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Abstract. We introduce a method for building a minimal XML type
(belonging to standard class of regular tree grammars) as an extension of
other given types. Not only do we propose an easy-to-handle XML type
evolution method, but we prove that this method computes the smallest
extension of a given tree grammar, respecting pre-established constraints.
We also adapt our technique to an interactive context, where an advised
user is guided to build a new XML type from existing ones. A basic
prototype of our tool is implemented.

1 Introduction

We deal with the problem of exchanging valid XML data in a multi-system
environment. We assume that I1, . . . , In are local systems that inter-operate
with a global system I which should be capable of receiving information from
any local system. Local systems I1, . . . , In deal with sets of XML documents
X1, . . . , Xn, respectively. Each set Xi conforms to schema constraints Di and
follows an ontology Oi. We want to associate I to a schema for which documents
from any local system are valid, and, in this way, we consider that this new
schema D is an evolution for all local systems.

Every real application goes through type evolution, and, thus, in general, our
approach is useful whenever one wants not only to generate XML types from
given ones but also to preserve the possibility of processing previous versions of
software systems. In other words, we focus on a conservative type evolution, i.e.,
in allowing some backward-compatibility on the types of data processed by new
versions, in order to ensure that old clients can still be served. In a multi-system
environment, this means to keep a service capable of processing information from
any local source, without abolishing type verification.

In the XML world, it is well known that type (or schema) definitions and regu-
lar tree grammars are similar notions and that some schema definition languages
can be represented by using specific classes of regular tree grammars. As men-
tioned in [Mani and Lee, 2002], the theory of regular tree grammars provides an
excellent framework for understanding various aspects of XML type languages.
They have been actively used in many applications such as: XML document pro-
cessing (e.g. XQuery3 and XDuce4) and XML document validation algorithms

3 http://www.w3.org/TR/xquery/
4 http://xduce.sourceforge.net/



(e.g. RELAX-NG5). They are also used for analyzing the expressive power of
the different schema languages [Murata et al., 2005].

Regular tree grammars define sets of trees (in contrast to more traditional
string grammars, which generate sets of strings). The rules of general regular
tree grammars (or RTG) have the form X → a [R], where X in a non-terminal
symbol, a is a terminal symbol, and R is a regular expression over non-terminal
symbols. Local tree grammars (LTG) are regular tree grammars where rules for
the same terminal symbol have the same non-terminal on their left-hand side.
Single-type tree grammars (STTG) are regular tree grammars where distinct
non-terminal symbols that appear in a same regular expression of the gram-
mar, always generate distinct terminal symbols. Notice that the restriction for a
grammar to be an LTG is stronger than the restriction for STTGs. This means
that every LTG is also an STTG.

The interest of regular tree grammars in the context of XML progrssing
is that each of the two mainstream languages for typing XML documents,
i.e., DTD6 and XML Schema (XSD)7, correspond, respectively to LTG and
STTG [Murata et al., 2005].

Given an XML type and its corresponding tree grammar G, the set of XML
documents described by G corresponds to the language (set of trees) L(G) gen-
erated by the tree grammar. Then, given regular tree languages L1, L2, . . . Ln

we propose an algorithm for generating a new type that corresponds to a tree
language which contains the union of L1, L2, . . . Ln but which should be an
LTG or a STTG. Notice that even if the grammars G1, . . . , Gn that generate
L1, . . . , Ln are LTGs (resp. STTGs), in general their union G = G1 ∪ · · · ∪Gn is
not an LTG (resp. not a STTG) [Murata et al., 2005]. This is because the union
of the sets of rules from these grammars may not respect the conditions imposed
by the definitions of LTGs and STTGs. This problem will be illustrated in the
next section.

In this context, our proposal can be formally expressed as follows: We present
a method for extending a given regular tree grammar G into a new grammar G′

respecting the following property: the language generated by G′ is the smallest
set of unranked trees that contains the language generated byG and the grammar
G′ is a Local Tree Grammar (LTG) or a Single-Type Tree Grammar (STTG).

Thus, the contribution of this paper is twofold:

1. We introduce two algorithms to transform a given regular grammar G into a
new grammar G′ such that: (i) L(G) ⊆ L(G′); (ii) G′ is an LTG or a STTG;
and (iii) L(G′) is the smallest language that respects constraints (i) and (ii). We
offer formal proofs of some interesting properties of our methods.

2. We propose an interactive tool capable of guiding the user in the generation
of a new type.

5 http://relaxng.org/
6 http://www.w3.org/TR/REC-xml/ .
7 http://www.w3.org/XML/Schema .



Paper organization: Section 2 gives an overview of our contributions. Section 3
introduces notations, concepts and properties needed in the paper. In Section 4
we consider the extension of a regular tree grammar to a local tree grammar
while in Section 5 we deal with its extension to a single-type tree grammar. These
proposals are revisited and complete versions of the algorithms we have presented
in [Chabin et al., 2010]. In Section 6, we modify the first algorithm to get an
interactive tool for helping with the construction of XML types. In Section 7, we
discuss time complexity and show some experiment results. Section 8 discusses
some related work and Section 9 concludes the paper.

2 Overview

This section is an overview of our contributions. In our work, we consider the
existence of an ontology associated to each grammar. An ontology alignment
allows the implementation of translation functions that establish the correspon-
dence among different words with the same meaning. In the following examples,
we represent the tables (a kind of dictionary) over which the translation func-
tions are implemented. All information in these tables is obtained from a given
ontology alignment. A word without any entry in a table is associated to itself.

The first example illustrates the evolution of an XML type, expressed by a
tree grammar, when the resulting type should be a DTD (i.e., a LTG).

Example 1. Let G1 be a regular tree grammar, resulting from the union of other
regular tree grammars. We suppose that the data administrator needs a type
for which both organisations of research laboratory are valid. He has an addi-
tional constraint: the resulting grammar should be expressed via an LTG (whose
translation to a DTD is direct).

G1 Translation table
R1 → lab[T ∗

1 ] R2 → lab[Emp∗] researcher ↔ employee
T1 → team[Res∗] Emp → employee[IsIn] team ↔ group

Res → researcher[ǫ] IsIn → group[ǫ]

By translating the rules of G1 according to the translation table we verify that
the non-terminals Res and Emp generate the same terminal researcher, and
consequently are in competition, which is forbidden for local tree grammars
or DTDs (i.e., G1 is not an LTG). The same conclusion is obtained for non-
terminals T1 and IsIn which generate terminal team. Our goal is to transform
the new G1 into an LTG, and this transformation will result in a grammar that
generates a language L such that L(G1) ⊆ L.

In this context, we propose an algorithm that extends G1 into a new local tree
grammar GA. The solution proposed is very simple. Firstly, rules concerning non-
terminals Res and Emp are combined, given the rule S → researcher[IsIn | ǫ].
Secondly, in regular expressions (of other rules),Res and Emp should be replaced
by S. Thus, we have T1 → team[S∗] and R2 → lab[S∗]. All competing non-
terminals are treated in the same way, giving rise to grammar GA with rules:
R→ lab[T ∗ | S∗]; S → researcher[T | ǫ] and T → team[S∗ | ǫ ]. ✷



The result obtained in Example 1 respects the imposed constraints: the ob-
tained grammar is the least LTG (in the sense of language inclusion) and it
generates a language that contains the language L(G1). This algorithm is pre-
sented in Section 4.

Next, we consider the situation where the resulting type is supposed to be
specified by a XSD (or a single-type tree grammar). The following example
illustrates an evolution in this context.

Example 2. Let us now consider G2, a regular tree grammar resulting from the
union of other regular tree grammars. We focus only on the rules concerning
publication types. The translation table summarizes the correspondence among
terminals. An ontology alignment associates article and paper.

G2 Translation table
R3 → article[T itle.T itleJournal.Y ear.V ol] article ↔ paper

R4 → paper[T itle.T itleConf.Y ear]
R5 → publication[(R3 | R4)

∗]

We propose an algorithm that extends G2 to a single type grammar GB ,
which can then be translated into an XSD. Notice that the above rules of G2

violate STTG constraints, since rule R5 contains a regular expression with com-
peting non-terminals. Indeed, rules R3 → article[T itle.T itleJournal.Y ear.V ol]
and R4 → paper[T itle.T itleConf.Y ear] have equivalent terminals, according to
the translation table. Thus, non-terminals R3 and R4 are competing ones. This
is not a problem for a STTG. However, both non-terminals appear in the regular
expression of rule R5 and this is forbidden for a STTG. In this case, our method
replaces the above rules by the following ones:

GB

R6 → paper[T itle.T itleJournal.Y ear.V ol | T itle.T itleConf.Y ear]
R7 → publication[R∗

6]
✷

To get an LTG, competing non-terminals should be merged, which is simple.
To get a STTG, the situation is more complicate: only competing non-terminals
that appear in the same regular expression should be merged. Consequently, if
R1, R2, R3 are competing, but R1, R2 appear in the regular expression E whereas
R1, R3 appear in E′, then R1 should be merged with R2 (and not with R3) within
E, whereas R1 should be merged with R3 (and not with R2) within E′. To do
it in the general case, we introduce an equivalence relation over non-terminals,
and consider equivalence classes as being the non-terminals of the new grammar.
The algorithm is given in Section 5.

Now, suppose that the administrator wants to build a new type based on the
types he knows, i.e., by merging, in a flexible way, different types, e.g. G3 and
G4. We propose a tool to guide him in this construction by considering one rule
(of G3 and G4) at a time. The new type is built with the help of a dependency
graph D = (V,E). The set of nodes V contains the terminals of both grammars:
the set of arcs E represents the notion of dependency among terminals in these



grammars. The pair (a, b) of terminals is in E iff a production rule generating a
contains a non-terminal which is associated to the terminal b. We just consider
grammars where the dependency graph has no cycles. The following example
illustrates this contribution.

Example 3. Let us consider the two grammars below. We concentrate in the rule
concerning researchers.

G3 G4

R1 → researcher[IdR.Name.Pub] R2 → researcher[Name.Team.Ref ]

Figure 1 shows the dependency graph for these rules. We consider that non-
terminals IdR, Name, Pub, Name, Team, Ref are the left-hand side of rules
whose right-hand side contain terminals idR, name, publications, team and ref-
erences, respectively. Arcs are colored according to the grammar they come from:
red (filled arrow) to indicate they come from both grammars, blue (dashed ar-
row) only from G3 and green (dotted arrow) only from G4.

references

researcherteam publications

name
idR

Fig. 1. Dependency graph for grammars G3 and G4 .

Our interactive tool proposes to follow this graph in a topological order:
start with nodes with no output arcs, process them, delete them from the graph
together with their input arcs, and so on. Processing a node here means writing
its production rule. For each competing terminal, the user can propose a regular
expression to define it. This regular expression is built only with non-terminals
appearing as left-hand side of production rules already defined.

For instance, in our case, our interactive tool starts by proposing rules for
each A ∈ {IdR,Name, Pub, Team, Ref} (here, we consider that all these non-
terminals are associated to rules of the format A→ a[ǫ]). Then, the administrator
can define the local type R, for researchers by using any of the above non-
terminals. Suppose that the chosen rule is:R→ researcher[(Name.Team.Pub)].

After this choice (and since in our example, no other type definition is ex-
pected), all rules defining useless types are discarded (i.e., rules for IdR and Ref
are discarded). Thus, we obtain a new grammar GB , built by the administrator,
guided by our application. More details of this tool are presented in Section 6.

Finally, if our administrator needs to accept documents of types G3 or G4 or
GB , he may again use the first algorithm to define:

R→ researcher[(IdR.Name.Pub) | (Name.Team.Ref) | (Name.Team.Pub)].
✷

The previous examples illustrate that our contribution is twofold. On the
one hand, to propose algorithms that automatically compute a minimal type
extension of given types. On the other hand to apply these algorithms as guides
to allow the interactive definition of new types.



3 Theoretical Background

It is a well known fact that type definitions for XML and regular tree grammars
are similar notions and that some schema definition languages can be repre-
sented by using specific classes of regular tree grammars. Thus, DTD and XML
Schema, correspond, respectively, to Local Tree Grammars and Single-Type Tree
Grammars [Murata et al., 2005]. Given an XML type T and its corresponding
tree grammar G, the set of XML documents described by the type T corresponds
to the language (set of trees) generated by G.

An XML document is an unranked tree, defined in the usual way as a mapping
t from a set of positions (nonempty and closed under prefixes) Pos(t) to an
alphabet Σ. For v ∈ Pos(t), t(v) is the label of t at the position v, and t|v
denotes the subtree of t at position v. Positions are sequences of integers in IN∗

and the set Pos(t) satisfies: j ≥ 0, u.j ∈ Pos(t), 0 ≤ i ≤ j ⇒ u.i ∈ Pos(t),
where the “.” denotes the concatenation of sequences of integers. As usual, ǫ
denotes the empty sequence of integers, i.e. the root position. The following
figure shows a tree whose alphabet is the set of element names appearing in an
XML document. In this case we have t(ǫ) = directory, t(0) = student and so on.

Given a tree t we denote by t|p the
subtree whose root is at position p ∈
Pos(t),i.e., Pos(t|p) = {s | p.s ∈
Pos(t)} and for each s ∈ Pos(t|p) we
have t|p(s) = t(p.s).

ε

1.11.00.10.0 1.2

10

name

student

namenumber address phone

professor

directory

For instance, in the figure t|0 = {(ǫ, student), (0, name), (1, number)}, or equiv-
alently, t|0 = student(name, number).

Given a tree t such that the position p ∈ Pos(t) and a tree t′, we note t[p← t′]
as the tree that results of substituting the subtree of t at position p by t′.

Definition 1 (Sub-tree, forest). Let L be a set of trees. ST (L) is the set of
sub-trees of elements of L, i.e. ST (L) = {t | ∃u ∈ L, ∃p ∈ Pos(u), t = u|p}. A
forest is a (possibly empty) tuple of trees. For a ∈ Σ and a forest w = 〈t1, . . . , tn〉,
a(w) is the tree defined by a(w) = a(t1, . . . , tn). On the other hand, w(ǫ) is
defined by w(ǫ) = 〈t1(ǫ), . . . , tn(ǫ)〉, i.e., the tuple of the top symbols of w. ✷

Definition 2 (Regular Tree Grammar, derivation). A regular tree gram-
mar (RTG) is a 4-tuple G = (N,T, S, P ), where: N is a finite set of non-terminal
symbols ; T is a finite set of terminal symbols ; S is a set of start symbols, where
S ⊆ N and P is a finite set of production rules of the form X → a [R], where
X ∈ N , a ∈ T , and R is a regular expression over N (We say that, for a pro-
duction rule, X is the left-hand side, a [R] is the right-hand side, and R is the
content model.)
For an RTG G = (N,T, S, P ), we say that a tree t built on N ∪ T derives (in
one step) into t′ iff (i) there exists a position p of t such that t|p = A ∈ N and a
production rule A→ a [R] in P , and (ii) t′ = t[p← a(w)] where w ∈ L(R) (L(R)
is the set of words of non-terminals generated by R). We write t→[p,A→a [R]] t

′.
More generally, a derivation (in several steps) is a (possibly empty) sequence of
one-step derivations. We write t→∗

G t′.



The language L(G) generated by G is the set of trees containing only terminal
symbols, defined by : L(G) = {t | ∃A ∈ S, A→∗

G t}. ✷

Remark: As usual, in this paper, our algorithms start from grammars in reduced
form and (as in [Mani and Lee, 2002]) in normal form. A regular tree grammar
(RTG) is said to be in reduced form if (i) every non-terminal is reachable from
a start symbol, and (ii) every non-terminal generates at least one tree containing
only terminal symbols. A regular tree grammar (RTG) is said to be in normal
form if distinct production rules have distinct left-hand-sides. ✷

To distinguish among sub-classes of regular tree grammars, we should under-
stand the notion of competing non-terminals. Moreover, we define an equivalence
relation on the non-terminals of grammar G, so that all competing non-terminals
are in the same equivalence class. In our schema evolution algorithms (Sections 4
and 5), these equivalence classes form the non-terminals of the new grammar.

Definition 3 (Competing Non-terminals). Let G = (N,T, S, P ) be a reg-
ular tree grammar. Two non-terminals A and B are said to be competing with
each other if A 6= B and G contains production rules of the form A→ a[E] and
B → a[E′] (i.e. A and B generate the same terminal symbol).
Define a grouping relation over competing non-terminals as follows. Let
‖ be the relation on N defined by: for all A,B ∈ N , A ‖ B iff A = B or A and
B are competing in P . For any χ ⊆ N , let ‖χ be the restriction of ‖ to the set
χ (‖χ is defined only for elements of χ). ✷

Lemma 1. Since G is in normal form, ‖ is an equivalence relation. Similarly,
‖χ is an equivalence relation for any χ ⊆ N . ✷

Definition 4 (Local Tree Grammar and Single-Type Tree Grammar).
A local tree grammar (LTG) is a regular tree grammar that does not have com-
peting non-terminals. A local tree language (LTL) is a language that can be
generated by at least one LTG. A single-type tree grammar (STTG) is a regular
tree grammar in normal form, where (i) for each production rule, non terminals
in its regular expression do not compete with each other, and (ii) starts sym-
bols do not compete with each other. A single-type tree language (STTL) is a
language that can be generated by at least one STTG. ✷

In [Murata et al., 2005] the expressive power of these classes of languages is
discussed. We recall that LTL ⊂ STTL ⊂ RTL (RTL for regular tree language).
Moreover, the LTL and STTL are closed under intersection but not under union;
while the RTL are closed under union, intersection and difference. Note that
converting an LTG into normal form produces an LTG as well.

4 Transforming an RTG into an LTG

Given a regular tree grammar G0 = (N0, T0, S0, P0), we propose a method to
compute a local tree grammar G that generates the least local tree language
containing L(G0).



In [Chabin et al., 2010], we have introduced a very intuitive version of our
algorithm: replace each pair of competing non-terminals by a new non-terminal,
until there are no more competing non-terminals.

In this section, we prefer to use the well-known formalism of equivalence
classes (Lemma 1), which makes the proofs simpler, and allows an uniform no-
tation w.r.t. to the algorithm in the next section. Competing non-terminals are
grouped together within an equivalence class, and the equivalence classes are the
non-terminals of the new grammar G.

Algorithm 1 (RTG into LTG Transformation)
Notation:
(i) For any A ∈ N0, Â denotes the equivalence class of A w.r.t. relation ‖, i.e.,
Â contains A and the non-terminals that are competing with A in P0.
(ii) For any regular expression R, R̂ is the regular expression obtained from R
by replacing each non-terminal A by Â.
(iii) As usual,N0/‖ denotes the quotient set, i.e. the set of the equivalence classes.

Let G0 = (N0, T0, S0, P0) be a regular tree grammar. We define a new regular
tree grammar G = (N,T, S, P ), obtained from G0, as follows:

Let G = (N0/‖, T0, S, P ) where:

– S = {Â | A ∈ S0},
– P = { {A1, . . . , An} → a [R̂] | {A1, . . . , An} ∈ N0/‖,

and A1 → a[R1], . . . , An → a[Rn] ∈ P0, and R = (R1| · · · |Rn). ✷

The following example illustrates our algorithm.

Example 4. Let us consider merging the rules for two different DTDs for cooking
recipes. Assuming that the vocabulary translations have already been done (on
the basis of an alignment ontology), we build the grammar G0 below. Each
A ∈ {Name, Number, Unit, Quantity, Step, Item} is associated to a production
rule having the format A→ a[ǫ], meaning that label a is attached to data.

Recipea → r [Ingreds.Recipe∗

a .Instrsa ] Ingreds → is[OneIng∗

a ]

OneInga → ing [Name.Unit .Quantity ] Instrsa → ins[Step∗]

Recipeb → r [Required .OneIng∗

b .Instrsb ] Required → req [Item∗]

OneIngb → ing [Name.Quantity .Unit ] Instrsb → ins[(Number .Step)∗]

Clearly, non-terminals Recipea and Recipeb , OneInga and OneIngb , Instrsa and
Instrsb are competing. The equivalence classes for G0 are {Recipea , Recipeb},
{OneInga , OneIngb}, {Instrsa , Instrsb}, {Ingreds}, {Required}, {Number},
{Name}, {Unit}, {Quantity}, {Step}, {Item}. Each equivalence class is now seen
as a new non-terminal. Our algorithm combines rules of G0 whose left-hand non-
terminals (in N0) are in the same equivalence class. The obtained result is the
LTG G below. To shorten the notations, for each non-terminals like X,Ya, Yb we



write X instead of {X}, and Y instead of {Ya, Yb}. The missing rules are of the
form A→ a[ǫ].

Recipe → r [(Ingreds.Recipe∗

.Instrs)|(Required .OneIng∗

.Instrs])

Ingreds → is[OneIng∗]

OneIng → ing [(Name.Unit .Quantity)|(Name.Quantity .Unit)]

Instrs → ins[Step∗|(Number .Step)∗]

Required → req [Item∗] ✷

One of the most important beauty of our algorithm is its simplicity. How-
ever, one fundamental contribution of this paper is the proof that, with this very
simple method, we can compute the smallest extension of a given tree grammar,
respecting the constraints imposed on an LTG. This result is stated in the fol-
lowing theorem.

Theorem 1. The grammar returned by Algorithm 1 generates the least LTL
that contains L(G0). ✷

The intuition behind the proof of Theorem 1 is as follows. Let G be the
grammar produced by our algorithm and let G′ be any LTG such that L(G0) ⊆
L(G′), we have to prove that L(G0) ⊆ L(G) (soundness), and that L(G) ⊆ L(G′)
(minimality: L(G) is the least LTL containing L(G0)). Proving soundness is not
very difficult. Minimality comes from the following steps: (A) As production
rules of an LTG in normal form define a bijection between the sets of terminals
and non-terminals, there is only one rule in G of the form Â1 → a[R] producing
subtrees with root a. By the construction of our algorithm this rule should
correspond to rules Ai → a[Ri] in G0 with i ∈ {1, · · · , n}. All Ai are competing
in G0 and no other symbol in N0 is competing with a Ai so Â1 = · · · = Ân =
{A1, · · · , An}. And we have R = R̂1 | · · · | R̂n. (B) Consequently, we can prove
that if a(w) is a subtree of t ∈ L(G), then there is at least one tree in L(G0) with
a(w′) as a subtree, s.t. w′(ǫ) = w(ǫ) (i.e. forests w′ and w have the same tuple of
top-symbols). (C) w is a forest composed by subtrees of L(G), and by induction
hypothesis applied to each component of w (each component is a strict subtree
of a(w)), we know that w is also a forest composed by subtrees of L(G′). On
the other hand, since L(G0) ⊆ L(G′), a(w′) is a subtree of L(G′). (D) As G′ is
an LTG, and thanks to some properties of local languages, we can replace each
subtree of a(w′), rooted by the elements of w′(ǫ), by the corresponding subtree
of a(w) and thus, a(w) is a subtree of L(G′). (E) Finally, as this is valid for
every subtree, we have that L(G) ⊆ L(G′).

Appendix A presents the proof of Theorem 1.

5 Transforming an RTG into a STTG

Given a regular tree grammar G0 = (N0, T0, S0, P0), the following algorithm
computes a single-type tree grammar G that generates the least single-type tree



language containing L(G0). It is based on grouping competing non-terminals
into equivalence classes, in a way different from Algorithm 1. Here, we group
competing non-terminals A1, . . . , An together, only if they appear in the same
regular expression R of G0, and in this case the set {A1, . . . , An} is a non-
terminal of G. If A1, . . . , An do not appear in the same regular expression, we
have to consider subsets of {A1, . . . , An}. This is why Algorithm 2 (and proofs)
is more complicated than Algorithm 1.

Algorithm 2 (RTG into STTG Transformation)
Notation:
(i) For any regular expression R, N(R) denotes the set of non-terminals occur-
ring in R.
(ii) For any χ ⊆ N0 and any A ∈ χ, Âχ denotes the equivalence class of A w.r.t.
relation ‖χ, i.e. Â

χ contains A and the non-terminals of χ that are competing
with A in P0.
(iii) σN(R) is the substitution defined over N(R) by ∀A ∈ N(R), σN(R)(A) =

ÂN(R). By extension, σN(R)(R) is the regular expression obtained from R by
replacing each non-terminal A in R by σN(R)(A).

Let G0 = (N0, T0, S0, P0) be a regular tree grammar. We define a new regular
tree grammar G = (N,T, S, P ), obtained from G0, according to the following
steps:

1. Let G = (P(N0), T0, S, P ) where:

– S = {ÂS0 | A ∈ S0},
– P = { {A1, . . . , An} → a [σN(R)(R)] |

A1 → a[R1], . . . , An → a[Rn] ∈ P0, R = (R1| · · · |Rn)},
where {A1, . . . , An} indicates all non-empty sets containing competing
non-terminals (not only the maximal ones).

2. Remove unreachable non-terminals and unreachable rules in G; return G. ✷

The difference between STTG and LTG versions (Section 4) is in the use of
non-maximal sets of competing non-terminals. In particular, Algorithm 2 con-
siders (step 1) each set of competing non-terminals as a left-hand side (and
not only maximal sets) to build the production rules of G. Thus, at step 1, G
may create unreachable rules (from the start symbols), which are then removed
at step 2. Algorithm 2 eases our proofs. An optimized version, where just the
needed non-terminals are generated, is given in [Chabin et al., 2010].

The following example illustrates that for an STTG only competing non-
terminals appearing in the same regular expression are combined to form a new
non-terminal.

Example 5. Let G0 be a non-STTG grammar having the following set P0 of
productions rules (School is the start symbol). It describes a French school with
students enrolled to an international English section (IntStudent) and normal
French students (Student). Different options are available for each student class.



School → school [IntStudent | Student ]

Student → student [Name.Option3 ]

IntStudent → intstudent [Name.(Option1 | Option2 )]

Option1 → option[EL.GL] Option2 → option[EL.SL]

Option3 → option[EL] Name → name[ǫ]

EL → english[ǫ] GL → german[ǫ]

SL → spanish[ǫ]

The grammar G obtained by our approach has the rules below where non
terminals are named by their equivalence class. Clearly, they can be denoted by
shorter notations.

{School} → school [{IntStudent} | {Student}]

{IntStudent} → intstudent [{Name}.{Option1 ,Option2}]

{Student} → student [{Name}.{Option3}]

{Option1 ,Option2} → option[({EL}.{GL}) | ({EL}.{SL})]

{Option3} → option[{EL}]

{Name} → name[ǫ]

{EL} → english[ǫ]

{GL} → german[ǫ]

{SL} → spanish[ǫ]

Notice that althoughOption1,Option2 andOption3 are competing non-terminals;
our approach does not produce new non-terminals corresponding to the combi-
nation of all of them. For instance, Option1 and Option2 are combined in order
to generate the non-terminal {Option1, Option2}, but we do not need to produce
a non-terminal {Option1, Option3} since Option1 and Option3 do not appear
together in a regular expression. We also generate {Option3} as non-terminal
because Option3 is alone in the rule defining Student. ✷

The following example offers an interesting illustration of the extension of
the original language.

Example 6. Consider a non-STTG grammar G0 having the following set P0 of
productions rules (Image is the start symbol):

Image → image[Frame1 | Frame2 | Background .Foreground ]

Frame1 → frame[Frame1 .Frame1 | ǫ]

Frame2 → frame[Frame2 .Frame2 .Frame2 | ǫ]

Background → back [Frame1 ]

Foreground → fore[Frame2 ]

Grammar G0 defines different ways of decomposing an image: recursively into
two or three frames or by describing the background and the foreground sepa-
rately. Moreover, the background (resp. the foreground) is described by binary



decompositions (resp. ternary decompositions). In other words, the language of
G0 contains the union of the trees: image(bin(frame)); image(ter(frame)) and
image (back (bin (frame)), fore (ter (frame))) where bin (resp. ter) denotes the
set of all binary (resp. ternary) trees that contains only the symbol frame. The
result is G, which contains the rules below (the start symbol is {Image}) :

{Image} → image[{Frame1 ,Frame2} | {Background}.{Foreground}]

{Background} → back [{Frame1}]

{Foreground} → fore[{Frame2}]

{Frame1 ,Frame2} → frame[ǫ | {Frame1 ,Frame2}.{Frame1 ,Frame2}

| {Frame1 ,Frame2}.{Frame1 ,Frame2}.{Frame1 ,Frame2}]

{Frame1} → frame[{Frame1}.{Frame1} | ǫ]

{Frame2} → frame[{Frame2}.{Frame2}.{Frame2} | ǫ]

Grammar G is a STTG that generates the union of image(tree(frame)) and
image (back (bin (frame)), fore (ter (frame))) where tree denotes the set of all
trees that contain only the symbol frame and such that each node has 0 or 2
or 3 children. Let LG(X) be the language obtained by deriving in G the non-
terminal X. Actually, LG({Frame1, F rame2}) is the least STTL that contains
LG0

(Frame1) ∪ LG0
(Frame2). ✷

An important part of our work consist in proving the following theorem.
We have presented part of this proof in [Chabin et al., 2010], but the interested
reader can find its complete version in Appendix B.

Theorem 2. The grammar returned by Algorithm 2 generates the least STTL
that contains L(G0). ✷

From this result, we are able to ensure that our algorithm generates the least
STTL responding to our goals. This is an important result when dealing with
type we want to extend in a controlled way.

6 Interactive Generation of New Types

This section introduces an interactive tool which may help an advised user to
build an XML type based on existing ones. This tool is useful when an adminis-
trator decides to propose a new type which should co-exist with other (similar)
types for a certain time. For instance, the description of research laboratories
in a university may vary. Our administrator wants to organize information in a
more uniform way by proposing a new type, a schema evolution, based on the
existing types (since old types represent all information available and needed).
In this paper we outline the main ideas of our tool which can be used in different
contexts where slightly different XML types exist and should be catalogued. In-
deed, this kind of application needs the two parts of our proposal: to extend the
union of types to a standard XML schema language and to interactively allow
the construction of a new type. We illustrate the interactive function of our tool
(outlined in Section 1) in a more complete example.



Example 7 (Interactive approach). We consider the rules from two LTG after
translating terminals into a unified nomenclature, according to a translation
table. Each grammar shows a different organization of research laboratories. In
G1 laboratories are organized with researchers and teams. Publications are sub-
elements of researchers. Teams are composed by researchers, identified by their
identification numbers. All A ∈ {Dom, IdR, First, Last, TitleP, TitleConf, Year,
Vol} are associated to production rules having the format A→ a[ǫ].

Lab → lab[Dom.R∗.T eam∗] R → researcher[IdR.Name.P ]
P → publications[CPaper∗.JPaper∗] Team → team[IdR∗]
CPaper → confPaper[T itleP.T itleConf.Y ear]
JPaper → jourPaper[T itleP.T itleJ.Y ear.V ol]
Name → name[First.Last]

Grammar G2 represents an organization where researchers and publications are
stored in an independent way, but where references are supposed to link infor-
mations. A team is just a sub-element of a researcher. All A ∈ { Dom, Name,
Code, TitleP, TitleConf, Year, Vol } are associated to production rules having
the format A→ a[ǫ].
Lab → lab[Dom.R∗.P ] R → researcher[Name.Team.Ref ]
Ref → references[Code∗] P → publications[CPaper∗.JPaper∗]
ConfPaper → confPaper[Code.T itleP.T itleConf.Y ear]
JPaper → jourPaper[Code.T itleP.T itleJ.Y ear.V ol]

To guide the construction of a new grammar we use a dependency graph. Figure 2
shows the dependency graph for grammars G1 and G2.

dom team

name jourPaper

lab

titleP titleConflastfirst

confPaper

voltitleJidR

publicationsresearcher

references

code

year

Fig. 2. Dependency graph for grammars G1 and G2 .

As mentioned in Example 3, to aid an advised user in the construction of a
new XML type, we propose to follow this graph in a topological order and, for
each competing terminal, to ask the user a regular expression to define it. This
regular expression is built only by non-terminals already defined. From Figure 2
the user starts by considering terminals a ∈ {idR, name, team, titleP, titleConf,
titleJ, year, code, vol}. Let G3 be the grammar obtained by this interactive



method. Clearly, all terminals a are associated to data and thus the correspond-
ing grammar rules are of the format A → a[ǫ]. The following production rules
correspond to the user choices.

Lab → lab[Dom.R∗] R → researcher[Name.Team.P ]
P → publications[CPaper∗.JPaper∗]
CPaper → confPaper[T itleP.T itleConf.Y ear]
JPaper → jourPaper[T itleP.T itleJ.Y ear.V ol] ✷

We now formally present our interactive algorithm (which adapts Algorithm 1
to an interactive context). We recall that for a regular expression R (resp. a tree
t), NT (R) denotes the set of non-terminals occurring in R (resp. in t).

Definition 5 (Order relation over terminals). Let G = (N,T, S, P ) be an
RTG. Let a, b ∈ T . We define the relation ❀G over terminals by a ❀G b iff
there exist production rules A → a[R], B → b[R′] in P such that B ∈ NT (R).
In other words, b may be a child of a. ✷

Non-recursivity is defined as usual, i.e. over non-terminals: it means that a
non-terminal A can never derive a tree that contains A again. Using terminals,
we get a stronger property, called strong non-recursivity, which means that the
dependency graph is acyclic.

Definition 6 (Recursivity).
A grammar G is non-recursive iff ¬(∃A ∈ N, A →+

G t ∧ A ∈ NT (t)), where t
is a tree. A grammar G is strongly non-recursive iff ¬(∃a ∈ T, a ❀

+
G a), where

→+
G and ❀

+
G are the transitive closures of →G and ❀G, respectively. ✷

Lemma 2. If G is strongly non-recursive, then G is non-recursive.

Proof: By contraposition. Suppose ∃A0 ∈ N, A0 →
+
G t ∧ A0 ∈ NT (t)). Then:

∃n ∈ IN\{0}, ∀i ∈ {0, . . . , n−1}, ∃Ai → ai[Ri] ∈ P, Ai+1 ∈ NT (Ri) ∧ An = A0.
By definition of ❀G we have: a0 ❀G a1 ❀G · · ·❀G an−1 ❀G a0. ✷

Lemma 3. If G is strongly non-recursive, then ❀
+
G is a strict (partial) order.

Proof: ❀+
G is transitive. On the other hand, for all a, b ∈ T , a ❀

+
G b ∧ b ❀+

G a
implies a ❀

+
G a, which is impossible since G is strongly non-recursive. ✷

Algorithm 3 (Interactive Generation of an LTG)
Notation: Let G0 = (N0, T0, S0, P0) be a regular tree grammar8 strongly non-
recursive. For each terminal a, consider all the rules in P0 that generates a,
say A1 → a[R1], . . . , An → a[Rn]. Then we define â = {A1, . . . , An}. Note that
â ∈ N0/‖, i.e. â is an equivalence class.

We define a new regular tree grammar G = (N,T, S, P ), obtained from G0,
according to the steps:

1. Let G = (N0/‖, T0, S, P ) where:

8 Recall that G0 is in reduced normal form and thus, for each A ∈ N0 there exists
exactly one rule in P0 whose left-hand-side is A.



– S = {Â | A ∈ S0},
– P = { â→ a [R] | a ∈ T0,

and â = {A1, . . . , An} ∈ N0/‖,
and A1 → a[R1], . . . , An → a[Rn] ∈ P0,
and (i) R = (R̂1| · · · |R̂n) or (ii) R is defined by the user s.t.

∀B ∈ NT (R), B = b̂ ∧ a ❀
+
G0

b.

2. Remove all unreachable or unproductive non-terminals and rules in G, then
return it. ✷

The aiding tool for XML type construction we propose is based on Algo-
rithm 3. However, to make it more user friendly, each time a user wants to
propose a new local type (the interactive step mentioned in item 1(ii)), some
facilities are offered. The first one aims at releasing the user of thinking about
grammar “technical problems” and distinction concerning terminal and non-
terminals. Therefore, our tool allows the user to propose regular expressions built
over XML labels (i.e., the terminals of G). Indeed, this opportunity matches the
use of DTDs. Grammar G resulting from Algorithm 3 is automatically obtained
by replacing each terminal b (used by the user in the construction of the type)

by non-terminal b̂. Note that the limitation of the user choice in item 1(ii) (only
b’s s.t. a ❀

+
G0

b are allowed) is necessary to prevent from introducing cycles in
the dependency graph, i.e. to get a strongly non-recursive grammar. The second
facility aims at guiding the user in a good definition order. Thus, at each step,
our tool may guide the user to choose new (local) types according to the order
established by a topological sort of the dependency graph: one may choose the
type of a terminal a once the type of every b ∈ T0 such that a ❀

+
G0

b has already
been treated (bottom-up approach).

We are currently discussing some other improvements to our tool. As a short
term optimisation, we intend to allow a global design of an XML type before
using Algorithm 3. By using a graphical interface, the user can, in fact, transform
the dependency graph into a tree. In this way, he establishes a choice before
entering in the details of each local type. For instance, in Example 7, Figure 2,
terminal team has two parents, meaning that it can take part in the definition
of researcher or laboratory. However, a user probably wants to choose one of
these possibilities and not use team in both definitions (which is allowed by our
algorithm), to avoid redundancy. By deleting the arc between lab and team, the
user fixes, beforehand, his choice, avoiding useless computation. We currently
consider the existence of an ontology alignment from which we can obtain a
translation table for different terminals used in the grammars. A long term
improvement concerns the methods to automatically generate this table. We
can fin in [Gu et al., 2008] some initial clues to deal with this aspect.

Now we prove that grammars obtained by Algorithm 3 are strongly non-
recursive LTGs.

Lemma 4. ∀a, b ∈ T0, a ❀G b =⇒ a ❀
+
G0

b. ✷

Proof: Suppose a ❀G b. Then there exist rules â → a[R], b̂ → b[R′] ∈ P

s.t. b̂ ∈ NT (R). Therefore there exist A1 → a[R1], . . . , An → a[Rn] ∈ P0 and



B1 → b[R′
1], . . . , Bk → b[R′

k] ∈ P0 s.t. â = {A1, . . . , An} and b̂ = {B1, . . . , Bk}.
To build rule â→ a[R], there are two possibilities:

Case (i): R = (R̂1| · · · |R̂n). Since b̂ ∈ NT (R), there exists j ∈ {1, . . . , n} s.t.

b̂ ∈ NT (R̂j). Then ∃p ∈ {1, . . . , k}, Bp ∈ NT (Rj). Finally we have Aj →
a[Rj ] ∈ P0, Bp → b[R′

p] ∈ P0, and Bp ∈ NT (Rj). Consequently a ❀G0
b.

Case (ii) ∀C ∈ NT (R), C = ĉ ∧ a ❀
+
G0

c. Since b̂ ∈ NT (R), we have a ❀
+
G0

b.
✷

Theorem 3. The grammar returned by Algorithm 3 is a strongly non-recursive
LTG in normal form. ✷

Proof: In Algorithm 3, for each a ∈ T0 we define only one rule in P that gener-
ates a: it is the rule â → a[R]. Therefore there are no competing non-terminal
in G, then G is an LTG. On the other hand, suppose that G is not in normal
form, i.e. ∃ b ∈ T0, b 6= a ∧ b̂ → b[R′] ∈ P ∧ b̂ = â = {C1, . . . , Cn}. Then for
all i ∈ {1, . . . , n}, there exist two rules Ci → a[Ri], Ci → b[R′

i] ∈ P0, which is
impossible since G0 is in normal form.
Suppose that G is not strongly non-recursive. Then ∃a ∈ T0, a ❀

+
G a. From

Lemma 4, we get a ❀
+
G0

a which is impossible sinceG0 is strongly non-recursive.✷

7 Algorithm Analysis and Experiments

Algorithm 1 is polynomial. Recall that, for each original rule, the algorithm
verifies whether there exist competing non-terminals by visiting the remaining
rules and merges rules where competition is detected. The algorithm proceeds
by traversing each regular expression of the rules obtained from this first step,
replacing each non-terminal by the associated equivalent class. Thus, in the worst
case, Algorithm 1 runs in time O(N2+N.l), whereN is the number of production
rules and l is the maximal number of non-terminals in a regular expression.

In the following we consider an example which illustrates the worst case for
Algorithm 2. Indeed, in the worst case, the number of non-terminals of the STTG
returned by Algorithm 2 is exponential in the number of the non-terminals of the
initial grammar G0. However, in real cases, it is difficult to find such a situation.

Example 8. Let us consider a grammar where the production rules have the
following form:

1 S → s[A1|B1|C1] 2 A1 → a[A2 | ǫ]
3 A2 → a[A1] 4 B1 → a[B2 | ǫ]
5 B2 → a[B3] 6 B3 → a[B1]
7 C1 → a[C2 | ǫ] 8 C2 → a[C3]
9 C3 → a[C4] 10 C4 → a[C1]

Clearly, this grammar is not a STTG, since in the first rule we have a regular
expression with three competing non-terminals. By using Algorithm 2, the first
rule is transformed into {S} → s[{A1, B1, C1} | {A1, B1, C1} | {A1, B1, C1}].
Trying to merge rules 2, 5 and 7 we find {A1, B1, C1} → a[σ(A2|B2|C2)] where



the regular expression A2|B2|C2 has also three competing non-terminals that
should be put together to give a new non-terminal {A2, B2, C2}. The reasoning
goes on in the same way to obtain {A1, B3, C3}, {A2, B1, C4} and so on. The
number of non-terminals grows exponentially. ✷

A prototype tool implementing Algorithm 1 and Algorithm 2 may be down-
loaded from [Chabin et al., ]. It was developed using the ASF+SDF Meta-Envi-
ronment [van den Brand et al., 2001] and demonstrates the feasibility of our ap-
proach. To study the scalability of our method, Algorithm 1 has been imple-
mented in Java. In this context, we have also developed some tools for dealing
with tree grammars. Thus, given a tree grammar G, we can test whether it is in
reduced form or in normal form or whether the grammar is already an LTG.

Table 1 shows the results of some experiments obtained by the Java imple-
mentation of Algorithm 1. Our experiments were done on an Intel Dual Core
P8700, 2.53GHz with 2GB of memory. To perform these tests we have developed
an RTG generator9: from n1 terminals, we generate n2 rules (or non-terminals,
since each non-terminal is associated to one rule). When n1 ≤ n2 the gener-
ated RTG has n1 non-terminals that are not competing and n2 − n1 competing
non-terminals. When n1 = n2 the generated grammar is an LTG. The regular
expression of each rule has the form E1 | · · · | En where each Ei is a conjunction
of k non-terminals randomly generated and randomly adorned by ∗ or ?. The
values of n and k are also chosen at random, limited by given thresholds.

Example Number of Number of Runtime for Algorithm 1 (ms)
number terminals non-terminals LTG transformation

1 250 300 349
2 250 500 536
3 250 1000 2316
4 1000 1000 1956
5 1000 2000 8522
6 2000 2000 8093
7 1000 4000 36349
8 1000 8000 163236
9 1000 10000 265414

Table 1. Runtime for Algorithm 1 in milliseconds.

From Table 1 it is possible to see that time execution increases polynomi-
ally according to the number of non-terminals (roughly, when the number of
non-terminals is multiplied by 2, time is multiplied by 4). We can also notice
that when changing only the number of terminals, the impact of competition on
execution time is not very important. For instance, lines 2 and 3 show grammars
having the same set of terminals but a different number of non-terminals (or
production rules). Clearly, grammar on line 3 needs much more time to be pro-
ceeded. However, lines 3 and 4 (or lines 5 and 6) show two grammars having the

9 Available at http://www.univ-orleans.fr/lifo/Members/chabin/logiciels.html



same set of non-terminals but a different number of terminals. In our examples,
this fact indicates that grammar of line 3 has more competing non-terminals than
grammar on line 4. Notice however both cases are treated in approximately the
same time.

We have just developed prototypes over which we can evaluate the initial
interest of our proposal. Even if some software engineer effort is necessary to
transform these prototypes into a software tool, the performed tests on our Java
implementation show that we can expect a good performance of our method in
the construction of tools for manipulating and integrating XML types.

8 Related Work

XML type evolution receives more and more attention nowadays, and ques-
tions such as incremental re-validation ([Guerrini et al., 2005]), document cor-
rection w.r.t type evolution ([Bouchou et al., 2006]) or the impact of the evolu-
tion on queries ([Genevès et al., 2009,Moro et al., 2007]) are some of the stud-
ied aspects. However, data administrators still need simple tools for aiding and
guiding them in the evolution and construction of XML types, particularly when
information integration is needed. This paper aims to respond to this demand.

Algorithms 1 and 2 allow the conservative evolution of schemas. Our work
complements the proposals in [Bouchou et al., 2009,da Luz et al., 2007], since
we consider not only DTD but also XSD, and adopts a global approach where
all the tree grammar is taken into account as a whole. Our algorithms are inspired
in some grammar inference methods (such as those dealing with ranked tree lan-
guages in [Besombes and Marion, 2003,Besombes and Marion, 2006]) that re-
turn a tree grammar or a tree automaton from a set of positive examples
(see [Angluin, 1992,Sakakibara, 1997] for surveys). Our method deals with un-
ranked trees, starts from a given RTG G0 (representing a set of positive exam-
ples) and finds the least LTG or STTG that contains L(G0). As we consider
an initial tree grammar we are not exactly inserted in the learning domain, but
their methods inspire us and give us tools to solve our problem, namely, the
evolution of a original schema (and not the extraction of a new schema).

In [Garofalakis et al., 2000,Bex et al., 2006,Bex et al., 2007] we find exam-
ples of work on XML schema inference . In [Bex et al., 2006] DTD inference
consists in an inference of regular expressions from positive examples. As the
seminal result from Gold [Gold, 1967] shows that the class of all regular expres-
sions cannot be learnt from positive examples, [Bex et al., 2006] identifies classes
of regular expressions that can be efficiently learnt. Their method is extended
to deal with XMLSchema (XSD) in [Bex et al., 2007].

The approach in [Abiteboul et al., 2009] can be seen as the inverse of ours.
Let us suppose a library consortium example. Their approach focus on defining
the subtypes corresponding to each library supposing that a target global type
of a distributed XML document is given. Our approach proposes to find the
integration of different library subtypes by finding the least library type capable
of verifying all library subtypes.



The usability of our method is twofold: as a theoretical tool, it can help an-
swering the decision problem announced in [Martens et al., 2006]; as an applied
tool, it can easily be adapted to the context of digital libraries, web services,
etc. In [Martens et al., 2006], the authors are interested in analyzing the actual
expressive power of XSD. With some non-trivial amount of work, part of their
theorem proofs can be used to produce an algorithm similar to ours. Indeed,
in [Gelade et al., 2010] (a work simultaneous to ours in [Chabin et al., 2010]),
the authors decide to revisit their results in [Martens et al., 2006] to define ap-
proximations of the union (intersection and complement) of XSD schemas. Our
methods are similar, but our proposal works directly over grammars, allowing
the implementation of a user friendly tool easily extended to an interactive mode,
while results in [Gelade et al., 2010] are based on the construction of type au-
tomata.

A large amount of work have been done on the subject of matching XML
schemas or ontology alignment ([Shvaiko and Euzenat, 2005] as a survey) and we
can find a certain number of automatic tools for generating schema matchings
such as SAMBO [Lambrix et al., 2008] or COMA++ [Maßmann et al., 2011].
Generally, a schema matching gives a set of edges, or correspondences, between
pairs of elements, that can be stored into translation tables (a kind of dictionary).
An important perspective of our work concerns the generation of translation
tables by using methods such as the one proposed in [Gu et al., 2008], since,
until now these semantics aspects have been considered as a ’given information’.

An increasing demand on data exchange and on constraint validation have
motivated us to work on the generation of a new set of constraints from different
local sets of type or integrity restrictions. This new set of constraints should
keep all non contradictory local restrictions. The type evolution proposed here
is well adapted to our proposes and it seems possible to combine it with an
XFD filter, as the one in [Amavi and Halfeld Ferrari, 2012], in order to obtain
a (general) set of constraints allowing interoperability. This paper focus only
on schema constraints and proposes an extension that guarantees the validity
of any local document. Thus, as explained in the introduction, our approach is
very interesting when local systems I1, . . . , In, inter-operate with a global system
I which should receive information from any local source (or format) and also
ensure type constraint validation.

9 Conclusion

XML data and types age or need to be adapted to evolving environments. Dif-
ferent type evolution methods propose to trigger document updates in order
to assure document validity. Conservative type evolution is an easy-to-handle
evolution method that guarantees validity after a type modification.

This paper proposes conservative evolution algorithms that compute a lo-
cal or single-type grammar which extends minimally a given original regular
grammar. The paper proves the correctness and the minimality of the gener-
ated grammars. An interactive approach for aiding in the construction of new



schemas is also introduced. Our three algorithms represent the basis for the con-
struction of a platform whose goal is to support administration needs in terms
of maintenance, evolution and integration of XML types.

We are currently working on improving and extending our approach to solve
other questions related to type compatibility and evolution. Except for the ter-
minal translation table, our approach is inherently syntactic: only structural
aspects of XML documents are considered and our new grammars are built by
syntactic manipulation of the original production rules. However, schemas can
be more expressive than DTD and XSD, associated to integrity constraints (as
in [Bouchou et al., 2012]) or expressed by a semantically richer data model (as
in [Wu et al., 2001]).

In [Amavi and Halfeld Ferrari, 2012] we find an algorithm that computes,
from given local sets of XFD, the biggest set of XFD that does not violate
any local document. This algorithm is a first step towards an extension of our
approach which will take into account integrity constraints. Notice that we un-
derstand this extension by the implementation of different procedures, one for
each kind of integrity constraints. In other words, by using the uniform formalism
proposed in [Bouchou et al., 2012] for expressing integrity constraints on XML
documents and following the ideas exposed in [Amavi and Halfeld Ferrari, 2012],
we can build sets of integrity constraints (inclusion dependencies, keys, etc)
adapted to our global schema. In this way, the evolution of richer schema would
correspond to the parallel evolution of different sets of constraints.

We intend not only to extend our work in these directions but also to en-
rich our platform with tools (such as the one proposed in [Amavi et al., 2011])
for comparing or classifying types with respect to a ‘type distance’ capable
of choosing the closest type for a given document (as discussed, for instance,
in [Tekli et al., 2011,Bertino et al., 2008]). Interesting theoretical and practical
problems are related to all these perspectives.
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A Appendix: Proof of Theorem 1

We start by proving that G (the grammar obtained by Algorithm 1) is an LTG.
Then we show that Algorithm 1 proposes a grammar which generates a language
containing L(G0).

Lemma 5. G is an LTG. ✷

Proof : By contradiction. Suppose Â = {A1, ..., An} and B̂ = {B1, ..., Bk}
are competing in G, we have Â → a[R] and B̂ → a[R′] in P . By construc-
tion of the rules of G (Algorithm 1) we must have in P0 the following rules:
A1 → a[R1], · · · , An → a[Rn], B1 → a[R′

1], · · · , Bk → a[R′
k]. We deduce that

A1, · · · , An, B1, · · · , Bk are competing in G0. Thus Â = B̂. This is impossible
since by definition, competing non-terminals are different. As, by construction,
there is one rule in P for each element of N = N0/‖, G is in normal form. ✷

The following lemma shows that the algorithm preserves the trees generated
by the grammar G0.

Lemma 6. If X →∗
G0

t0 then X̂ →∗
G t0. ✷

Proof : By induction on the length of X →∗
G0

t0 = a(w). Let us consider the
first step of the derivation X →G0

a[RX ] and ∃U ∈ L(RX), U →∗
G0

w. By

construction of G, X̂ is in N and X̂ → a[R] is in P with R = R̂1 | · · · | R̂n,
RX is one of Ri so Û ∈ L(R). Then X̂ →G a[R] and by induction hypothesis,
Û →∗

G w therefore X̂ →∗
G a(w) = t0. ✷

We can now begin to show the relationship between the original language,
as described by the grammar G0 and the language generated by the grammar G
obtained by the Algorithm 1.

Lemma 7. (A) L(G0) ⊆ L(G). (B) If X →∗
G0

t and X̂ →∗
G t′ then t(ǫ) = t′(ǫ)

(i.e. t and t’ have the same top symbol). ✷

Proof : Item (A) is an immediate consequence of Lemma 6. As G0 is in normal
form, we have only one rule in G0 of the form X → a[RX ], i.e., the terms
generated by X in G0 have a as top symbol. Non-terminal X is in X̂. From
Lemma 5, we know that X̂ → a[R] is the unique rule in G whose left-hand side
is X̂. ✷

From Example 4, we can, for instance, derive Instrs→∗
G ins(step, step) and

Instrs →∗
G ins(number, step). Different terms with the same top label. Now,

the next lemma states that the resulting grammar G does not introduce any
new terminal symbol at the root of the generated trees.

Lemma 8. ∀t ∈ L(G), ∃t′ ∈ L(G0) such that t′(ǫ) = t(ǫ).



Proof : Let t = a(w) ∈ L(G). Then there exists a rule {A1, · · · , An} → a[R]
in P with {A1, · · · , An} ∈ S (a start symbol in G). By definition of S, ∃i such
that Ai ∈ S0 and Ai →

∗
G0

a(w′) = t′ because G0 is in the reduced form. So
t′ ∈ L(G0) and t and t′ have the same root symbol. ✷

Next, we show that for every subtree generated by G, its root appears in
at least one subtree of the language generated by G0 (recall that w′(ǫ) = w(ǫ)
means that forests w′ and w have the same tuple of top-symbols):

Lemma 9. If t ∈ ST (L(G)), such that t = a(w), then, ∃t′ ∈ ST (L(G0)), t
′ =

a(w′) ∧ w′(ǫ) = w(ǫ).

Proof : Let t ∈ ST (L(G)) such that t = a(w). There exists Â1 → a[R] ∈ P
such that Â1 → a(U), U ∈ L(R), U →∗

G w. By construction, R = R̂1| . . . |R̂n,

and ∀i, ∃Ai ∈ N0, Ai → a[Ri] ∈ P0 ∧ Ai ∈ Â1. Therefore there exists j such
that U ∈ L(R̂j). Consider Aj → a[Rj ] ∈ P0. There exists U ′ ∈ L(Rj) such that

Û ′ = U . Now, since G0 is in reduced form, there exists a forest w′ such that
U ′ →∗

G0
w′. Consequently Aj →G0

a(U ′)→∗
G0

a(w′). Let t′ = a(w′). Since G0 is
in reduced form, the rule Aj → a[Rj ] is reachable in G0, then t′ ∈ ST (L(G0)).

From Lemma 7, since Û ′ = U , we have w(ǫ) = w′(ǫ). ✷

As an illustration of Lemma 9, we observe that from the grammars of Ex-
ample 4, given the tree r(is(ing(name,unit,qty)), r(req(item),ing(name,unit,qty),
ins(step,step)), ins(step)) from L(G), for its sub-tree t = r(req(item),ing(name,
unit,qty),ins(step,step))= r(w) ∈ ST (L(G)), we have t’ = r(req(item),ing(name,
qty,unit),ins(number,step))= r(w′) ∈ ST (L(G0)), t(ǫ) = t′(ǫ) and w(ǫ) = w′(ǫ).

Now we need some properties of local tree languages. The following lemma
states that the type of the subtrees of a tree node is determined by the label of
its node (i.e. the type of each node is locally defined). Recall that ST (L) is the
set of sub-trees of elements of L.

Lemma 10 (See [Papakonstantinou and Vianu, 2000] (Lemma 2.10)).

Let L be a local tree language (LTL). Then, for each t ∈ ST (L), each t′ ∈ L and

each p′ ∈ Pos(t′), we have that : t(ǫ) = t′(p′) =⇒ t′[p′ ← t] ∈ L. ✷

We also need a weaker version of the previous lemma:

Corollary 1. Let L be a local tree language (LTL). Then, for each t, t′ ∈ ST (L),

and each p′ ∈ Pos(t′), we have that : t(ǫ) = t′(p′) =⇒ t′[p′ ← t] ∈ ST (L). ✷

In practical terms, Corollary 1 gives us a rule of thumb on how to “complete”
a regular language in order to obtain a local tree language. For instance, let
L = {f(a(b), c), f(a(c), b)} be a regular language. According to Corollary 1, we
know that L is not LTL and that the least local tree language L′ containing L
contains all trees where a has c as a child together with all trees where a has b
as a child. In other words, L′ = {f(a(b), c), f(a(c), b), f(a(c), c), f(a(b), b)}.



Now, we can prove that the algorithm just adds what is necessary to get an
LTL (and not more), in other words, that L(G) is the least local tree language
that contains L(G0). This is done in two stages: first for subtrees, then for trees.

Lemma 11. Let L′ be an LTL such that L(G0) ⊆ L′. Then ST (L(G)) ⊆

ST (L′).

Proof : By structural induction on the trees in ST (L(G)). Let t = a(w) ∈
ST (L(G)). From Lemma 9, there exists t′ ∈ ST (L(G0)) such that t′ = a(w′) ∧
w′(ǫ) = w(ǫ). Since L(G0) ⊆ L′, we have ST (L(G0)) ⊆ ST (L′), then t′ ∈
ST (L′). If w is an empty forest (i.e. the empty tuple), w′ is also empty, therefore
t = t′ ∈ ST (L′). Otherwise, let us write w = (a1(w1), . . . , an(wn)) and w′ =
(a1(w

′
1), . . . , an(w

′
n)) (since w(ǫ) = w′(ǫ), w and w′ have the same top symbols).

Since t = a(w) ∈ ST (L(G)), for each j ∈ {1, . . . , n}, aj(wj) ∈ ST (L(G)), then
by induction hypothesis aj(wj) ∈ ST (L′). L′ is an LTL, and for each j we have
: aj(wj) ∈ ST (L′), t′ ∈ ST (L′), (aj(wj))(ǫ) = aj = t′(j). By applying Corollary
1 n times, we get t′[1← a1(w1)] . . . [n← an(wn)] = t ∈ ST (L′). ✷

Theorem 4. Let L′ be an LTL such that L′ ⊇ L(G0). Then L(G) ⊆ L′.

Proof : Let t ∈ L(G). Then t ∈ ST (L(G)). From Lemma 11, t ∈ ST (L′). On
the other hand, from Lemma 8, there exists t′ ∈ L(G0) such that t′(ǫ) = t(ǫ).
Then t′ ∈ L′. From Lemma 10, t′[ǫ← t] = t ∈ L′. ✷

This result ensures that the grammar G of Example 4 generates the least
LTL that contains L(G0).

B Appendix: Proof of Theorem 2

The proof somehow looks like the proof concerning the transformation of an
RTG into an LTG (Section 4). However it is more complicate since in a STTL
(and unlike what happens in an LTL), the confusion between t|p = a(w) and
t′|p′ = a(w′) should be done only if position p in t has been generated by the
same production rule as position p′ in t′, i.e. the symbols occurring in t and t′

along the paths going from root to p (resp. p′ in t′) are the same. This is why
we introduce notation path(t, p) to denote these symbols (Definition 7).

Lemma 12. Let χ ∈ P(N0) and A,B ∈ χ. Then Âχ and B̂χ are not competing

in P . ✷

Proof: By contradiction. Suppose Âχ and B̂χ are competing in P . Then there
exist Âχ → a[R1] ∈ P and B̂χ → a[R2] ∈ P . From the construction of P , there
exist C ∈ Âχ (then C ‖χ A) and C → a[R′

1] ∈ P0, as well as D ∈ B̂χ (then
D ‖χ B) and D → a[R′

2] ∈ P0. Thus, C ‖χ D and by transitivity A ‖χ B, then

Âχ = B̂χ, which is impossible since competing non-terminals are not equal. ✷



Example 9. Consider the grammar of Example 6.

Let χ = {Frame1 ,Frame2 , Background}. The equivalence classes induced by ‖χ

are F̂rame1
χ
= F̂rame2

χ
= {Frame1 , Frame2}; ̂Background

χ

= {Background};

which are non-competing non-terminals in P . ✷

Lemma 13. G = (N,T, S, P ) is a STTG. ✷

Proof: (1) There is no regular expression in P containing competing non-terminals:
If ÂS0 , B̂S0 are in S, then A,B ∈ S0. From Lemma 12, ÂS0 and B̂S0 are not
competing in P . For any regular expression R, let ÂN(R), B̂N(R) ∈ N(σN(R)(R)).

Thus, A,B ∈ N(R). From Lemma 12, ÂN(R) and B̂N(R) are not competing in
P . (2) G is in normal form: As for each Ai there is at most one rule in P0 whose
left-hand-side is Ai (because G0 is in normal form), there is at most one rule in
P whose left-hand-side is {A1, . . . , An}. ✷

The next lemma establishes the basis for proving that the language generated
by G contains the language generated by G0. It considers the derivation process
over G0 at any step (supposing that this step is represented by a derivation
tree t) and proves that, in this case, at the same derivation step over G, we can
obtain a tree t′ having all the following properties: (i) the set of positions is the
same for both trees (Pos(t) = Pos(t′)); (ii) positions associated to terminal are
identical in both trees; (iii) if position p is associated to a non-terminal A in
t then position p ∈ Pos(t′) is associated to the equivalence class Âχ for some
χ ∈ P(N0) such that A ∈ χ.

Lemma 14. Let Y ∈ S0. If G0 derives:

t0=Y → · · · → tn−1 →[pn, An→an[Rn]] tn then G can derive: t′0 = Ŷ S0 → · · · →

t′n−1 →[pn, Ân
χn→an[σN(Rn|··· )(Rn|··· )]]

t′n
s.t. ∀i ∈ {0, . . . , n}, Pos(t′i) = Pos(ti) ∧

∀p ∈ Pos(ti): (ti(p) ∈ T0 =⇒ t′i(p) = ti(p))∧

(ti(p) = A ∈ N0 =⇒ ∃χ ∈ P(N0), A ∈ χ ∧ t′i(p) = Âχ) ✷

Proof: See [Chabin et al., 2010].

The following corollary proves that the language of the new grammar G,
proposed by Algorithm 2, contains the original language of G0.

Corollary 2. L(G0) ⊆ L(G). ✷

In the rest of this section we work on proving that L(G) is the least STTL that
contains L(G0). To prove this property, we first need to prove some properties
over STTLs. We start by considering paths in a tree. We are interested by paths
(sequence of labels) starting on the root and achieving a given position p in a
tree t. For example, path(a(b, c(d)), 1) = a.c.

Definition 7 (Path in a tree t to a position p). Let t be a tree and p ∈

Pos(t), then path(t, p) is recursively defined by : (1) path(t, ǫ) = t(ǫ) and (2)

path(t, p.i) = path(t, p).t(p.i) where i ∈ IN. ✷



Given a STTG G, let us consider the derivation process of two trees t and t′

belonging to L(G). The following lemma proves that positions (p in t and p′ in
t′) having identical paths are derived by using the same rules. A consequence of
this lemma (when t′ = t and p′ = p) is the well known result about the unicity
in the way of deriving a given tree with a STTG [Mani and Lee, 2002].

Lemma 15. Let G′ be a STTG, let t, t′ ∈ L(G′).

Let X →∗
[pi,rulepi ]

t be a derivation of t and X ′ →∗
[p′

i
,rule′

p′
i

] t
′ be a derivation of

t′ by G′ (X,X ′ are start symbols). Then ∀p ∈ Pos(t), ∀p′ ∈ Pos(t′),

(path(t, p) = path(t′, p′) =⇒ rulep = rule′p′) ✷

Proof: Suppose path(t, p) = path(t′, p′). Then we have length(p) = length(p′).
The proof is by induction on length(p).

• If length(p) = 0, then p = p′ = ǫ, and t(ǫ) = t′(ǫ) = a. Therefore ruleǫ =
(X → a[R]) and rule′ǫ = (X ′ → a[R′]). If X 6= X ′ then two start symbols are
competing, which is impossible since G′ is a STTG. If X = X ′ and R 6= R′ then
G′ is not in normal form, which contradicts the fact that G′ is a STTG.
Therefore ruleǫ = rule′ǫ, then rulep = rule′p′ .

• Induction step. Suppose p = q.k and p′ = q′.k′ (k, k′ ∈ IN), and path(t, p) =
path(t′, p′). Then path(t, q) = path(t′, q′). By induction hypothesis, ruleq =
rule′q′ = (X → a[R]). There exits w,w′ ∈ L(R) s.t. w(k) = A, w′(k′) = A′ and
rulep = (A→ b[R1]), rule

′
p′ = (A′ → b[R′

1]) where b = t(p) = t′(p′).
If A 6= A′ then A ∈ N(R) and A′ ∈ N(R) are competing, which is impossible
since G′ is a STTG. If A = A′ and R1 6= R′

1, then G′ is not in normal form,
which contradicts the fact that G′ is a STTG. Consequently rulep = rule′p′ . ✷

In a STTL, it is possible to permute sub-trees that have the same paths.

Lemma 16 (Also in [Martens et al., 2006]). Let G′ be a STTG.

Then, ∀t, t′ ∈ L(G′), ∀p ∈ Pos(t), ∀p′ ∈ Pos(t′), (path(t, p) = path(t′, p′) =⇒

t′[p′ ← t|p] ∈ L(G′)) ✷

Example 10. Let G be the grammar of Example 6. Consider a tree t as shown

in Figure 3. The permutation of subtrees t|0.0 and t|0.1 gives us a new tree t′.

Both t and t′ are in L(G). ✷

Definition 8 (Branch derivation). Let G′ be an RTG. A branch-derivation

is a tuple of production rules10 of G′ : 〈A1 → a1[R1], . . . , An → an[Rn]〉 s.t.

∀i ∈ {2, . . . , n}, Ai ∈ N(Ri−1). ✷

Notice that if A1 is a start symbol, the branch-derivation represents the
derivation of a branch of a tree11. This branch contains the terminals a1, . . . , an

(the path to the node having an as label). Now, let us prove properties over the
grammar G built by Algorithm 2.

10 Indices are written as super-scripts for coherence with the notations in Lemma 17.
11 This tree may contain non-terminals.
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Fig. 3. Trees t and t′ with permuted sub-trees.

Lemma 17. Consider a branch-derivation in G:

〈{A1
1, . . . , A

1
n1
} → a1σN(R1

1|···|R
1
n1

)[R
1
1| · · · |R

1
n1
], . . . ,

{Ak
1 , . . . , A

k
nk
} → akσN(Rk

1 |···|R
k
nk

)[R
k
1 | · · · |R

k
nk
]〉 and let ik ∈ {1, . . . , nk}. Then

there exists a branch-derivation in G0: (A
1
i1
→ a1[R1

i1
], . . . , Ak

ik
→ ak[Rk

ik
]). ✷

Proof: By induction on k.
- k = 1. There is one step. From Definition 2, Ak

ik
→ ak[Rk

ik
] ∈ P0.

- Induction step. By induction hypothesis applied on the last k − 1 steps,
there exists a branch-derivation in G0 : (A

2
i2
→ a2[R2

i2
], . . . , Ak

ik
→ ak[Rk

ik
]).

Moreover {A2
1, . . . , A

2
n2
} ∈ N(σN(R1

1|···|R
1
n1

)(R
1
1| · · · |R

1
n1
)). Then there exists i1 ∈

{1, . . . , n1} s.t. A
2
i2
∈ N(R1

i1
). And from Definition 2, A1

i1
→ a1[R1

i1
] ∈ P0. ✷

The following example illustrates Lemma 17 and its proof.

Example 11. Let G be the grammar of Example 6 and t the tree of Figure 3.

The branch-derivation corresponding to the node 0.0.0 contains the first and the

fourth rules of G presented in Example 6 (notice that the fourth rule appears

three times). Figure 4 illustrates this branch-derivation on a derivation tree. For

instance, the first rule in G is

{Image} → image[{Frame1, F rame2} | {Background}.{Foreground}] (R1)

and G0 has the production rule

Image → image[Frame1 | Frame2 | Background.Foreground]. Then, the branch-

derivation gives us the fourth rule in G, namely:

{Frame1, F rame2} → frame[ǫ

| {Frame1, F rame2}.{Frame1, F rame2}

| {Frame1, F rame2}.{Frame1, F rame2}.{Frame1, F rame2}].

Notice that the left-hand side {Frame1, F rame2} is a non terminal in the right-hand

side of (R1). Now, consider each non terminal of G0 forming the non terminal {Frame1,

F rame2} in G. Clearly, Frame1 is on the right-hand side of the second rule in P0 while



Frame2 is on the right-hand side of the third rule in P0 (as shown in Example 6). We

can observe the same situation for all the rules in the branch-derivation. Thus, as proved

in Lemma 17, the branch-derivation in G0 that corresponds to the one considered in

this example is:

〈 Image → image[Frame1 | Frame2 | Background.Foreground]

Frame2 → frame[Frame2.F rame2.F rame2 | ǫ]

Frame2 → frame[Frame2.F rame2.F rame2 | ǫ]

Frame2 → frame[Frame2.F rame2.F rame2 | ǫ] 〉 ✷

0.0

0

0.1

0.0.10.0.0

image

frame

frame

0.0.2

{Frame1, F rame2}

{Frame1, F rame2}

{Frame1, F rame2}

0.1

{Frame1, F rame2}

frame

ǫ

Fig. 4. Derivation tree in G. Grey nodes illustrate a branch-derivation.

The following lemma somehow expresses what the algorithm of Definition 2
does. Given a forest w = (t1, . . . , tn), recall that w(ǫ) = 〈t1(ǫ), . . . , tn(ǫ)〉, i.e.
w(ǫ) is the tuple of the top symbols of w.

Lemma 18. ∀t ∈ L(G), ∀p ∈ Pos(t),

t|p = a(w) =⇒ ∃t′ ∈ L(G0), ∃p
′ ∈ pos(t′), t′|p′ = a(w′) ∧ w′(ǫ) = w(ǫ) ∧

path(t′, p′) = path(t, p). ✷

Proof: There exists a branch-derivation in G that derives the position p of t
({A1

1, . . . , A
1
n1
} → a1σN(R1

1|···|R
1
n1

)[R
1
1| · · · |R

1
n1
], . . . ,

{Ak
1 , . . . , A

k
nk
} → akσN(Rk

1 |···|R
k
nk

)[R
k
1 | · · · |R

k
nk
])

and u ∈ L(σN(Rk
1 |···|R

k
nk

)(R
k
1 | · · · |R

k
nk
)) s.t. u→∗

G w.

Then there exists ik s.t. u ∈ L(σN(Rk
1 |···|R

k
nk

)(R
k
ik
)). Thus, there exists v ∈ L(Rk

ik
)

s.t. u = σN(Rk
1 |···|R

k
nk

)(v). Note that ∀Y ∈ N0, ∀χ ∈ P(N0), Y and Ŷ χ generate

the same top-symbol. So u and v generate the same top-symbols. Since G0 is in
reduced form, there exists w′ s.t. v →∗

G0
w′, and then w′(ǫ) = w(ǫ).

From Lemma 17, there exists a branch-derivation inG0: (A
1
i1
→ a1[R1

i1
], . . . , Ak

ik
→

ak[Rk
ik
]). Since G0 is in reduced form, there exists t′ ∈ LG0

(A1
i1
) (i.e. t′ is a tree

derived from A1
i1

by rules in P0, and t′ contains only terminals), and there exists
p′ ∈ Pos(t′) s.t. this branch-derivation derives in G0 the position p′ of t′. Since
v ∈ L(Rk

ik
) and v →∗

G0
w′, one can even choose t′ s.t. t′|p′ = ak(w′). Since ak = a,



we have t′|p′ = a(w′). On the other hand, path(t′, p′) = a1 . . . ak = path(t, p).
Finally, since t ∈ L(G), {A1

1, . . . , A
1
n1
} ∈ S. Since A1

i1
∈ {A1

1, . . . , A
1
n1
}, from

Definition 2 we have A1
i1
∈ S0. Therefore t′ ∈ L(G0). ✷

Example 12. Let G be the grammar of Example 6 and t the tree of Figure 3.

Let p = 0. Using the notations of Lemma 18, t|0 = frame(w) where

w = 〈frame(frame, frame, frame), frame(frame, frame)〉. We have t 6∈

L(G0). Let t′ = image(frame(frame(frame, frame), frame)) ∈ L(G0) and

(with p′ = p = 0) t′|p′ = frame(w′) where w′ = 〈frame(frame, frame),

frame〉. Thus w′(ǫ) = w(ǫ). Note that others t′ ∈ L(G0) suit as well. ✷

We end this section by proving that the grammar obtained by our algorithm
generates the least STTL which contains L(G0).

Lemma 19. Let L′ be a STTL s.t. L(G0) ⊆ L′. Let t ∈ L(G). Then, ∀p ∈

Pos(t), ∃t′ ∈ L′, ∃p′ ∈ pos(t′), (t′|p′ = t|p ∧ path(t′, p′) = path(t, p)). ✷

Proof: We define the relation ⊐ over Pos(t) by p ⊐ q ⇐⇒ ∃i ∈ IN, p.i = q. Since
Pos(t) is finite, ⊐ is noetherian. The proof is by noetherian induction on ⊐. Let
p ∈ pos(t). Let us write t|p = a(w).
From Lemma 18, we know that: ∃t′ ∈ L(G0), ∃p

′ ∈ pos(t′), t′|p′ = a(w′) ∧
w′(ǫ) = w(ǫ) ∧path(t′, p′) = path(t, p). Thus, t|p = a(a1(w1), . . . , an(wn)) and
t′|p′ = a(a1(w

′
1), . . . , an(w

′
n)).

Now let p ⊐ p.1. By induction hypothesis: ∃t′1 ∈ L′, ∃p′1 ∈ pos(t′1), t
′
1|p′

1
=

t|p.1 = a1(w1) ∧path(t
′
1, p

′
1) = path(t, p.1). Notice that t′1 ∈ L′, t′ ∈ L(G0) ⊆

L′, and L′ is a STTL. Moreover path(t′1, p
′
1) = path(t, p.1) = path(t, p).a1 =

path(t′, p′).a1 = path(t′, p′.1).
As path(t′1, p

′
1) = path(t′, p′.1), from Lemma 16 applied on t′1 and t′, we get

t′[p′.1← t′1|p′
1
] ∈ L′. However (t′[p′.1← t′1|p′

1
])|p′ = a(a1(w1), a2(w

′
2), . . . , an(w

′
n))

and path(t′[p′.1 ← t′1|p′
1
], p′) = path(t′, p′) = path(t, p). By applying the same

reasoning for positions p.2, . . . , p.n, we get a tree t′′ ∈ L′ such that t′′|p′ = t|p
and path(t′′, p′) = path(t, p). ✷

Corollary 3 (When p = ǫ, and then p′ = ǫ). Let L′ be a STTL such that

L′ ⊇ L(G0). Then L(G) ⊆ L′. ✷


