a critical pair is not normal-
ized, whereas all clauses in Prog should be normalized. In the case of CS-clauses
(i.e. without input arguments), a procedure that transforms a non-normalized
clause into normalized ones has been presented [2]. For example, P ( ̂f(g(x)),̂b) ←
Q(x̂) is normalized into {P (̂f(x1),̂b) ← P1(x̂1). P1( ̂g(x1)) ← Q(x̂1).} (P1 is a
new predicate symbol). Since only output arguments should be normalized, this
procedure still works even if there are also input arguments. As new predicate
symbols are introduced, possibly with bigger arities, the procedure may not
terminate. To make it terminate in every case, two positive integers are used:
predicate-limit and arity-limit. If the number of predicate symbols having the
same arity as P1 (including P1) exceeds predicate-limit, an existing predicate
symbol (for example Q) must be used instead of the new predicate P1. This
may enlarge Mod(Prog) in general and may lead to a strict over-approximation.
If the arity of P1 exceeds arity-limit, P1 must be replaced in the clause body
by several predicate symbols9 whose arities are less than or equal to arity-limit.
This may also enlarge Mod(Prog). See [2] for more details.

In other words normProg(H ← B) builds a set of normalized S-CF clauses N
such that Mod(Prog ∪ {H ← B}) ⊆ Mod(Prog ∪ N).

However, when starting from a CS-program (i.e. without input arguments),
it could be interesting to normalize by introducing input arguments, in order to
profit from the bigger expressiveness of S-CF programs, and consequently to get
a better approximation of the set of descendants, or even an exact computation,
like in Examples 26 and 27 presented in Section 4.

3.3 Completion

At the very beginning of Section 3, we have presented in Definition 17 the com-
pletion algorithm i.e. compR. In Sections 3.1 and 3.2, we have described how to
9 For instance, if P1 is binary and arity-limit = 1, then P1(t1, t2) should be replaced by
the sequence of atoms P2(t1), P3(t2). Note that the dependency between t1 and t2 is
lost, which may enlarge Mod(Prog). Symbols P2 and P3 are new if it is compatible
with predicate-limit. Otherwise former predicate symbols should be used instead of
P2 and P3.
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detect non-convergent critical pairs and how to convert them into normalized
clauses using normProg.

Theorem 25 illustrates that our technique leads to a finite S-CF program
whose language over-approximates the descendants obtained by a linear rewrite
system R.

Theorem 25. Function comp always terminates, and all critical pairs are con-
vergent in compR(Prog). Moreover, for each predicate symbol P without input
arguments, R∗(LProg(P )) ⊆ LcompR(Prog)(P ).

4 Examples

In this section, our technique is applied on several examples. I is the initial set
of terms and R is the rewrite system. Initially, we define an S-CF program Prog
that generates I and that satisfies the assumptions of Definition 17. For lack
of space, the examples should be as short as possible. To make the procedure
terminate shortly, we suppose that predicate-limit=1, which means that for all i,
there is at most one predicate symbol having i arguments, except for i = 1 we
allow two predicate symbols having one argument.

When the following example is dealt with synchronized languages, i.e. with
CS-programs [2, Example 42], we get a strict over-approximation of the descen-
dants. Now, thanks to the bigger expressive power of S-CF programs, we compute
the descendants in an exact way.

Example 26. Let I = {f(a, a)} and R = {f(x, y) → u(f(v(x), w(y)))}. Intu-
itively, the exact set of descendants is R∗(I) = {un(f(vn(a), wn(a))) | n ∈ N}
where un means that u occurs n times. We define Prog = {Pf ( ̂f(x, y)) ←
Pa(x̂), Pa(ŷ)., Pa(â) ← .}. Note that LProg(Pf ) = I. The run of the comple-
tion is given in Fig. 1. The reader can refer to [3] for a detailed explanation. In
Fig. 1, the left-most column reports the detected non-convergent critical pairs
and the right-most column describes how they are normalized. Note that for
the resulting program Prog, i.e. clauses appearing in the right-most column,
LProg(Pf ) = R∗(I) indeed.

The previous example could probably be dealt in an exact way using the
technique of [16] as well, since R∗(I) is a context-free language. It is not the case
for the following example, whose language of descendants R∗(I) is not context-
free (and not synchronized). It can be handled by S-CF programs in an exact
way thanks to their bigger expressive power.

Example 27. Let I = {d1(a, a, a)} and

R =

{

d1(x, y, z) 1→ d1(h(x), i(y), s(z)), d1(x, y, z) 2→ d2(x, y, z)
d2(x, y, s(z)) 3→ d2(f(x), g(y), z), d2(x, y, a) 4→ c(x, y)

}
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Pf (ẑ) ← P1(ẑ, x, y), Pa(x̂), Pa(ŷ).

P1(̂u(z), x, y) ← P1(ẑ, v(x), w(y)).

P1( ̂f(x, y), x, y) ← .

Pf ( ̂u(f(v(x), w(y)))) ← Pa(x̂), Pa(ŷ).

Pf ( ̂f(x, y)) ← Pa(x̂), Pa(ŷ).

Pa(â) ← .

Starting S-CF program

Detected non-convergent critical pairs New clauses obtained by normProg

∅

Fig. 1. Run of compR on Example 26

R∗(I) is composed of all terms appearing in the following derivation:

d1(a, a, a) 1→n d1(hn(a), in(a), sn(a)) 2→ d2(hn(a), in(a), sn(a))
3→k d2(fk(hn(a)), gk(in(a)), sn−k(a)) 4→ c(fn(hn(a)), gn(in(a))) .

Note that the last rewrite step by rule 4 is possible only when k = n. The run
of the completion on this example is given in Fig. 2. Black arrows means that
the non-convergent critical pair is directly added to Prog since it is already
normalized. The reader can find a full explanation of this example in [3].

Note that the subset of descendants d2(fk(hn(a)), gk(in(a)), sn−k(a)) can
be seen (with p = n − k) as d2(fk(hk+p(a)), gk(ik+p(a )), sp(a)). Let Prog′ be
the S-CF program composed of all the clauses except the blue one occurring
in the right-most column in Fig. 2. Thus, the reader can check by himself that
LProg′(Pd) is exactly R∗(I).

5 Further Work

Computing approximations more precise than regular approximations is a first
step towards a verification technique. However, there are at least two steps before
claiming this technique as a verification technique: 1) automatically handling the
choices done during the normalization process and 2) extending our technique
to any rewrite system. The quality of the approximation is closely related to
those choices. On one hand, it depends on the choice of the predicate symbol
to be reused when predicate-limit is reached. On the other hand, the choice of
generating function-symbols as output or as input is also crucial. According to
the verification context, some automated heuristics will have to be designed in
order to obtain well-customized approximations.

Ongoing work tends to show that the linear restriction concerning the rewrite
system can be tackled. A non right-linear rewrite system makes the computed
S-CF program copying. Consequently, Theorem 24 does not hold anymore. To get
rid of the right-linearity restriction, we are studying the transformation of a copy-
ing S-CF clause into non-copying ones that will generate an over-approximation.
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Pd( ̂d1(x, y, z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ).
Pa(â) ← .

Pd( ̂d1(h(x), i(y), s(z))) ← Pa(x̂), Pa(ŷ), Pa(ẑ)
Pd( ̂d1(x, y, z)) ← P1(x̂, ŷ, ẑ).

P1(̂h(x), ̂i(y), ̂s(z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ).

Pd( ̂d2(x, y, z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ).

Pd( ̂d1(h(x), i(y), s(z))) ← P1(x̂, ŷ, ẑ) P1(̂h(x), ̂i(y), ̂s(z)) ← P1(x̂, ŷ, ẑ).

Pd( ̂d2(x, y, z)) ← P1(x̂, ŷ, ẑ).

Pd( ̂c(x, y)) ← Pa(x̂), Pa(ŷ).

Pd( ̂d2(f(h(x)), g(i(y)), z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ)
Pd( ̂d2(x, y, z)) ← P2(x̂, ŷ, ẑ, x

′, y′, z′), Pa(̂x′), Pa(̂y′), Pa(̂z′).

P2( ̂f(x), ̂g(y), ẑ, x
′, y′, z′) ← P2( x̂, ŷ, ẑ, h(x′), i(y′), z′)

P2(x̂, ŷ, ẑ, x, y, z) ← .

P2( ̂f(x), ̂g(y), ẑ, x
′, y′, z′) ← P2(x̂, ŷ, ẑ1, h(x

′), i(y′), z′1),

Pd( ̂d2(f(h(x)), g(i(y)), z)) ← P1(x̂, ŷ, ẑ)
Pd( ̂d2(x, y, z))←P2(x̂, ŷ, ẑ, x

′, y′, z′),

Pd( ̂c(f(x), g(y))) ← P2(x̂, ŷ, ẑ, h(x
′), i(y′), z′),

P3( ̂f(x), ̂g(y))←P2(x̂, ŷ, ẑ, h(x
′), i(y′), z′),

Pd( ̂c(x, y)) ← P3(x̂, ŷ).

P2(x̂1, ŷ1, ẑ, h(x
′
1), i(y

′
1), z

′)

A cycle is detected – removeCycles replaces the

blue clause by the red one.

Detected non-convergent critical pairs New clauses obtained by normProg

Starting S-CF program

Pa(̂x′), Pa(̂y′).

P1(̂x′, ̂y′, ̂z′).

Pa(̂x′), Pa(̂y′).

Fig. 2. Run of compR on Example 27

On the other hand, to get rid of the left-linearity restriction, we are studying a
technique based on the transformation of any Horn clause into CS-clauses [17].
However, the method of [17] does not always terminate. We want to ensure
termination thanks to an additional over-approximation.
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