
DECLARATIVE INCORRECTNESS DIAGNOSISIN CONSTRAINT LOGIC PROGRAMMINGFRAN�COIS LE BERRE AND ALEXANDRE TESSIERLIFO { UNIVERSIT�E D'ORL�EANS { BP 6759 { 45067 ORL�EANS CEDEX 2 { FRANCEfb,tessierg@lifo.univ-orleans.fr, http://www.univ-orleans.fr/~tessierAbstract. Our concern in this paper is the declarative incorrectness diagnosisof constraint logic programs. Many techniques have been developed for LP butcannot be merely adapted to CLP. Constraint logic program semantics is rede-�ned, using a reject criterion, in term of skeletons. Skeletons give an intrinsicde�nition to the answers provided by a program. The reject criterion can takeinto account the behaviour of an incomplete constraint solver. The main contri-bution of this paper is to prove that: if there exists a wrong answer then there isan incorrect clause in the program, and this clause occurs in the answer skeleton.Moreover, we give an algorithm which, given an incorrectness symptom, localizesa faulty clause and the circumstances of its incorrectness. Above all, there arenew notions adapted to CLP framework.1 IntroductionProgram debugging is known to be a time consuming task in the programming pro-cess, but, constraint logic program debugging is relatively unexplored. The proposedapproach in this paper for incorrectness localisation is declarative diagnosis. Declara-tive error diagnosis in Logic Programming (LP) was introduced in [8] under the nameof algorithmic debugging. In Constraint Logic Programming (CLP), the necessityof declarative diagnosis is as much signi�cant as in LP. In this context, declarativemeans that there is no need for the programmer to understand the computationalbehaviour of the system. It is evident that a computer cannot diagnose errors in aprogram without being told a part of what should be computed. But, only intendeddeclarative semantics of the program is required. Indeed, a great strength of CLPis its declarative nature, and, for a declarative language, it is essential to consider adeclarative notion of error. It would be incoherent to use only low level tools. Trac-ing techniques are useful, but in addition to their direct link to the computationalbehaviour, they quickly become extraordinarily di�cult (long and ine�ective) to use.The success of a declarative debugging tool is directly related to the language declar-ativity level. From this viewpoint, CLP is used in a much more declarative way thanLP. In particular, negation by failure, cut, is, var, etc. are useless because of theavailability of global constraints, disequations, etc.This paper is only devoted to errors which lead to wrong answers. In particular,errors leading to missing answers are not considered. The aim is to give de�nitionsof incorrectness symptom and incorrectness in the CLP formalism and to prove con-structively that if there exists a symptom then there exists an incorrectness.It is not possible to merely adapt LP techniques to CLP. Herbrand interpretationsdo not represent program semantics any more. Some elements of the constraint do-main are not �nely expressible in the program language (e.g. � in CLP(R)). When



we debug, we like to stay in the program language. With respect to classical theo-retical frameworks [7], practical implementations use incomplete constraint solvers,that is to say solvers which do not end the computation while the current store isunsatis�able (see Ex. 5). It is important, for practical purpose, to take into accountthis feature of real implementations. So, new theoretical foundations are necessary.We start by reformulating completely the program semantics bases. Our approachof program semantics is based on an extension to CLP of the \grammatical view" ofLP introduced by [2]. In fact, the basic notion is skeletons, which clearly expressthe relation between declarative and operational semantics. Moreover, we take intoaccount the incompleteness of constraint solvers via a reject criterion. Classical resultsare found when the reject criterion is de�ned either by a domain or a theory.The main contribution is that if there exists a wrong answer then there exists anincorrect clause in the program, and such a clause occurs in the answer skeleton.The paper is organized as follows: Sect. 2 de�nes the language and notations,gives the motivations for the formal notions, and, formally de�nes them when inter-pretation of the constraints is based on a pre-interpretation. Sect. 3 abstracts thepre-interpretation to take into account incompleteness of constraint solvers. In thisframework, we give a diagnosis algorithm. Sect. 4 concludes the paper.2 Theoretical Viewpoint2.1 Terminology and NotationsLet us consider once and for all four sets which de�ne the program language: anin�nite set of variables V ; a set of function symbols �; a set of constraint predicatesymbols �c; a set of program predicate symbols �p.The set of terms is built, as usual, over (V;�). An atom is an atomic formulabuilt over (V;�;�p). The constraint language CONST is a subset of the �rst orderlanguage built over (V;�;�c). We assume that it is closed by existential quanti�ca-tion, conjunction and contains the two logic constant true and false. A constraint isa formula of CONST.A clause is a n + 2-tuple (0 � n) denoted by a0  c2 a1; : : : ; an, where each aiis an atom and c is a constraint. Given a clause R of the previous form, we de�nehead(R) = a0, body(R) = c2 a1; : : : ; an, constraint(R) = c and arity(R) = n. A goalis a clause without head. A program is a set of clauses. A constrained atom is a pairdenoted by c! a where a is an atom and c is a constraint.Notations. ~x denotes a sequence of distinct variables x1; : : : ; xn. If F is a formulabuilt over (V;�;�p [ �c) then var(F ) denotes the free variable sequence of F . If cis a constraint, ~x is x1; : : : ; xn, ~y are the free variables of c which are not in ~x anda is an atom then 9~x c denotes 9x1 � � � 9xn c; ~9 c denotes 9var(c) c; 9�~x c denotes 9~y c;9�a c denotes 9�var(a) c.2.2 MotivationsTo motivate the framework and the de�nitions, we �rst consider that intended signi-�cation of constraints is based on a pre-interpretation D with domain D.Let P be a CLP program and  g be a goal. The answer constraint r to  g isconsidered abnormal if there exists a valuation v in the underlying pre-interpretation



D such that v satis�es r and v(g) should not evaluate to true with respect to theexpected properties of P . We say that v is an anomaly.We point out that anomalies cannot be caused by the possible incompleteness ofthe constraint solver. Indeed, if the solver provides an unsatis�able answer constraintr (i.e. always wrong in D) then, for each valuation v, v(r) = false, therefore v cannotbe an anomaly for the goal.Anomalies are due to P . P is wrong in the sense that P contains at least anincorrect clause.Our concern is to provide an assistance to localize, as fast as possible, a faultyclause and the conditions of its abnormal behaviour. It is not necessary to review eachclause of the program, but the matter is to examine clauses which have been used toconstruct the abnormal answer. Moreover, we try to make clear the circumstancesunder which the clause is faulty. At �rst, these circumstances are formalized by avaluation. Then, to take into account the fact that elements of the domain are onlymanipulated through constraints, they will be formalized by a constraint.Example 1 Let FIB be the program:fib(0; 0) truefib(1; 1) truefib(x+ 1; y1 + y2) x > 02 fib(x; y1); fib(x; y2)The program language (�;�c;�p) is de�ned from symbols which occur in FIB. Theunderlying pre-interpretation for the constraints is N , whose domain is IN, with theusual interpretation for function symbols and constraint predicate symbols.The program predicate symbol fib is assumed to de�ne the binary relation over INsuch that the second argument is the result of the Fibonacci mapping (called fibo)applied to the �rst argument.The answer constraint x = 1 + 1 ^ y = 1 to the goal  y = 12 fib(x; y + 1) isabnormal. A valuation v0 such that v0(x) = 2 and v0(y) = 1 satis�es the answerconstraint but should not satisfy the body of the goal (fibo(2) = 1).The faulty clause is fib(x+ 1; y1 + y2) x > 02 fib(x; y1); fib(x; y2) and a possiblepatching is fib(x+ 1; y1 + y2) x > 02 fib(x; y1); fib(x� 1; y2).2.3 From D-De�nitions to De�nitionsA D-atom is a (n + 1)-tuple denoted by p(d1; : : : ; dn) where p is a n-ary programpredicate symbol and d1; : : : ; dn are elements of the domain D (D-atoms are notelements of the language). The D-base is the set of D-atoms. A D-interpretation IPDis a subset of the D-base. It de�nes an interpretation. A valuation is a mapping fromV to D. There is a natural extension of a valuation v denoted also by v which mapsfrom terms to D, from constraints to ftrue; falseg and from atoms to D-base. IPDis a D-model of P if for each clause (head  c2 body) 2 P , for every valuation v,v(c) = true and v(body) � IPD implies v(head) 2 IPD . We say that a clause is notvalid in IPD if there exists a valuation which satis�es (in IPD ) the body of the clausebut does not satisfy the head. A program P has a least D-model denoted by MPD .Let P be a program and  cg 2 bg1 ; : : : ; bgm be a goal. Answer constraint r isregarded as abnormal because in the underlying pre-interpretation D there exists a



valuation v which is an anomaly. fv(bgi)gi=1;:::;m � MPD and v satis�es cg (becauser is 9�~x(r0 ^ cg), where ~x are the free variables of the goal). The anomaly lies in thefact that an atom bgi of the goal is such that v(bgi) should not be in MPD .When we wrote the program P we wanted that the relations de�ned by P be truein an intended D-interpretation IPD . This D-interpretation formalizes the intendedsemantics of the program P .The anomaly is that r ! cg ^ bg1 ^ � � �^ bgm is not valid in IPD because there existsbgi such that v(bgi) 62 IPD (v(cg) does not depend on IPD ). The anomaly exists becauseMPD 6� IPD . This �rst motivates the following de�nitions.De�nition 2.1 An incorrectness D-symptom of P wrt IPD is a D-atom in MPD � IPD .A D-incorrectness of P wrt IPD is a pair hh  c2 b1; : : : ; bn; vi such that v(c) =true, for i = 1; : : : ; n, v(bi) 2 IPD and v(h) 62 IPD .If there exists an incorrectness D-symptom of P wrt IPD then MPD 6� IPD , thus IPDis not a D-model of P (MPD is the least D-model of P ), thus there exists a clause inP which is not valid in IPD and thus there exists a D-incorrectness of P wrt IPD . Thisclause can be viewed as an error which causes the symptom.Remark. The converse is wrong. For example, let P be the program fp true2 qgand IPD = fqg. MPD = ; � IPD , thus there is no incorrectness D-symptom of P wrtIPD . But IPD is not a D-model of P , and, for each valuation v, hp  true2 q; vi is aD-incorrectness of P wrt IPD .According to the previous de�nitions, if there exists an incorrectness D-symptomthen there exists a D-incorrectness. The clause of the D-incorrectness is a faultyclause and the valuation explains why it is faulty.Example 2 The intended semantics of FIB is formalized by the N -interpretationIFIBN = ffib(d1; d2) j fibo(d1) = d2g The least N -model of FIB is MFIBN =ffib(d1; d2) j if d1 = 0 then d2 = 0 else d2 = 2d1�1gMFIBN 6� IFIBN , i.e. there exists an incorrectness N -symptom of FIB wrt IFIBN , thusthere exists a N -incorrectness of FIB wrt IFIBN .The N -atom fib(2; 2) is an incorrectness N -symptom (fibo(2) 6= 2).The pair hfib(x+1; y1+ y2) x > 02 fib(x; y1); fib(x; y2); v1i, is a N -incorrectnessof FIB wrt IFIBN , where v1 is such that v1(x) = 1, v1(y1) = 1, v1(y2) = 1.The point of interest in CLP is that, usually, v cannot be expressed in the languagebecause there is no corresponding ground term for each element ofD. When we debug,we would stay in the program language. To remain in the language we proposeto change the valuation (which explains the incorrectness of a faulty clause) by aconstraint which approximates the valuation in a sense. Indeed, valuations are onlymanipulated through constraints.We say that a constraint r is a witness of the invalidity of h c2 b1; : : : ; bn in theD-interpretation IPD if there exists a valuation v solution of r such that v(c) = true,fv(bi)gi=1;:::;n � IPD , but v(h) 62 IPD , i.e. j=IPD ~9 (r ^ c ^ b1 ^ � � � ^ bn ^ :h).Remark. A clause is not valid in IPD i� there exists a witness of its invalidity (forexample, the constraint true).



There is, of course, a commonplace algorithm which consists in verifying eachclause of the program, that is, for each clause head body, to check if j=IPD body !head. We can restrict the research by considering clauses which occur in the derivationwhich computes the abnormal answer constraint as we said before. But this is just aclause checking and it is too awkward. We would like to boil down to easier problems,no more focused on clauses but on constrained atoms.Some witnesses can be more interesting than others: if j=D c ! c0 then c is awitness of the clause R implies that c0 is a witness of the clause R; c provides moreinformation than c0 in the sense that c better approximates v than c0.We say that r is a strong witness of the invalidity of the clause h c2 b1; : : : ; bnin the D-interpretation IPD if j=IPD r ! c ^ b1 ^ � � � ^ bn and not(j=IPD r ! h); i.e.j=D r ! c, for each i = 1; : : : ; n, j=IPD r ! bi and not(j=IPD r ! h). Strong witnessesare witnesses. The converse is wrong, as shown by the following example.Example 3 The constraint true is a witness of the invalidity of the clausefib(x+ 1; y1 + y2) x > 02 fib(x; y1); fib(x; y2)because of the valuation v1 (v1(x) = 1; v1(y1) = 1; v1(y2) = 1).But true is not a strong witness of its invalidity becausenot(j=IFIB true! x > 0 ^ fib(x; y1) ^ fib(x; y2)).A strong witness of its invalidity is x = 1 ^ y1 = 1 ^ y2 = 1 (which is also a witness).The strong witness notion motivates the following de�nitions of incorrectnesssymptom and incorrectness. We have next (in Sect. 3) to take into account incom-pleteness of constraint solvers.De�nition 2.2 An incorrectness symptom of P wrt the D-interpretation IPD is apair h c2 b1; : : : ; bn; ri, such that j=MPD r ! c ^ b1 ^ � � � ^ bn and not(j=IPD r !c^b1^� � �^bn). Since j=D r ! c then j=IPD r ! c, therefore there exists i 2 f1; : : : ; ngsuch that not(j=IPD r ! bi).An incorrectness of P wrt the D-interpretation IPD is a pair hh c2 b1; : : : ; bn; ri,where r is a strong witness for the clause.An atomic incorrectness symptom of P wrt IPD is a constrained atom r ! b suchthat j=MPD r ! b and not(j=IPD r ! b).Remark. There exists an incorrectness symptom of P wrt IPD i� there exists an atomicincorrectness symptom of P wrt IPD .We will show that if there exists an incorrectness symptom then there exists astrong witness for a clause used during the computation. But before, we have tode�ne, more precisely, answers (skeletons) and answer constraints.2.4 SkeletonsDe�nition 2.3 Let G be the set of all goals. A skeleton is an oriented tree, labeledby P [ G, such that the degree of a node is the number of atoms in the body of itslabel, and the root is the unique node labeled by an element of G.



We want to associate a constraint system to a skeleton, and, as usual, we areconfronted with the problem of variable renaming.The relation \to be a variant" is an equivalence relation over the set of clauses.We assume that nodes of a skeleton (except the root) are labeled by an equivalenceclass of clauses denoted by a clause of P . We de�ne a renaming mapping RM for askeleton, in the following way, for each node N labeled by R: RM(N) = R when N isthe root; otherwise we choose a clause RM(N) in the class of R, such that, for eachpair of distinct nodes N1 and N2, RM(N1) and RM(N2) have no shared variables.A skeleton S and a renaming mapping RM are assumed to be �xed.For every node N of S, if b is the ith atom of the label body of RM(N) and Ni isthe ith child of N , then we de�ne atom(Ni) = b.Let p(~s) and q(~t) be two atoms, where ~s and ~t denote sequences of terms, we de�nethe constraint p(~s) = q(~t) which denotes either the constraint false when p 6= q, orthe constraint s1 = t1 ^ � � � ^ sn = tn when p = q.We associate to each node N of S a constraint. The constraint associated to theroot of S is the constraint of the goal. The constraint associated to another node N ,such that RM(N) = (h c2 b1; : : : ; bn), is c^(h = atom(N)). We associate to S theconstraint system const(S) de�ned by the collection of the constraints associated toeach node of S. When S is �nite, we denote by C(S) the conjunction of the constraintsof const(S) and by AC(S) the constraint 9�~xC(S), where ~x are the free variables ofthe root of S. Note that AC(S) does not depend on the renaming mapping RM .De�nition 2.4 An answer to the goal  g is a �nite skeleton S rooted by  g suchthat j=D ~9C(S). Then, AC(S) is an answer constraint to the goal  g.Skeletons are the declarative notion of answer. They give a straightforward andintrinsic de�nition to the answers provided by a program. A skeleton puts togetherthe clauses used along a derivation leaving aside the computation rule. Answers pro-vided by a program are in fact independent of the computation rule. An answer is a�nite skeleton, rooted by the goal and not rejected in some sense. From the answerskeleton we can infer the answer constraint, as well as, by giving a computation rule(i.e. a traversal of the skeleton), the success derivation. Skeletons are a good repre-sentation of the success derivations equivalence classes modulo the computation rule.They are a good tool to link easily operational semantics and declarative semantics.Moreover, skeletons are a constructive de�nition of declarative answers. This is par-ticularly helpful in declarative debugging. SLD-resolution can be described in termsof skeletons, a node of an SLD-tree is a partial skeleton. But this is out of scope.Example 4 S2 is an answer of the program FIB to the goal  true2 fib(x; y) (forfurther legibility, nodes are labeled by renamed clauses according to RM).�� @@fib(1; 1) true fib(1; 1) true true2 fib(x; y)fib(x1 + 1; y1 + y2) x1 > 02 fib(x1; y1); fib(x1; y2)S2 =



The constraint associated to S2 is C(S2) = (true ^ x1 > 0 ^ x1 + 1 = x ^ y1 + y2 =y^true^1 = x1^1 = y1^true^1 = x1^1 = y2), which is satis�able in N . The answerconstraint is AC(S2) = 9x19y19y2 C(S2), which is equivalent to x = 1+1^y = 1+1.The pair hfib(x+1; y1+y2) x > 02 fib(x1; y1); fib(x2; y2);x = 1^y1 = 1^y2 = 1i isan incorrectness of FIB wrt IFIBN . The pair h true2 fib(x; y);x = 1+1^y = 1+1iis an incorrectness symptom of FIB wrt IFIBN . The constrained atom (x = 1+1^y =1 + 1)! fib(x; y) is an atomic incorrectness symptom of FIB wrt IFIBN .S3 is not an answer to the goal  true2 fib(x; y). Indeed, C(S3) is such thatnot(j=N ~9C(S3)) (const(S3) contains 1 = x1 and 0 = x1).�� @@fib(1; 1) true true2 fib(x; y)fib(x1 + 1; y1 + y2) x1 > 02 fib(x1; y1); fib(x1; y2)S3 = fib(0; 0) trueOur de�nition of answer constraint is equivalent to classical one's [7, 5]: if S isan answer to the goal  g then P j=D AC(S) ! g; and, if P j=D c ! g thenj=D c! WS2RAC(S), where R is the set of answers to the goal  g.Remark. R may be in�nite. It is not always possible to replace it by a �nite subset.This is possible if D is replaced by a theory T , a model of which is D, by using the�niteness theorem of the �rst order logic.2.5 Symptom Implies ErrorDiagnosis algorithm is invoked when, during a computation, appears a computedincorrectness symptom. Computed incorrectness symptoms are a particular case ofincorrectness symptoms.De�nition 2.5 A computed incorrectness symptom of P wrt the D-interpretationIPD is a pair h cg 2 bg1 ; : : : ; bgn ; ri, such that r is an answer constraint to the goal cg 2 bg1 ; : : : ; bgn and not(j=IPD r ! cg 2 bg1 ; : : : ; bgn).Lemma 2.6 There exists a computed incorrectness symptom i� there exists an in-correctness symptom.Proof. ): If h c2 b1; : : : ; bn; ri is a computed incorrectness symptom of P wrt IPDthen r is an answer constraint to the goal c2 b1; : : : ; bn. The correctness of answerconstraint shows that P j=D r ! c^b1^� � �^bn, thus j=MPD r ! c^b1^� � �^bn (becauseMPD is the least D-model of P ), therefore h c2 b1; : : : ; bn; ri is an incorrectnesssymptom of P wrt IPD .(: If h c2 b1; : : : ; bn; ri is an incorrectness symptom of P wrt IPD then j=MPDr ! c ^ b1 ^ � � � ^ bn, i.e. r ! c ^ b1 ^ � � � ^ bn evaluates to true in each D-modelof P , thus P j=D r ! c ^ b1 ^ � � � ^ bn. The completeness of answer constraintshows that j=D r ! WS2RAC(S), where R is the set of answers to the goal  c2 b1; : : : ; bn. This means that for each valuation v such that v(c) = true there existsS 2 R such that v(AC(S)) = true. We know that not(j=IPD r ! c ^ b1 ^ � � � ^ bn),thus there exists a valuation v such that v(r) = true, therefore v(c) = true, and



fv(b1); : : : ; v(bn)g 6� IPD . Let S 2 R be a �nite skeleton such that v(AC(S)) = truethen h c2 b1; : : : ; bn;AC(S)i is a computed incorrectness symptom of P wrt IPD .Lemma 2.7 If there exists a computed incorrectness symptom of P wrt IPD then thereexists an incorrectness of P wrt IPD .Proof. Let h cg 2 bg1 ; : : : ; bgm ;AC(S)i be a computed incorrectness symptom of Pwrt IPD . We will show that C(S) is a strong witness for a clause which labels a node ofS. Note that S is a �nite skeleton and h cg 2 bg1 ; : : : ; bgm ;C(S)i is an incorrectnesssymptom of P wrt IPD (Lemma2.6)).Let us assume that C(S) is not a strong witness for any clause of S, then we will showby induction on the subtrees height of S that for each node N of S, except the root,j=IPD C(S)! atom(N), i.e. C(S)! atom(N) is not an atomic incorrectness symptomof P wrt IPD , thus h cg 2 bg1 ; : : : ; bgm ;C(S)i is not an incorrectness symptom of Pwrt IPD . We recall that, because of the de�nition of C(S): j=D C(S)! cg , and for eachnode N of S, except the root, labeled by a clause hN  cN 2 bN1 ; : : : ; bNk we have:j=D C(S) ! cN ; and j=IPD C(S) ! hN i� j=IPD C(S) ! atom(N), because const(S)contains hN = atom(N). We denote by S(N) the subtree of S rooted by N . IfS(N) is 1 high then N is a leaf labeled by hN  cN and j=IPD C(S)! hN , thereforej=IPD C(S) ! atom(N). If S(N) is a high, a > 1, and j=IPD C(S) ! atom(N 0),for each child N 0 of N . Let hN  cN 2 bN1 ; : : : ; bNk be the label of N , then j=IPDC(S)! cN ^ bN1 ^� � �^ bNk , thus j=IPD C(S)! hN , therefore j=IPD C(S)! atom(N).Consequently, each child N 0 of the root is such that j=IPD C(S) ! atom(N 0), thusj=IPD C(S) ! cg ^ bg1 ^ � � � ^ bgm , therefore h cg 2 bg1 ; : : : ; bgm ;C(S)i is not anincorrectness symptom of P wrt IPD .We have shown that if h cg 2 bg1 ; : : : ; bgm ;C(S)i is an incorrectness symptom of Pwrt IPD then there exists a clause hN  cN 2 bN1 ; : : : ; bNk which labels a node of Ssuch that hhN  cN 2 bN1 ; : : : ; bNk ;C(S)i is an incorrectness of P wrt IPD .The conclusion of this section is that if S is an answer to the goal  g andh g;AC(S)i is an incorrectness symptom of P wrt IPD then there exists a clausehead  body, which labels a node of S, whose free variables are ~y, such thathhead  body; 9�~yC(S)i is an incorrectness of P wrt IPD . The proof gives a (nonoptimized) algorithm which consists in verifying the nodes of the skeleton from theroot to the leaves by looking if the constrained atoms constituted with C(S) andatoms of the node label body are atomic incorrectness symptoms. Next section givesthis diagnosis algorithm, but previously introduces a novel semantics which takes intoaccount incompleteness of constraint solvers.3 Incorrectness Diagnosis AlgorithmThis section introduces a novel program semantics which abstracts the underlying pre-interpretation. It is well-known that, for practical purpose, some constraint solversare not satisfaction complete. Furthermore, they do not have the behaviour of atheory. We cannot take into account, in theoretical works, this feature of practicalimplementation by changing the constraint solver by a theory.



Example 5 The CLP(R) constraint solver provides three kinds of answer: yes (satis�-able constraint), no (unsatis�able constraint) and maybe (it cannot decide). It answersyes to x � x = 1 ^ x = 1, but maybe to x � x = 1, nevertheless j= 9x(x � x = 1 ^ x =1)! 9x(x�x = 1). It answers no to x = 1^x = 0, but maybe to x�x = 1^x�x = 0,nevertheless j= :9x(x = 1 ^ x = 0)! :9x(x � x = 1 ^ x � x = 0).3.1 Reject CriterionIn Sect. 2, program semantics was formalized by the least D-model of P . A �niteskeleton S was rejected if ~9C(S) was unsatis�able in D. For the system, a �niteskeleton S is rejected if the constraint solver answers no to C(S). We want to abstractthe pre-interpretation D by a Reject Criterion RC. A reject criterion RC is a relationover CONST. It is, in general, de�ned from: a pre-interpretation D, denoted byRC(D), c is rejected if c is unsatis�able in D; a theory T (not necessarily satisfactioncomplete as generally assumed [7]), denoted by RC(T ), c is rejected if for each D-model of T c is rejected by RC(D) (i.e. T j= :c); a constraint solver A, denoted byRC(A), c is rejected if A answers no to c.In order to simplify, we assume that if c1 and c2 are two constraint then: c1 ^ c2and c2^c1 represent the same constraint; if ~x are some free variables of c1 which haveno free occurrence in c2 then 9~xc1 ^ c2 and 9~x(c1 ^ c2) are the same; if x and y aretwo variables then 9x9y c1 and 9y9x c1 are the same, 9x c1 and 9x9x c1 are the same.Reject criterions verify, for each rejected constraint c, the three following proper-ties: for each constraint c0, c ^ c0 is rejected; for each variable x, 9x c is rejected; foreach variable renaming �, c� is rejected. These three properties are veri�ed when RCis de�ned from a pre-interpretation, from a theory, from usual constraint solvers.We say that a �nite skeleton S is rejected by the reject criterion RC if C(S) isrejected by RC. De�nitions of answer and answer constraint are adapted to this newframework: an answer, according to RC, to the goal g is a �nite skeleton S, rootedby  g, which is not rejected by RC; then AC(S) is an answer constraint, accordingto RC, to the goal  g.The reject criterion is not supposed to have a logical behaviour. But assumethat the reject criterion is deduced from an incomplete1 constraint solvers, then: ifS is an answer to the goal  g then P; T j= AC(S) ! g; if P j= c ! g thenT j= c! WS2RAC(S), where R is a �nite subset of the answers to the goal  g.3.2 Abstraction of the Intended SemanticsAs we abstract the underlying pre-interpretation D, we abstract the intended D-interpretation IPD . Indeed, the notions of incorrectness symptom and incorrectnessare de�ned from the validity of a constrained atom in IPD . That is, the interaction withthe intended semantics is only based on constrained atoms. Therefore, the intendedsemantics can be formalized by a set of constrained atoms. We propose to use theclassical notion of oracle O to formalize the intended semantics. O accepts or rejectsconstrained atoms in accordance with the intended semantics. An oracle O must havethe following natural property: O rejects c ! b i� O rejects (9~yc) ! b, where ~y aresome variables not in var(b).1An incomplete constraint solver, based on a theory T , answers no or maybe to c when T j= :c,and it answers yes or maybe to c when T j= ~9c



Remark. We assume that symptoms are not due to the system, thus the intendedsemantics of a program must be in accordance with the reject criterion. For example,if c! a is expected and c^c0 is not rejected then c^c0 ! a is also expected. But, thefact that c ! a is expected while c is rejected is not a problem in the incorrectnessframework.This section is more general than Sect. 2, in the sense that we make two abstrac-tions: D is abstracted by RC and IPD is abstracted by O. Now, we lift de�nitions:De�nition 3.1 A computed incorrectness RC-symptom of P wrt O is a pair h cg 2 bg1 ; : : : ; bgn ; ri such that r is an answer constraint according to RC to the goal cg 2 bg1 ; : : : ; bgn and there exists i 2 f1; : : : ; ng such that r ! bgi is rejected by O.An incorrectness of P wrt O is a pair hh  c2 b1; : : : ; bn; ri such that for eachi 2 f1; : : : ; ng, (r ^ c)! bi is not rejected by O and (r ^ c)! h is rejected by O.Lemma 3.2 If there exists a computed incorrectness RC-symptom of P wrt O thenthere exists an incorrectness of P wrt O.Proof. There is just to lift the proof of Lemma2.7. If h cg 2 bg1 ; : : : ; bgn ; ri is acomputed incorrectness RC-symptom of P wrt O then there exists a �nite skeletonS not rejected by RC, rooted by  cg 2 bg1 ; : : : ; bgn , such that AC(S) = r and thereexists a renamed clause head  body according to RM labelling a node of S suchthat hhead body; ri is an incorrectness of P wrt O.3.3 The AlgorithmThe proposed algorithm consists on a top-down traversal of the skeleton along abranch from the goal to an incorrect clause, asking questions to the oracle. Theoracle can be a human, but also an automatic system based on a partial speci�cationof the intended semantics.We emphasize that our algorithm uses the constraint solver of the system. Usually,the CLP system presents answer constraints into a simpli�ed form. We want toquestion the oracle with constrained atoms whose constraint is simpli�ed as well asanswer constraints provided by the system. We question oracle on (9�var(b)r) ! b,where 9�var(b)r is simpli�ed as well as answer constraints by the constraint solver,rather than to question it on r ! b. Then determining if r is a correct answerconstraint for the goal c2 b1; : : : ; bn is not easier than determining if (9�var(b)r)!b is expected (especially if b has few variables or is ground).Algorithm uses the following functions: C(S): constraint associated to the skeletonS; root(S): root of S; child(S,N,I): Ith child of the node N in S; label(S,N): label ofthe node N in S; arity(S,N): number of children of the node N in S; i-atom(S,N,I):Ith atom in the body of label(S,N); simplify(C,V): simpli�cation of 9�VC (it callsthe constraint solver of the system); var(X): free variables of X; ask(C --> B): ques-tions the oracle for the constrained atom C! B.Declarative incorrectness diagnosis algorithm, given a computed answer S whichprovides an incorrect RC-symptom, is:N := IncorrectNode(S)write( < label(S,N) ; simplify(C(S),var(label(S,N))) > )



Where IncorrectNode is de�ned by:function IncorrectNode(S) return nodebeginN := root(S)loopI := 1loopif I > arity(S,N) then return NB := i-atom(S,N,I)ask( simplify(C(S),var(B)) --> B )exit when answer is NOI := I + 1endloopN := child(S,N,I)endloopendProof of correctness and completeness of the algorithm is a direct consequence ofthe proof of Lemma3.2 and the fact that S is �nite.This algorithm provides only one incorrectness. More may exists in the skeleton.It can be adapted to provide several incorrect clauses which occurs in the skeleton.Example 6 We recall actual semantics and intended semantics of FIB:MFIBN = ffib(0; 0); fib(1; 1); fib(2; 2); fib(3; 4); fib(4; 8); fib(5; 16); fib(6; 32); : : :gIFIBN = ffib(0; 0); fib(1; 1); fib(2; 1); fib(3; 2); fib(4; 3); fib(5; 5); fib(6; 8); : : :gFor the goal  x = y2 fib(x; y), the answer S4 (clauses are renamed according toRM) provides the incorrectness symptom: x = 2 ^ y = 2! fib(x; y).�� @@fib(1; 1) true fib(1; 1) true x = y2 fib(x; y)fib(x1 + 1; y1 + y2) x1 > 02 fib(x1; y1); fib(x1; y2)S4 =
C(S) is x = y ^ x = x1 + 1 ^ y = y1 + y2 ^ x1 > 0 ^ x1 = 1 ^ y1 = 1 ^ true ^ x1 =1^y2 = 1^ true, and AC(S) = 9x19y1; 9y2 C(S) can be simpli�ed into x = 2^y = 2.Now we trace the diagnosis session for skeleton S4.x = 2 ^ y = 2! fib(x; y) expected? NOx1 = 1 ^ y1 = 1! fib(x1; y1) expected? YESx1 = 1 ^ y2 = 1! fib(x1; y2) expected? YESIncorrectness is:hfib(x1 + 1; y1 + y2) x1 > 02 fib(x1; y1); fib(x1; y2);x1 = 1 ^ y1 = 1 ^ y2 = 1iWe can better simplify interaction with oracle. When a variable is �xed (its possiblevalue domain is a singleton) and its value can be expressed, we can change it by itsvalue in the atom of the questions. In our example, each variable is �xed.The fact that the SLD-tree is not �nite is not a problem for incorrectness diagnosis.The fact that x = 5! fib(x; x) misses is the problem of insu�ciency.



4 ConclusionWe have formally de�ned the notions of incorrectness symptom and incorrectness forconstraint logic programs in terms of constrained atoms. In LP, abnormal valua-tions are always expressible in the program language. It is not true in CLP, wherevaluated atoms are replaced by constrained atoms (elements of the domain are onlymanipulated through constraints).We have proved that the existence of an incorrectness symptom implies that of anincorrectness. This incorrectness can be localized in the skeleton associated to the in-correctness symptom. De�nition of incorrectness contains an incorrect clause but alsothe conditions of its incorrectness (abnormal behaviour) expressed by a constraint.We give a diagnosis algorithm. It remains to �nd e�cient ones, in particular withrespect to the number of questions to the oracle and to implement these algorithms.Some programs have the form: go(~x)  big constraint. Then we observe anincorrectness symptom and call our diagnosis which provides the incorrect clausego(~x)  big constraint. It is not very interesting! We can discuss here the pro-gramming methodology and prefer a better structured program: in general, it is morestraightforward to cut a problem in easier subproblem... but it is not the matter.Debugging the big constraint has no mean in our framework: constraint predicatesare assumed to be correct. Concerning this program, there exists a symptom becausethe programmer made an error when he wrote the big constraint. It is certainly pos-sible to say more than go(~x)  big constraint is incorrect. The aim is to elaborateappropriate formal ways based on a semantics of the variables of the constraint.The problem of wrong answers is easier than the problem of missing ones. Indeed,in CLP a declarative answer constraint is not covered by a single computed answerconstraint. Thus, for insu�ciency diagnosis, a computed answer cannot be consideredalone. We have to consider the set (or a subset) of computed answers. We cannotlimit exploration to a single skeleton. An error is rather a non completely coveredconstrained atom [3] than a non covered constrained atoms [4] as shown in [9].References[1] Comini, M., Levi, G., and Vitiello, G., Declarative Diagnosis Revisited. In John Lloyd, editor,International Logic Programming Symposium, pages 275{287. MIT Press, 1995.[2] Deransart, P., Ma luszy�nski, J., A Grammatical View of Logic Programming. MIT Press, 1993.[3] Drabent, W., Nadjm-Tehrani, S., and Ma luszy�nski, J., Algorithmic Debugging with Assertions.In Meta-Programming in Logic Programming, pages 501{522. MIT Press, 1989.[4] Ferrand, G., Error Diagnosis in Logic Programming: an adaptation of E. Y. Shapiro's method.Journal of Logic Programming, 4:177{198, 1987.[5] Gabbrielli, M., and Levi, G., Modeling answer constraints in Constraint Logic Programs. InInternational Conference on Logic Programming, pages 238{252. MIT Press, 1991.[6] Giacobazzi, R., Debray, S. K., and Levi, G., Generalized Semantics and Abstract Interpretationfor Constraint Logic Programs. Journal of Logic Programming, 25(3):191{248, 1995.[7] Ja�ar, J., and Maher, M. J., Constraint Logic Programming: a survey. Journal of Logic Pro-gramming, 19-20:503{581, 1994.[8] Shapiro, E. Y., Algorithmic Program Debugging. MIT Press, 1982.[9] Tessier, A., Declarative Debugging in Constraint Logic Programming: the Cover Relation.Technical Report 96/09, LIFO, University of Orl�eans, 1996.


