
Over-Approximating Terms Reachable by
Context-Sensitive Rewriting

Nirina Andrianarivelo and Pierre Réty

LIFO - Université d’Orléans, B.P. 6759, 45067 Orléans cedex 2, France
{Nirina.Andrianarivelo, Pierre.Rety}@univ-orleans.fr

Abstract. For any left-linear context-sensitive term rewrite system and
any regular language of ground terms I, we build a finite tree automa-
ton that recognizes a superset of the descendants of I, i.e. of the terms
reachable from I by context-sensitive rewriting.

1 Introduction

There is an increasing need for reliable methods to check security protocols and
computer programs (see [4, 5] for a survey). Such verification problems can often
be encoded with rewrite rules, and reduced to reachability problems [3]. Given
a set of rewrite rules R, a set of ground terms I, and a set of undesirable ground
terms BAD, it consists in computing the set (denoted R∗(I)) of ground terms
that are reachable from I by R, and checking that R∗(I) ∩ BAD = ∅.

Example 1. Let R = {f(x)→ f(f(x)), a→ b, c→ a}, I = {f(a)}, BAD = {c}.
Then R∗(I) = {f+(a), f+(b)}, where f+ denotes several occurrences of f (at
least one). Here the elements of BAD are not reachable, i.e. R∗(I) ∩ BAD = ∅.

Several methods have been proposed to compute R∗(I) exactly, or to over-
approximate it (see [11] for a survey). However, ordinary term rewriting is not
always powerful enough. Indeed, the operational semantics of functional pro-
grams can be expressed using Context-Sensitive Term Rewrite Systems (CS-
TRS), as described in [9, 16]. In this framework, a set of argument numbers
µ(f) is associated to each function symbol f , which indicates the arguments
of f allowed to be reduced by rewriting. For instance, consider Example 1
again and let µ(f) = ∅. In this case, for each term of the form t = f(. . .), it
is forbidden to rewrite the strict subterms of t. Thus, using context-sensitive
rewriting, R∗µ(I) = {f+(a)}. Now consider that the set of undesirable terms is

BAD′ = {f+(b)}, then R∗µ(I) ∩ BAD′ = ∅ whereas R∗(I) ∩ BAD′ 6= ∅.
In this paper, we compute an over-approximation (say App) of R∗µ(I), using

a finite tree automaton (i.e. a regular language), assuming that R is left-linear
and I is regular. Thus, if App ∩ BAD = ∅, we are sure that R∗µ(I) ∩ BAD = ∅.
Our work is both an extension of [15], where R∗µ(I) is computed in an exact way
assuming stronger restrictions (R is linear and right-shallow1), and an extension

1 I.e. in the rewrite rule right-hand-sides, every variable occurs at depth at most 1.

2 Nirina Andrianarivelo and Pierre Réty

of the completion of tree automata [10], in order to take µ into account and to
avoid computing descendants forbidden by µ (as much as possible).

Let us outline the main idea, using Example 1 again. Roughly2:

1. Our starting point is composed of the tree automaton
A = (Σ,Q,Qf , ∆) s.t. Σ = {f, a, b, c}, Q = {qa, q} (states), Qf = {q} (final
state), ∆ = {a→ qa, f(qa)→ q} (transitions), which recognizes I = {f(a)},
and the rewrite system R = {f(x)→ f(f(x)), a→ b, c→ a}.

2. Initialization. We transform ∆ by using the fact that µ(f) = ∅. For this,
we mark positions forbidden by µ, using a a prime mark (priming). A prime
means that no rewrite step should be applied at this position. No prime
means that a rewrite step (if any) is allowed. Thus we replace the transition
f(qa)→ q by f(q′a)→ q, and add the transition a→ q′a so that the language
recognized by the automaton is unchanged.
Now ∆ = {a→ qa, a→ q′a, f(q′a)→ q}, and we create Q′ = {q′a}.

3. Completion. To get descendants, we compute (so-called) critical pairs be-
tween transitions u→ s ∈ ∆ and rewrite rules of R, only if s ∈ Q. If s ∈ Q′,
i.e. s has a prime, no critical pair is computed since no rewrite step is allowed
at this position.

Computing a critical pair between a→ qa and a→ b generates the transition
b→ qa, which is added into ∆.

4. Computing a critical pair between f(q′a)→ q and f(x)→ f(f(x)) generates
the transition f(f(q′a)) → q. However, f(f(q′a)) is not shallow. Then we
normalize3 this transition into f(q′1)→ q, f(q′a)→ q′1, which are added into
∆. The new state q′1 has a prime since it occurs at a position forbidden by µ.
Now the automaton also recognizes f(f(a)), and does not recognize f(f(b)),
which is not a context-sensitive descendant.

5. There are some more critical pairs, which add some more transitions into ∆.
Finally, the completion process stops with ∆ =

{a→ qa, a→ q′a, f(q′a)→ q, b→ qa, f(q′1)→ q, f(q′a)→ q′1, f(q′1)→ q′1}

Now the current automaton recognizes {f+(a)}, i.e. R∗µ(I), and does not
recognize the elements of {f+(b)}, which are not context-sensitive descen-
dants.

The paper is organized as follows. The formal preliminary notions are given in
Section 2. Our method for over-approximating context-sensitive descendants is
detailed in Section 3, and full examples are given in Section 4. Then Section 5
speaks about related work, and some ideas for further work are discussed in
Section 6. All proofs are in [1].

2 Some unnecessary transitions of the current automaton are missing.
3 It consists in flattening the left-hand-side of the transition by using intermediate

states.

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 3

2 Preliminaries

Consider a finite ranked alphabet Σ and a set of variables Var. Each symbol
f ∈ Σ has a unique arity, denoted by ar(f). The notions of first-order term,
position and substitution are defined as usual. Given σ and σ′ two substitutions,
σ ◦σ′ denotes the substitution such that for any variable x, σ ◦σ′(x) = σ(σ′(x)).
TΣ denotes the set of ground terms (without variables) over Σ. For a term t,
Var(t) is the set of variables of t, Pos(t) is the set of positions of t, and ε is
the root position. For p ∈ Pos(t), t(p) is the symbol of Σ ∪ Var occurring at
position p in t, and t|p is the subterm of t at position p. For p, p′ ∈ Pos(t), p < p′

means that p occurs in t strictly above p′. The term t is linear if each variable
of t occurs only once in t. The term t[t′]p is obtained from t by replacing the
subterm at position p by t′.

A rewrite rule is an oriented pair of terms, written l→ r. We always assume
that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a finite set of
rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The rewrite
relation →R is defined as follows: t →R t′ if there exist a non-variable position
p ∈ Pos(t), a rule l→ r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ = t[θ(r)]p
(also denoted t →p

R t′). →∗R denotes the reflexive-transitive closure of →R. t′

is a descendant of t if t →∗R t′. If I is a set of ground terms, R∗(I) denotes the
set of descendants of elements of I. The rewrite rule l → r is left (resp. right)
linear if l (resp. r) is linear. R is left (resp. right) linear if all its rewrite rules
are left (resp. right) linear. R is linear if R is both left and right linear. l→ r is
right-shallow if r is shallow, i.e. every variable of r occurs at depth at most 1.

A context-sensitive rewrite relation is a sub-relation of the ordinary rewrite
relation in which rewritable positions are indicated by specifying arguments of
function symbols. A mapping µ : Σ → P (IN) is said to be a replacement map (or
Σ-map) if µ(f) ⊆ {1, ..., ar(f)} for all f ∈ Σ. A context-sensitive term rewriting
system (CS-TRS) is a pair R = (R,µ) composed of a TRS and a replacement
map. The set of µ-replacing positions4 Posµ(t) (⊆ Pos(t)) is recursively defined:
Posµ(t) = {ε} if t is a constant or a variable, otherwise Posµ(f(t1, . . . , tn)) =
{ε} ∪ {i.p | i ∈ µ(f), p ∈ Posµ(ti)}. The rewrite relation induced by a CS-TRS
R is defined: t ↪→R t′ if t→p

R t
′ for some p ∈ Posµ(t). The set of descendants of

I by context-rewriting according to the CS-TRS R = (R,µ) is denoted R∗µ(I).
A (bottom-up) finite tree automaton is a quadruple A = (Σ,Q,Qf , ∆) where

Q is the set of states, Qf ⊆ Q is the set of final states, and ∆ is a set of transitions
of the form t→ q where t ∈ TΣ∪Q and q ∈ Q. A transition is normalized if it is
of the form f(q1, . . . , qn)→ q where f ∈ Σ and q1, . . . , qn, q ∈ Q, or of the form
q1 → q (empty transition, also called epsilon transition). A is normalized if all
transitions in ∆ are normalized. Sets of states will be denoted by letters Q,S,D,
and states by q, s, d.

The rewrite relation induced by ∆ is denoted by→∆ or→A. A ground term
t is recognized by A into q if t →∗∆ q. Let L(A, q) = {t ∈ TΣ | t →∗∆ q}. The
language recognized by A is L(A) = ∪q∈Qf

L(A, q). A set I of ground terms is

4 Also called positions allowed by µ.

4 Nirina Andrianarivelo and Pierre Réty

regular if there exists a finite automaton A s.t. I = L(A). A Q-substitution σ is
a substitution s.t. ∀x ∈ Dom(σ), σ(x) ∈ Q.

3 Computing Context-Sensitive Descendants

3.1 Closure under Context-Sensitive Rewriting

The main idea is: given a context-sensitive rewrite system (R,µ), we consider a
set of states Q to recognize subterms at positions allowed by µ (i.e. rewritable
positions), and another set Q′ for those forbidden by µ. To compute context-
sensitive descendants, rewrite steps will be applied to (sub)-terms recognized
into states of Q, and not on those recognized into states of Q′.

Definition 1. A context-sensitive automaton A = (Σ,Q ∪ Q′, Qf , ∆, rm′) is
composed of a tree automaton and a mapping rm′ such that Q∩Q′ = ∅, Qf ⊆ Q,
and rm′ : Q′ → Q is an injective mapping. rm′ stands for ’remove primes’.

We will often use q, q1, q2, . . . for elements of Q, and q′, q′1, q
′
2, . . . for elements

Q′, and we will write rm′(q′) = q and rm′(q′i) = qi.

Definition 2. We extend rm′ to terms, so that rm′ : TΣ∪Q∪Q′ → TΣ∪Q∪Q′ , by:

- rm′(q) = q if q ∈ Q,

- and rm′(f(t′1, . . . , t
′
n)) = f(t1, . . . , tn) such that ∀i ti = rm′(t′i) if i ∈ µ(f)

ti = t′i otherwise

Note that rm′ does not remove all primes. Actually, rm′ removes primes (if
any) from states occurring at positions allowed by µ, so that rewrite steps are
computed. For example, if µ(f) = {1}, then rm′(f(q′1, q

′
2)) = f(q1, q

′
2).

For computing context-sensitive descendants, a context-sensitive automaton
should satisfy a compatibility property (with µ).

Definition 3. Let A = (Σ,Q ∪Q′, Qf , ∆, rm′) be a context-sensitive automa-
ton. A is µ-compatible if ∀(t→ s) ∈ ∆, (rm′(t)→ rm′(s)) ∈ ∆.

Example 2. let Q = {qa, qf}, Q′ = {q′a}, Qf = {qf}, ∆ = {a→ q′a, f(q′a)→ qf},
and assume that rm′(q′a) = qa and µ(f) = {1}. This automaton is not µ-
compatible because a→ qa and f(qa)→ qf are missing in ∆.

Lemma 1. If A is µ-compatible,
∀t ∈ TΣ∪Q∪Q′ ,∀s ∈ Q ∪Q′, (t→∗∆ s =⇒ rm′(t)→∗∆ rm′(s))

The notion of critical pair is at the heart of the technique. A critical pair is
a way to detect a possible rewrite step issued from a term t ∈ L(A, q), by a
rewrite rule l → r. To check that this rewrite step is allowed by µ, we suppose
that q ∈ Q, i.e. q 6∈ Q′. A convergent critical pair means that the rewrite step
is already handled i.e. if t→l→r s then s ∈ L(A, q). Consequently, the language
of a normalized automaton having only convergent critical pairs is closed under
rewriting.

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 5

Definition 4. Let l→ r be a rewrite rule and σ be a (Q∪Q′)-substitution such
that σl→∗∆ q and q ∈ Q. Then (rm′(σr), q) is called critical-pair (CP for short).
The critical pair is said convergent if rm′(σr)→∗∆ q.

Example 3. Consider Example 2 again, and the rewrite rule f(x) → g(x) with
µ(g) = {1}. Then (g(qa), qf) is a critical pair, which is not convergent. Note that
L(A) is not closed by context-sensitive rewriting since f(a) ∈ L(A) whereas
g(a) 6∈ L(A).

The use of rm′ in Definition 4 is crucial if a position forbidden by µ becomes
allowed after a rewrite step. For instance, consider the rewrite system
{h(x) → i(x), c → d} with µ(h) = ∅ and µ(i) = {1}. Then h(c) → i(c) → i(d)
whereas ¬(h(c)→ h(d)). So, within h(c), c should be recognized into a state of
Q′ (say q′c), whereas within i(c), c should be recognized into a state of Q (say
qc). The migration of q′c into qc is achieved thanks to rm′.

To get closure under context-sensitive rewriting, the automaton should be µ-
compatible to take µ into account, and normalized. Indeed, if it is not normalized,
we may have for example h(σl)→∗∆ q whereas ¬(∃q1 ∈ Q, σl →∗∆ q1), i.e. there
is no critical pair to take the rewrite step by l→ r into account.

Theorem 1. Let (R,µ) be a left-linear context-sensitive rewrite system, and A
be a µ-compatible normalized automaton.
If all critical pairs are convergent, then L(A) is closed by context-sensitive rewrit-
ing, i.e. (t ∈ L(A) ∧ t ↪→∗(R,µ) t

′) =⇒ t′ ∈ L(A).

Example 4. Consider Example 2 again, and the rewrite rule a → b. All critical
pairs are convergent since there are no critical pairs. However f(a) ∈ L(A) and
f(a) ↪→(R,µ) f(b), whereas f(b) 6∈ L(A). This comes from the fact that A is not
µ-compatible.
Now, if ∆ is replaced by ∆′ = {a → q′a, a → qa, b → qa, f(qa) → qf}, the
automaton is µ-compatible. Considering the rewrite rule a → b, there is one
critical pair : (b, qa), which is convergent. Thus f(a) ∈ L(A), f(a) ↪→(R,µ) f(b),
and f(b) ∈ L(A).

3.2 Normalization

Consider a non-convergent critical pair (t, q). If we add the transition t→ q into
∆, the critical pair becomes convergent. Unfortunately, the transition t → q is
not necessarily normalized.

Example 5. Consider R = {f(x) → g(h(x)), a → b}, µ(f) = {1}, µ(g) = ∅,
µ(h) = {1}, and an automaton defined by Q = {qa, qf}, Qf = {qf}, and ∆ =
{a→ qa, f(qa)→ qf}. Note that L(A) = {f(a)}. From the transition f(qa)→ qf
and the rewrite rule f(x)→ g(h(x)), we get the critical pair (g(h(qa)), qf). The
corresponding transition g(h(qa))→ qf is not normalized.

To get closure under rewriting, all transitions should be normalized. We give an
algorithm to transform a pair (t, s) into normalized transitions. Note that if t is
a state, the algorithm will return empty transitions (which are normalized).

6 Nirina Andrianarivelo and Pierre Réty

Input : a pair (t, s) s.t t ∈ TΣ∪Q∪Q′ and s ∈ Q ∪Q′
Output : a set of normalized transitions

function NormA(t, s)

1. If the transition t→ s is normalized, return {t→ s} ∪ {rm′(t)→ rm′(s)}
2. else let t = f(t1, . . . , tn), and J = {j ∈ {1, . . . , n} | tj 6∈ Q ∪Q′}

2.1. for each i ∈ {1, . . . , n}, let si be a state defined by
2.1.1. if ti ∈ Q ∪Q′ then si = ti
2.1.2. else

i) if s ∈ Q and i ∈ µ(f)
ii) then either choose si ∈ Q, or si is a new state and add si to Q
iii) else either choose si ∈ Q′, or si (and qi) are new states s.t.

rm′(si) = qi and add si to Q′ (and qi to Q)
2.2. return
{f(s1, . . . , sn)→ s}∪{rm′(f(s1, . . . , sn))→ rm′(s))}∪{∪j∈JNormA(tj , sj)}

In the previous algorithm, whenever a transition is generated, a transition ob-
tained by applying rm′ on both sides is also generated. This is for preserving
the µ-compatibility of the automaton. On the other hand, the non-determinism
of the algorithm (Items ii and iii) is ”don’t care”, i.e. only one choice has to
be achieved. For any choice, the normalization algorithm terminates. However,
introducing new states may create new critical pairs, whose normalization may
also create new states and new critical pairs, and the global completion pro-
cess may not terminate. This is why choosing si among the existing states is
sometimes necessary to make completion terminate. But it may lead to a strict
over-approximation of the descendants.

Example 6. Consider Example 5 again with the critical pair (g(h(qa)), qf). Recall
that µ(g) = ∅, µ(h) = {1}.
Running NormA(g(h(qa)), qf) goes through the case iii), and two new states q′1,
q1 are created s.t. rm′(q′1) = q1. Moreover q′1 is added to Q′ whereas q1 is added
to Q. Then NormA(g(h(qa)), qf) returns (note that rm′(g(q′1)) = g(q′1)):

{g(q′1)→ qf} ∪ {g(q′1)→ qf} ∪ NormA(h(qa), q′1)

Since the transition h(qa)→ q′1 is already normalized, NormA(h(qa), q′1) returns:

{h(qa)→ q′1} ∪ {h(qa)→ q1}

Finally we get the set of transitions {g(q′1)→ qf , h(qa)→ q′1, h(qa)→ q1}.

Lemma 2. t→∗NormA(t,s) s, i.e. the pair (t, s) is convergent.

3.3 Initialization

As in [15], we first introduce non-final states and transitions to recognize the
ground subterms of the rewrite rule right-hand-sides. For a term t, let PosG(t) =

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 7

{p ∈ Pos(t) | p 6= ε ∧ V ar(t|p) = ∅}. Let PosGout(t) be the outermost elements
of PosG(t), i.e. PosGout(t) = {p ∈ PosG(t) | ¬(∃p′ ∈ PosG(t), p′ < p)}.

Given (R,µ), we introduce the set of states QR = {qr,p | l → r ∈ R ∧
p ∈ PosG(r)} and Q′R = {q′r,p | l → r ∈ R ∧ p ∈ PosG(r)} s.t. rm′(q′r,p) =
qr,p, and the transitions ∆R = ∪l→r∈R ∪p∈PosG(r) {r(p)(q′r,p.1, . . . , q′r,p.n)→ q′r,p,
rm′(r(p)(q′r,p.1, . . . , q

′
r,p.n)) → qr,p}. Note that the transitions with rm′ are for

ensuring µ-compatibility.
From a normalized automatonA0 = (Σ,Q0, Qf , ∆0) and a left-linear context-

sensitive rewrite system (R,µ), a µ−compatible normalized context-sensitive au-
tomaton A = (Σ,Q ∪Q′, Qf , ∆, rm′) that recognizes the same language as A0,
is built as follows:

function Init(R,µ)(A0)

1. for each q ∈ Q0, a new state q′ (also denoted add′(q)) is created, and let
rm′(q′) = q

2. extend add′ to trees of TΣ∪Q0 : add′(f(t1, . . . , tn)) = f(add′(t1), . . . , add′(tn))
3. let Q = Q0 ∪QR and Q′ = {add′(q) | q ∈ Q0} ∪Q′R
4. let ∆ = ∪(t→q)∈∆0

({add′(t)→ add′(q)} ∪ {rm′(add′(t))→ q}) ∪∆R

5. return A = (Σ, Q ∪Q′, Qf , ∆, rm′)

In Step 4, {rm′(add′(t)) → q} is for ensuring µ-compatibility (note that q =
rm′(add′(q))).

Example 7. Let R = {f(x) → g(x)} and µ(f) = ∅, µ(h) = {1}. Note that
QR = Q′R = ∆R = ∅.
Let A0 s.t. Q0 = {qa, qf}, Qf = {qf}, ∆0 = {a→ qa, f(qa)→ qf , h(qa)→ qf}.
The language recognized by A0 is L(A0) = {f(a), h(a)}.
Then Init(R,µ)(A0) returns the automaton A s.t. Q = {qa, qf}, Q′ = {q′a, q′f},
rm′(q′a) = qa, rm′(q′f) = qf , and ∆ = {a → q′a, a → qa, f(q′a) → q′f , f(q′a) →
qf , h(q′a)→ q′f , h(qa)→ qf}. Note that L(A) = {f(a), h(a)} = L(A0).

Lemma 3. A is µ-compatible and L(A0) ⊆ L(A).

Lemma 4. ∀t ∈ TΣ , ∀s ∈ (Q ∪Q′)\(QR ∪Q′R), (t→∗∆ s =⇒ t→∗∆0
rm′(s)).

Consequently L(A) ⊆ L(A0).

3.4 Simplification

Roughly, the simplification step consists in replacing each outermost ground
subterm of a given rewrite rule right-hand-side r, by its corresponding state in
QR or Q′R. Actually, a simplification step simplifies a critical pair.

function Simplify(rm′(σr), q)

1. let us write PosGout(r) = {p1, . . . , pn}
2. then return (rm′(σ(r)[q′r,p1]p1 · · · [q′r,pn]pn), q)

8 Nirina Andrianarivelo and Pierre Réty

Example 8. R= {h(x) → r=f(x, g(a))}, µ(f) = {1, 2}, µ(g) = {1}. The initial-
ization gives ∆R = {a → q′r,2.1, a → qr,2.1, g(q′r,2.1) → q′r,2, g(qr,2.1) → qr,2}.
Let σ = (x/q1). So Simplify(σ(r), q) = Simplify(f(q1, g(a)), q) returns the pair
(f(q1, qr,2), q), and one has g(a) →∗∆R

qr,2. Note that the corresponding transi-
tion f(q1, qr,2)→ q is normalized.

More generally, if r is shallow and let (t, q) = Simplify(rm′(σr), q), then the
transition t → q is normalized. On the other hand, if PosGout(r) = ∅, then
Simplify(rm′(σr), q) = (rm′(σr), q).

3.5 Reduction

Le (t, s) be a pair, whose corresponding transition t→ s is not normalized, and
suppose that t is reducible into u by non-empty transitions of the automaton.
Since the size of u is less than the size of t, it is easier to normalize the pair (u, s)
instead of (t, s). The replacement of (t, s) by (u, s) is called reduction.
function ReduceA(t, s)

1. if t→ s is not normalized
and there exists a non-empty transition (t1 → s1) ∈ ∆ s.t. t→[p, t1→s1] u

and [(p ∈ Posµ(t) ∧ s1 ∈ Q) ∨ (p 6∈ Posµ(t) ∧ s1 ∈ Q′)]
2. then return ReduceA(u, s)
3. else return (t, s)

In Step 1, if there exist several transitions like t1 → s1 that allow to reduce t,
then one of them is chosen arbitrarily.

Example 9. ∆ = {s(q1)→ q2, g(q2, q3)→ q4}, µ(f) = µ(s) = {1}, µ(g) = {1, 2}.
Then ReduceA(f(g(s(q1), q3)), q) = (f(q4), q).

3.6 Completion

The main algorithm of our method is presented here.

Input: a normalized automaton A0 = (Σ,Q0, Qf , ∆0) and a left-linear context-
sensitive rewrite system (R,µ).
Output: a context-sensitive automaton A such that R∗µ(L(A0)) ⊆ L(A).

The main two steps of the algorithm are:

1. A = Init(R,µ)(A0). Let us write A = (Σ,Q ∪Q′, Qf , ∆, rm′).
2. while there exists a non-convergent critical pair (cpl, cpr) in A do

2.1. ∆ = ∆ ∪ NormA(ReduceA(Simplify(cpl, cpr)))

Theorem 2. Let (R,µ) be a left-linear context-sensitive rewrite system, and
A0 be a normalized automaton. When the algorithm stops, L(A) is closed by
context-sensitive rewriting and R∗µ(L(A0)) ⊆ L(A).

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 9

Note that it is always possible to make completion terminate, for example by
fixing a bound for the number of states. And if this bound is reached, NormA
should re-use existing states instead of creating new ones.

However, if the rewrite system is right-shallow, the transition obtained after
applying Simplify is already normalized (see Section 3.4). Then ReduceA and
NormA do nothing, and no new states are introduced. Therefore, the completion
algorithm will stop and generate an automaton similar to that of [15]. Conse-
quently, using the result of [15] we get:

Corollary 1. If the context-sensitive rewrite system is linear and right-shallow,
then the completion algorithm stops and generates the context-sensitive descen-
dants in an exact way.

4 Examples

The following example shows the role of the states with primes, and of the
simplification step.

Example 10. R = {h(x)→ r=f(x, h(b))}, µ(h) = µ(f) = µ(s) = ∅.
Let A0 be the automaton defined by Q0 = {qa, qf}, Qf = {qf}, and ∆0 =
{a → qa, s(qa) → qa, h(qa) → qf}. Note that L(A0) = {h(sn(a)) | n ∈ IN} and
R∗µ(L(A0)) = {h(sn(a)), f(sn(a), h(b)) | n ∈ IN} where sn denotes n occurrences
of s.

The initialization step gives:
QR = {qr,2, qr,2.1}, Q′R = {q′r,2, q′r,2.1}, rm′(q′r,2.1) = qr,2.1, rm′(q′r,2) = qr,2,
∆R = {b→ q′r,2.1, b→ qr,2.1, h(q′r,2.1)→ q′r,2, h(q′r,2.1)→ qr,2},
Q′ = {q′a, q′f}, rm′(q′a) = qa, rm′(q′f) = qf ,
∆ = {a→ q′a, a→ qa, s(q

′
a)→ q′a, s(q

′
a)→ qa, h(q′a)→ q′f , h(q′a)→ qf} ∪∆R.

With h(q′a) → qf and the rewrite rule, we get the critical pair (f(q′a, h(b)), qf).
Then Simplify(f(q′a, h(b)), qf) = (f(q′a, q

′
r,2), qf), and the normalization will add

the transition f(q′a, q
′
r,2)→ qf to ∆.

h(q′r,2.1)→ qr,2 and the rewrite rule generate the critical pair (f(q′r,2.1, h(b)), qr,2).
Then Simplify(f(q′r,2.1, h(b)), qr,2) = (f(q′r,2.1, q

′
r,2), qr,2), and the normalization

will add the transition f(q′r,2.1, q
′
r,2)→ qr,2 to ∆.

There is no other critical pair. The process stops and the automaton generates
{h(sn(a)), f(sn(a), h(b)) | n ∈ IN} = R∗µ(L(A0)). Note that f(a, f(b, h(b))) ∈
R∗(L(A0)) whereas f(a, f(b, h(b))) 6∈ R∗µ(L(A0)), i.e. R∗µ(L(A0)) 6= R∗(L(A0)),
and notice that the automaton generates only the elements of R∗µ(L(A0)).

In this example, R is right-shallow, and our completion computes an automa-
ton similar to that of [15]5.

The following rewrite system is not right-shallow, and shows the role of the
reduction step.

5 In [15], a tilde is used instead of a prime, but tilde over a state means that a rewrite
step is allowed, whereas in our approach a prime means that rewriting is forbidden.

10 Nirina Andrianarivelo and Pierre Réty

Example 11. R = {f(x)→ s(f(x))}, µ(f) = µ(s) = {1}. Let A0 be the automa-
ton defined by Q0 = {qa, qf}, Qf = {qf}, and ∆0 = {a→ qa, f(qa)→ qf}. Note
that L(A0) = {f(a)} and R∗µ(L(A0)) = {sn(f(a)) | n ∈ IN} where sn denotes n
occurrences of s.

The initialization step gives QR = Q′R = ∆R = ∅, Q′ = {q′a, q′f}, rm′(q′a) =
qa, rm

′(q′f) = qf , ∆ = {a→ q′a, a→ qa, f(q′a)→ q′f , f(qa)→ qf}.
With f(qa)→∆ qf and f(qa)→R s(f(qa)), we get the critical pair (s(f(qa)), qf).
However s(f(qa)) →∆ s(qf), i.e. ReduceA(s(f(qa)), qf) = (s(qf), qf), and the
normalized transition s(qf) → qf is added to ∆. No more critical pairs are
detected, and the algorithm stops. Now the automaton generates {sn(f(a)) |
n ∈ IN} = R∗µ(L(A0)).

If ReduceA were not applied, then the critical pair (s(f(qa)), qf) would be
normalized into the transitions s(q1)→ qf , f(qa)→ q1. But there would be one
more critical pair due to f(qa) → q1, which would add some more transitions,
and so on. In this case, if the normalization process always introduces new states,
the completion process would not terminate.

The following rewrite system is not right-shallow, and shows what happens
when a subterm forbidden by µ becomes allowed by µ after applying a rewrite
step.

Example 12.
Let R = {f(x, y) → h(s(x), s(y))}, with µ(f) = ∅, µ(h) = {1}, µ(s) = {1}.
Let A0 defined by Q0 = {q}, Qf = {q}, and ∆0 = {a → q, f(q, q) → q}. Thus
L(A0)={a, f(a, a), f(f(a, a), a), f(a, f(a, a)), f(f(a, a), f(a, a)) . . .}.R∗µ(L(A0))
is obtained from the terms of L(A0), by replacing some occurrences of f by the
pattern h(s(), s()) along the left branch, starting from the root. For example
h(s(a), s(a)), h(s(f(a, a)), s(a)), h(s(h(s(a), s(a))), s(a)), h(s(f(a, a)), s(f(a, a)))
are in R∗µ(L(A0)), whereas h(s(a), h(s(a), s(a))) is not in R∗µ(L(A0)).
The initialization step gives QR = Q′R = ∆R = ∅, and

Q′ = {q′}, rm′(q′) = q, and
∆ = {a→ q′, a→ q, f(q′, q′)→ q′, f(q′, q′)→ q}.

Using f(q′, q′)→ q and f(x, y)→ h(s(x), s(y)), we get the critical pair
(rm′(h(s(q′), s(q′))), q) = (h(s(q), s(q′)), q). This critical pair is not convergent,
and cannot be simplified nor reduced. It is not normalized. Then NormA creates
the transitions h(q1, q

′
1)→ q, s(q)→ q1, s(q

′)→ q′1, and add them to ∆.
No more critical pair is detected, then the algorithm stops with ∆ =

{a→ q′, a→ q, f(q′, q′)→ q′, f(q′, q′)→ q, h(q1, q
′
1)→ q, s(q)→ q1, s(q

′)→ q′1}

Now, one can see that L(A) = R∗µ(L(A0)).

In the previous examples L(A) = R∗µ(L(A0)). However, one may have L(A) ⊃
R∗µ(L(A0)), i.e. a strict over-approximation.

Example 13. Let I = {f(a, b)} and R = {f(x, y) → f(s(x), p(y)), b → c}, with
µ(f) = µ(s) = µ(p) = ∅. Then R∗µ(I) = {f(sn(a), pn(b)) | n ∈ IN} is not a

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 11

regular tree language and then it cannot be expressed by a tree automaton. So
completion will necessarily lead to a strict over-approximation, by losing the
link between the number of s and the number of p. Nevertheless, the elements
of {f(sn(a), pn(c))}, which are in R∗(I) but not in R∗µ(I), will not be generated.

5 Related Work

To the best of our knowledge, the only method to express descendants by reg-
ular languages in the framework of context-sensitive rewriting, is that of Sakai
et al. [15]. This method returns a tree automaton that recognizes the set of de-
scendants in an exact way (it is not an over-approximation), assuming that the
rewrite system is linear and right-shallow. This is why this method cannot deal
with Examples 11 and 12, whose rewrite systems are not right-shallow.

Genet et al. compute an over-approximation of the descendants without
strategy [10], or according to the innermost strategy [13]. They do not consider
context-sensitive rewriting.

Some results of Falke et al. [6, 8] also deal with context-sensitive rewriting,
but they do not study reachability problems. They study termination problems
and propose a method for proving inductive theorems. The termination problems
are based on dependency pairs, and the inductive theorem prover is based on
the inference system of Reddy [7].

6 Further work

With our method, and more generally with every method based on the comple-
tion of tree automata, the quality of the approximation highly depends on the
way the completion is achieved. When normalizing critical pairs, existing states
may be used instead of introducing new ones. This helps to make completion ter-
minate. However, the choice of the states to be re-used is crucial for the quality of
the approximation. Some heuristics have been developed for ordinary rewriting.
Recently, an heuristic using a set of equations E has been presented [12], and an
upper-bound for the approximation is given, which allows to estimate the quality
of the approximation. We intend to extend these heuristics to context-sensitive
completion, so that they could be used within our method.

Another interesting problem to study is: does our method take the map µ into
account in a perfect way? In other words, may our method generate descendants
that are not context-sensitive descendants? If the re-use of existing states in
the normalization process is allowed, we get an over-approximation, and wrong
context-sensitive descendants (that are ordinary descendants) may be generated.
What about if the re-use of existing states is forbidden?

When considering ordinary rewriting, the set of descendants of a set of terms
I is not a regular tree language, even if I is, except if strong restrictions are as-
sumed over the rewrite system. It is the same when considering context-sensitive
rewriting. This is why we cannot compute the descendants in an exact way, ex-
cept for some particular cases. The use of tree languages more expressive than

12 Nirina Andrianarivelo and Pierre Réty

the regular ones, could lead to more precise computations. It has already been
studied for ordinary rewriting [14, 2], but not for context-sensitive rewriting.

References

1. N. Andrianarivelo and P. Réty. Over-Approximating Terms Reachable by Context-
Sensitive Rewriting (full version). Technical Report RR-2015-02, LIFO, Université
d’Orléans, 2015.

2. Y. Boichut, J. Chabin, and P. Réty. Over-approximating descendants by syn-
chronized tree languages. In Proceedings of the International Conference RTA,
volume 21 of LIPIcs, pages 128–142, 2013.

3. Y. Boichut, T. Genet, T. Jensen, and L. Le Roux. Rewriting Approximations for
Fast Prototyping of Static Analyzers. In Proceedings of the International Confer-
ence RTA, volume 4533 of LNCS, pages 48–62. Springer, 2007.

4. V. Cortier, S. Delaune, and P. Lafourcade. A Survey of Algebraic Properties Used
in Cryptographic Protocols. Journal of Computer Security, 14(1):1–43, 2006.

5. V. D’Silva, D. Kroening, and G. Weissenbacher. A Survey of Automated Tech-
niques for Formal Software Verification. Computer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions, 27(7):1165 – 1178, 2008.

6. S. Falke and D. Kapur. Dependancy Pairs for Rewriting with Non-Free Construc-
tors. In Proceedings of the 17th International Conference RTA, volume 4098 of
LNCS. Springer, 2006.

7. S. Falke and D. Kapur. Inductive decidability using implicit induction. In Pro-
ceedings of the International Conference LPAR, volume 4256 of LNCS. Springer,
2006.

8. S. Falke and D. Kapur. Termination of context-sensitive rewriting with built-in
numbers and collection data structures. In Santiago Escobar, editor, 18th Work-
shop on Functional and (Constraint) Logic Programming (WFLP’09), 2009.

9. K. Futatsugi, Joseph A. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of
OBJ2. In Proceedings of the International Symposium POPL, pages 52–66, 1985.

10. T. Genet. Decidable Approximations of Sets of Descendants and Sets of Normal
Forms. In Proceedings of the International Conference RTA, volume 1379 of LNCS,
pages 151–165. Springer-Verlag, 1998.

11. T. Genet. Reachability Analysis of Rewriting for Software Veri-
fication. Université de Rennes 1, 2009. Habilitation document,
http://www.irisa.fr/celtique/genet/publications.html.

12. T. Genet and V. Rusu. Equational Approximations for Tree Automata Comple-
tion. Journal of Symbolic Computation, 45(5):574597, 2010.

13. Thomas Genet and Yann Salmon. Reachability analysis of innermost rewriting.
In Proceedings of the International Conference RTA, volume 36 of LIPIcs, pages
177–193, 2015.

14. J. Kochems and C.-H. Luke Ong. Improved Functional Flow and Reachability
Analyses Using Indexed Linear Tree Grammars. In Proceedings of the International
Conference RTA, volume 10 of LIPIcs, pages 187–202, 2011.

15. Y. Kojima and M. Sakai. Innermost Reachability and Context Sensitive Reachabil-
ity Properties Are Decidable for Linear Right-Shallow Term Rewriting Systems. In
Proceedings of the International Conference RTA, volume 5117 of LNCS. Springer,
2008.

16. S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1998(1), January 1998.

