DECLARATIVE INCORRECTNESS DIAGNOSIS
IN CONSTRAINT LOGIC PROGRAMMING

FRANCOIS LE BERRE AND ALEXANDRE TESSIER
LIFO — UNIVERSITE D’ORLEANS — BP 6759 — 45067 ORLEANS CEDEX 2 - FRANCE

{flb,tessier }@lifo.univ-orleans.fr, http://www.univ-orleans.fr/“tessier

Abstract. Our concern in this paper is the declarative incorrectness diagnosis
of constraint logic programs. Many techniques have been developed for LP but
cannot be merely adapted to CLP. Constraint logic program semantics is rede-
fined, using a reject criterion, in term of skeletons. Skeletons give an intrinsic
definition to the answers provided by a program. The reject criterion can take
into account the behaviour of an incomplete constraint solver. The main contri-
bution of this paper is to prove that: if there exists a wrong answer then there is
an incorrect clause in the program, and this clause occurs in the answer skeleton.
Moreover, we give an algorithm which, given an incorrectness symptom, localizes
a faulty clause and the circumstances of its incorrectness. Above all, there are
new notions adapted to CLP framework.

1 Introduction

Program debugging is known to be a time consuming task in the programming pro-
cess, but, constraint logic program debugging is relatively unexplored. The proposed
approach in this paper for incorrectness localisation is declarative diagnosis. Declara-
tive error diagnosis in Logic Programming (LP) was introduced in [8] under the name
of algorithmic debugging. In Constraint Logic Programming (CLP), the necessity
of declarative diagnosis is as much significant as in LP. In this context, declarative
means that there is no need for the programmer to understand the computational
behaviour of the system. It is evident that a computer cannot diagnose errors in a
program without being told a part of what should be computed. But, only intended
declarative semantics of the program is required. Indeed, a great strength of CLP
is its declarative nature, and, for a declarative language, it is essential to consider a
declarative notion of error. It would be incoherent to use only low level tools. Trac-
ing techniques are useful, but in addition to their direct link to the computational
behaviour, they quickly become extraordinarily difficult (long and ineffective) to use.
The success of a declarative debugging tool is directly related to the language declar-
ativity level. From this viewpoint, CLP is used in a much more declarative way than
LP. In particular, negation by failure, cut, ¢s, var, etc. are useless because of the
availability of global constraints, disequations, etc.

This paper is only devoted to errors which lead to wrong answers. In particular,
errors leading to missing answers are not considered. The aim is to give definitions
of incorrectness symptom and incorrectness in the CLP formalism and to prove con-
structively that if there exists a symptom then there exists an incorrectness.

It is not possible to merely adapt LP techniques to CLP. Herbrand interpretations
do not represent program semantics any more. Some elements of the constraint do-
main are not finely expressible in the program language (e.g. 7 in CLP(R)). When

we debug, we like to stay in the program language. With respect to classical theo-
retical frameworks [7], practical implementations use incomplete constraint solvers,
that is to say solvers which do not end the computation while the current store is
unsatisfiable (see Ex.5). It is important, for practical purpose, to take into account
this feature of real implementations. So, new theoretical foundations are necessary.

We start by reformulating completely the program semantics bases. Our approach
of program semantics is based on an extension to CLP of the “grammatical view” of
LP introduced by [2]. In fact, the basic notion is skeletons, which clearly express
the relation between declarative and operational semantics. Moreover, we take into
account the incompleteness of constraint solvers via a reject criterion. Classical results
are found when the reject criterion is defined either by a domain or a theory.

The main contribution is that if there exists a wrong answer then there exists an
incorrect clause in the program, and such a clause occurs in the answer skeleton.

The paper is organized as follows: Sect.2 defines the language and notations,
gives the motivations for the formal notions, and, formally defines them when inter-
pretation of the constraints is based on a pre-interpretation. Sect.3 abstracts the
pre-interpretation to take into account incompleteness of constraint solvers. In this
framework, we give a diagnosis algorithm. Sect. 4 concludes the paper.

2 Theoretical Viewpoint

2.1 Terminology and Notations

Let us consider once and for all four sets which define the program language: an
infinite set of wariables V; a set of function symbols ¥; a set of constraint predicate
symbols IL.; a set of program predicate symbols II,,.

The set of terms is built, as usual, over (V,X). An atom is an atomic formula
built over (V,X,1I,). The constraint language CONST is a subset of the first order
language built over (V,X,11,.). We assume that it is closed by existential quantifica-
tion, conjunction and contains the two logic constant true and false. A constraint is
a formula of CONST.

A clause is a n + 2-tuple (0 < n) denoted by ap < cOay,...,a,, where each a;

is an atom and c is a constraint. Given a clause R of the previous form, we define
head(R) = ag, body(R) = cOay,...,a,, constraint(R) = c and arity(R) =n. A goal
is a clause without head. A program is a set of clauses. A constrained atom is a pair
denoted by ¢ — a where a is an atom and c is a constraint.
Notations. T denotes a sequence of distinct variables x1,...,z,. If F'is a formula
built over (V, X,II, UIl;) then var(F) denotes the free variable sequence of F. If ¢
is a constraint, ¥ is x1,...,%,, ¥ are the free variables of ¢ which are not in Z and
a is an atom then 3; ¢ denotes 3z; - - - 3z, ¢; ¢ denotes Jvar(e) ¢ 3—z ¢ denotes 5 ¢;
J-ac denotes I_,4(q) C-

2.2 Motivations
To motivate the framework and the definitions, we first consider that intended signi-
fication of constraints is based on a pre-interpretation D with domain D.

Let P be a CLP program and < ¢ be a goal. The answer constraint r to « g is
considered abnormal if there exists a valuation v in the underlying pre-interpretation

D such that v satisfies r and v(g) should not evaluate to ¢true with respect to the
expected properties of P. We say that v is an anomaly.

We point out that anomalies cannot be caused by the possible incompleteness of
the constraint solver. Indeed, if the solver provides an unsatisfiable answer constraint
r (i.e. always wrong in D) then, for each valuation v, v(r) = false, therefore v cannot
be an anomaly for the goal.

Anomalies are due to P. P is wrong in the sense that P contains at least an
incorrect clause.

Our concern is to provide an assistance to localize, as fast as possible, a faulty
clause and the conditions of its abnormal behaviour. It is not necessary to review each
clause of the program, but the matter is to examine clauses which have been used to
construct the abnormal answer. Moreover, we try to make clear the circumstances
under which the clause is faulty. At first, these circumstances are formalized by a
valuation. Then, to take into account the fact that elements of the domain are only
manipulated through constraints, they will be formalized by a constraint.

Ezample 1 Let FIB be the program:

fib(0,0) « true

fib(1,1) « true

be(ZL' +]-> Y1+ Zl2) —z>00 be(ZL', yl)a f’Lb(CL’, y2)
The program language (X,II.,1I1,) is defined from symbols which occur in FIB. The
underlying pre-interpretation for the constraints is A, whose domain is IN, with the
usual interpretation for function symbols and constraint predicate symbols.
The program predicate symbol fib is assumed to define the binary relation over IN
such that the second argument is the result of the Fibonacci mapping (called fibo)
applied to the first argument.
The answer constraint x = 1+ 1 Ay = 1 to the goal — y = 10 fib(z,y + 1) is
abnormal. A valuation vg such that vo(z) = 2 and vo(y) = 1 satisfies the answer
constraint but should not satisfy the body of the goal (fibo(2) = 1).
The faulty clause is fib(z + 1,y1 + y2) < = > 00 fib(z,y1), fib(x, y2) and a possible
patching is fib(z + 1,y1 + y2) < = > 00 fib(z,y1), fib(z — 1,y2).

2.3 From D-Definitions to Definitions
A D-atom is a (n + 1)-tuple denoted by p(dy,...,d,) where p is a n-ary program
predicate symbol and di,...,d, are elements of the domain D (D-atoms are not
elements of the language). The D-base is the set of D-atoms. A D-interpretation I
is a subset of the D-base. It defines an interpretation. A wvaluation is a mapping from
V to D. There is a natural extension of a valuation v denoted also by v which maps
from terms to D, from constraints to {true, false} and from atoms to D-base. I
is a D-model of P if for each clause (head «— c¢Obody) € P, for every valuation v,
v(c) = true and v(body) C I implies v(head) € I5. We say that a clause is not
valid in I} if there exists a valuation which satisfies (in I5) the body of the clause
but does not satisfy the head. A program P has a least D-model denoted by ME.
Let P be a program and < ¢, Ob,,,...,b,,, be a goal. Answer constraint r is
regarded as abnormal because in the underlying pre-interpretation D there exists a

valuation v which is an anomaly. {v(by,)}i=1,..m C M{; and v satisfies ¢, (because
ris 3_z(r' Acy), where & are the free variables of the goal). The anomaly lies in the
fact that an atom by, of the goal is such that v(b,,) should not be in ME.

When we wrote the program P we wanted that the relations defined by P be true
in an intended D-interpretation I5. This D-interpretation formalizes the intended
semantics of the program P.

The anomaly is that r — ¢, Ab,, A---Ab,, is not valid in I because there exists
by, such that v(b,,) & I5 (v(cy) does not depend on IX). The anomaly exists because
MZE ¢ I5. This first motivates the following definitions.

Definition 2.1 An incorrectness D-symptom of P wrt Ig is a D-atom in M{; — Ig.
A D-incorrectness of P wrt I5 is a pair (h « c¢Oby, ..., b,;v) such that v(c) =
true, fori=1,...,n, v(b;) € I and v(h) ¢ I§.

If there exists an incorrectness D-symptom of P wrt Ig then Mg g Ig, thus Ig

is not a D-model of P (M is the least D-model of P), thus there exists a clause in
P which is not valid in I5 and thus there exists a D-incorrectness of P wrt I5. This
clause can be viewed as an error which causes the symptom.
Remark. The converse is wrong. For example, let P be the program {p « trueOq}
and I5 = {q}. ME = 0 C I, thus there is no incorrectness D-symptom of P wrt
I5. But I} is not a D-model of P, and, for each valuation v, (p « truedg;v) is a
D-incorrectness of P wrt I5.

According to the previous definitions, if there exists an incorrectness D-symptom
then there exists a D-incorrectness. The clause of the D-incorrectness is a faulty
clause and the valuation explains why it is faulty.

Ezample 2 The intended semantics of FIB is formalized by the A/-interpretation
IVB = {fib(di,ds) | fibo(di) = d»} The least N-model of FIB is MIP =
{flb(dl, d2) | if d1 =0 then dg =0 else dg = 2d1_1}

MAI";—IB z IEIB, i.e. there exists an incorrectness N-symptom of FIB wrt If[IB, thus
there exists a A/-incorrectness of FIB wrt IEIB.

The N-atom fib(2,2) is an incorrectness A'-symptom (fibo(2) # 2).

The pair {fib(z + 1,y1 +y2) < = > 00 fib(z,y1), fib(x, y2); v1), is a N-incorrectness
of FIB wrt I8 where vy is such that v;(z) = 1, v1(y1) = 1, v1(y2) = L.

The point of interest in CLP is that, usually, v cannot be expressed in the language
because there is no corresponding ground term for each element of D. When we debug,
we would stay in the program language. To remain in the language we propose
to change the valuation (which explains the incorrectness of a faulty clause) by a
constraint which approximates the valuation in a sense. Indeed, valuations are only
manipulated through constraints.

We say that a constraint r is a witness of the invalidity of h « ¢Oby,...,b, in the
D-interpretation I} if there exists a valuation v solution of r such that v(c) = true,
{v(b:)}iz1,..n C 17, but v(h) & Iy, ice. f=rp (P AcAby A= Aby A=h).

Remark. A clause is not valid in I} iff there exists a witness of its invalidity (for
example, the constraint true).

There is, of course, a commonplace algorithm which consists in verifying each
clause of the program, that is, for each clause head «— body, to check if |=;r body —
head. We can restrict the research by considering clauses which occur in the derivation
which computes the abnormal answer constraint as we said before. But this is just a
clause checking and it is too awkward. We would like to boil down to easier problems,
no more focused on clauses but on constrained atoms.

Some witnesses can be more interesting than others: if |=p ¢ — ¢ then ¢ is a
witness of the clause R implies that ¢’ is a witness of the clause R; ¢ provides more
information than ¢’ in the sense that ¢ better approximates v than c'.

We say that r is a strong witness of the invalidity of the clause h «— cOby,...,b,
in the D-interpretation I5 if Fiiz r— ¢Abi Ao Aby and not(f=rp v — h); ie.
Fpr —c foreachi=1,...,n, |=rp r — b; and not(f=rr r — h). Strong witnesses
are witnesses. The converse is wrong, as shown by the following example.

Ezample 3 The constraint true is a witness of the invalidity of the clause
be(ZL' +]-7 Y1+ Zl2) —z>00 be(ZL', yl)a f’Lb(CL’, y2)
because of the valuation v; (vi(z) = 1,v1(y1) = 1,v1(y2) = 1).
But true is not a strong witness of its invalidity because
not(FEr,,, true — x> 0A fib(z,y1) A fib(z,y2)).
A strong witness of its invalidity is ¢ = 1 Ay; = 1 Ay = 1 (which is also a witness).

The strong witness notion motivates the following definitions of incorrectness
symptom and incorrectness. We have next (in Sect.3) to take into account incom-
pleteness of constraint solvers.

Definition 2.2 An incorrectness symptom of P wrt the D-interpretation 15 is a
pair («— c¢Oby,... by;r), such that ':Mg r— cAb A---Ab, and not(':lg r—
cAbyA---Aby). Since |Ep 1 — ¢ then ':I_g r — ¢, therefore there existsi € {1,...,n}
such that notﬂ:lg r—b;).

An incorrectness of P wrt the D-interpretation I5 is a pair (h « cO by,. .., by;7),
where r is a strong witness for the clause.

An atomic incorrectness symptom of P wrt Ig is a constrained atom r — b such
that |:M£ r— b and not(':p; r—b).

Remark. There exists an incorrectness symptom of P wrt Ig iff there exists an atomic
incorrectness symptom of P wrt Ig.

We will show that if there exists an incorrectness symptom then there exists a
strong witness for a clause used during the computation. But before, we have to
define, more precisely, answers (skeletons) and answer constraints.

2.4 Skeletons

Definition 2.3 Let G be the set of all goals. A skeleton is an oriented tree, labeled
by P U G, such that the degree of a node is the number of atoms in the body of its
label, and the root is the unique node labeled by an element of G.

We want to associate a constraint system to a skeleton, and, as usual, we are
confronted with the problem of variable renaming.

The relation “to be a variant” is an equivalence relation over the set of clauses.
We assume that nodes of a skeleton (except the root) are labeled by an equivalence
class of clauses denoted by a clause of P. We define a renaming mapping RM for a
skeleton, in the following way, for each node N labeled by R: RM(N) = R when N is
the root; otherwise we choose a clause RM(N) in the class of R, such that, for each
pair of distinct nodes N; and Ny, RM(N;) and RM(N) have no shared variables.

A skeleton S and a renaming mapping RM are assumed to be fixed.

For every node N of S, if b is the 7*"* atom of the label body of RM (N) and N; is
the 3" child of N, then we define atom(N;) = b.

Let p(3) and ¢(t) be two atoms, where 3 and denote sequences of terms, we define
the constraint p(3) = ¢(f) which denotes either the constraint false when p # ¢, or
the constraint s; =t A--- A s, =t, when p=gq.

We associate to each node N of S a constraint. The constraint associated to the
root of S is the constraint of the goal. The constraint associated to another node IV,
such that RM(N) = (h < ¢Oby,...,b,),is cA(h = atom(N)). We associate to S the
constraint system const(S) defined by the collection of the constraints associated to
each node of S. When S is finite, we denote by C(S) the conjunction of the constraints
of const(S) and by AC(S) the constraint 3_;C(S), where Z are the free variables of
the root of S. Note that AC(S) does not depend on the renaming mapping RM.

Definition 2.4 An answer to the goal « g is a finite skeleton S rooted by « g such
that |=p 3C(S). Then, AC(S) is an answer constraint to the goal «— g.

Skeletons are the declarative notion of answer. They give a straightforward and
intrinsic definition to the answers provided by a program. A skeleton puts together
the clauses used along a derivation leaving aside the computation rule. Answers pro-
vided by a program are in fact independent of the computation rule. An answer is a
finite skeleton, rooted by the goal and not rejected in some sense. From the answer
skeleton we can infer the answer constraint, as well as, by giving a computation rule
(i.e. a traversal of the skeleton), the success derivation. Skeletons are a good repre-
sentation of the success derivations equivalence classes modulo the computation rule.
They are a good tool to link easily operational semantics and declarative semantics.
Moreover, skeletons are a constructive definition of declarative answers. This is par-
ticularly helpful in declarative debugging. SLD-resolution can be described in terms
of skeletons, a node of an SLD-tree is a partial skeleton. But this is out of scope.

Ezample 4 Ss is an answer of the program FIB to the goal « trueO fib(z,y) (for
further legibility, nodes are labeled by renamed clauses according to RM).

Sy = ‘ — true O fib(z,y) ‘

‘fib(ld + 1Ly +y2) «— 21 > 00 fib(z1,y1), fib(z1,y2) ‘

AN

‘fib(l, 1) « true‘ ‘ fib(1,1) « true‘

The constraint associated to Sy is C(S2) = (true Az > 0Az + 1=z Ay +ys =
yAtrueAl = 21 Al = yy AtrueAl = x1 Al = y5), which is satisfiable in N'. The answer
constraint is AC(S3) = Jz13y;Jy2 C(S2), which is equivalent toz =1+ 1Ay =1+1.
The pair (fib(z+1,y1+y2) < = > 00 fib(z1,y1), fib(r2,y2); x = 1Ay1 = 1Ays = 1) is
an incorrectness of FIB wrt /B, The pair (« true O fib(z,y);z = 1+1Ay = 1+1)
is an incorrectness symptom of F'I B wrt IEIB. The constrained atom (z = 1+ 1Ay =
1+ 1) — fib(x,y) is an atomic incorrectness symptom of FIB wrt I5/5.

S3 is not an answer to the goal « trued fib(z,y). Indeed, C(S3) is such that
not(j=x 3C(S3)) (const(Ss) contains 1 = z; and 0 = z,).

Ss = ‘ — true O fib(z,y) ‘
|

‘fib(ld + 1Ly +y2) 21 > 00 fib(zy,y1), fib(z1,y2) ‘

‘fib(l, 1) « true‘ ‘ fib(0,0) « true‘

Our definition of answer constraint is equivalent to classical one’s [7, 5]: if S is
an answer to the goal « g then P Ep AC(S) — g; and, if P E=p ¢ — ¢ then
Fp ¢ — Vgep AC(S), where R is the set of answers to the goal « g.

Remark. R may be infinite. It is not always possible to replace it by a finite subset.
This is possible if D is replaced by a theory 7, a model of which is D, by using the
finiteness theorem of the first order logic.

2.5 Symptom Implies Error

Diagnosis algorithm is invoked when, during a computation, appears a computed
incorrectness symptom. Computed incorrectness symptoms are a particular case of
incorrectness symptoms.

Definition 2.5 A computed incorrectness symptom of P wrt the D-interpretation
I5 is a pair (« c,Oby,,...,b,. ;7), such that v is an answer constraint to the goal
g Obgy,... by, and not(l=rp r — cg Dby, by,).

Lemma 2.6 There exists a computed incorrectness symptom iff there exists an in-
correctness symptom.

Proof. =: If (« cOby,...,by;7) is a computed incorrectness symptom of P wrt I
then r is an answer constraint to the goal «— ¢Oby,...,b,. The correctness of answer
constraint shows that P |E=p 7 — ¢AbiA- - -Aby, thus |:M{)’ r — cAbyA---Ab, (because

MFE is the least D-model of P), therefore (« cOby,...,b,;7) is an incorrectness
symptom of P wrt Ig.

<: If (« ¢Oby,...,b,;7) is an incorrectness symptom of P wrt I5 then =,
r—cAbA---ANb,,ie. 7 — cAb A---Ab, evaluates to true in each D-model
of P, thus P Ep r — ¢ A by A--- Ab,. The completeness of answer constraint
shows that [=p r — \/4cp AC(S), where R is the set of answers to the goal «
c¢Oby,...,b,. This means that for each valuation v such that v(c) = true there exists
S € R such that v(AC(S)) = true. We know that not(|:1£> r—cAb A Aby),

thus there exists a valuation v such that v(r) = true, therefore v(c) = true, and

{v(b1),...,v(b,)} € I5. Let S € R be a finite skeleton such that v(AC(S)) = true
then (< cOby,...,b,; AC(S)) is a computed incorrectness symptom of P wrt I5. m

Lemma 2.7 If there exists a computed incorrectness symptom of P wrt Ig then there
exists an incorrectness of P wrt Ig.

Proof. Let (« ¢y Oby,,..., b, ; AC(S)) be a computed incorrectness symptom of P
wrt I5. We will show that C(S) is a strong witness for a clause which labels a node of
S. Note that S is a finite skeleton and (« ¢, Ob,, ..., b, ;C(S)) is an incorrectness
symptom of P wrt I5 (Lemma2.6 =).

Let us assume that C'(S) is not a strong witness for any clause of S, then we will show
by induction on the subtrees height of S that for each node N of S, except the root,

|:I{,’ C(S) — atom(N),i.e. C(S) — atom(N)is not an atomic incorrectness symptom
of P wrt I5, thus (« c,Ob,,,...,b,, ;C(S)) is not an incorrectness symptom of P
wrt IE. We recall that, because of the definition of C(S): =p C(S) — ¢,, and for each
node N of S, except the root, labeled by a clause hy < ¢y Obp,, ...,by, we have:
Ep C(S) — cn; and |:I£ C(S) — hy iff |:I£ C(S) — atom(N), because const(S)
contains hy = atom(N). We denote by S(N) the subtree of S rooted by N. If
S(N) is 1 high then N is a leaf labeled by hy < ¢y and |:I{,’ C(S) — hy, therefore
|:I{,’ C(S) — atom(N). If S(N) is a high, a > 1, and |:I{,’ C(S) — atom(N'),
for each child N’ of N. Let hy «— ¢y Oby,,...,bn, be the label of N, then ':Ig
C(S) —» enAby, A---Abp,, thus |:I{,’ C(S) — hy, therefore ':Ig C(S) — atom(N).
Consequently, each child N’ of the root is such that ':p’; C(S) — atom(N'), thus
|:I£ C(S) — ¢y ANbg A -+ Aby, , therefore (« c,Oby,,..., b, ;C(S)) is not an
incorrectness symptom of P wrt I5.

We have shown that if (« ¢, Oby,,...,b, ;C(S)) is an incorrectness symptom of P
wrt Ig then there exists a clause hy < ¢y Oby,,...,by, which labels a node of S
such that (hy < ey Oby,,...,bn,; C(S)) is an incorrectness of P wrt I5. =

The conclusion of this section is that if S is an answer to the goal «— ¢ and
(« g; AC(S)) is an incorrectness symptom of P wrt I5 then there exists a clause
head < body, which labels a node of S, whose free variables are g, such that
(head «— body;3_;C(S)) is an incorrectness of P wrt I5. The proof gives a (non
optimized) algorithm which consists in verifying the nodes of the skeleton from the
root to the leaves by looking if the constrained atoms constituted with C'(S) and
atoms of the node label body are atomic incorrectness symptoms. Next section gives
this diagnosis algorithm, but previously introduces a novel semantics which takes into
account incompleteness of constraint solvers.

3 Incorrectness Diagnosis Algorithm

This section introduces a novel program semantics which abstracts the underlying pre-
interpretation. It is well-known that, for practical purpose, some constraint solvers
are not satisfaction complete. Furthermore, they do not have the behaviour of a
theory. We cannot take into account, in theoretical works, this feature of practical
implementation by changing the constraint solver by a theory.

Ezample 5 The CLP(R) constraint solver provides three kinds of answer: yes (satisfi-
able constraint), no (unsatisfiable constraint) and maybe (it cannot decide). It answers
yesto zxx =1Ax =1, but maybe to z x x = 1, nevertheless = Jz(z sz =1A2 =
1) - Jz(z+xx =1). It answersno to x = 1Az = 0, but maybe to xxz = 1Az *xz =0,
nevertheless = -Jz(z = 1Az =0) - ~Jz(z xx =1 Az xz =0).

3.1 Reject Criterion

In Sect.2, program semantics was formalized by the least D-model of P. A finite
skeleton S was rejected if §|C(S) was unsatisfiable in D. For the system, a finite
skeleton S is rejected if the constraint solver answers no to C(S). We want to abstract
the pre-interpretation D by a Reject Criterion RC. A reject criterion RC is a relation
over CONST. It is, in general, defined from: a pre-interpretation D, denoted by
RC(D), cis rejected if ¢ is unsatisfiable in D; a theory 7 (not necessarily satisfaction
complete as generally assumed [7]), denoted by RC(T), ¢ is rejected if for each D-
model of 7 ¢ is rejected by RC(D) (i.e. T |= —¢); a constraint solver A, denoted by
RC(A), cis rejected if A answers no to c.

In order to simplify, we assume that if ¢; and cs are two constraint then: c; A ¢y
and c3 Ac; represent the same constraint; if Z are some free variables of ¢; which have
no free occurrence in ¢y then Iz¢; A ¢ and Jz(c1 A ¢2) are the same; if z and y are
two variables then Jx3y ¢; and Jdy3dx ¢; are the same, Iz ¢; and IxIx ¢; are the same.

Reject criterions verify, for each rejected constraint ¢, the three following proper-
ties: for each constraint ¢, ¢ A ¢’ is rejected; for each variable x, 3z ¢ is rejected; for
each variable renaming 6, cf is rejected. These three properties are verified when RC
is defined from a pre-interpretation, from a theory, from usual constraint solvers.

We say that a finite skeleton S is rejected by the reject criterion RC if C(S) is
rejected by RC. Definitions of answer and answer constraint are adapted to this new
framework: an answer, according to RC, to the goal < g is a finite skeleton S, rooted
by « g, which is not rejected by RC; then AC(S) is an answer constraint, according
to RC, to the goal < g.

The reject criterion is not supposed to have a logical behaviour. But assume
that the reject criterion is deduced from an incomplete! constraint solvers, then: if
S is an answer to the goal « ¢ then P,7 E AC(S) — ¢; it P E ¢ — g then
T Ec— Vgep AC(S), where R is a finite subset of the answers to the goal « g.

3.2 Abstraction of the Intended Semantics

As we abstract the underlying pre-interpretation D, we abstract the intended D-
interpretation I5. Indeed, the notions of incorrectness symptom and incorrectness
are defined from the validity of a constrained atom in I5. That is, the interaction with
the intended semantics is only based on constrained atoms. Therefore, the intended
semantics can be formalized by a set of constrained atoms. We propose to use the
classical notion of oracle O to formalize the intended semantics. O accepts or rejects
constrained atoms in accordance with the intended semantics. An oracle O must have
the following natural property: O rejects ¢ — b iff O rejects (I5¢) — b, where § are
some variables not in var(b).

1 An incomplete constraint solver, based on a theory 7, answers no or maybe to ¢ when 7 |= —c,
and it answers yes or maybe to ¢ when 7 |= Jc

Remark. We assume that symptoms are not due to the system, thus the intended
semantics of a program must be in accordance with the reject criterion. For example,
if ¢ — a is expected and cAc’ is not rejected then cAc’ — a is also expected. But, the
fact that ¢ — a is expected while ¢ is rejected is not a problem in the incorrectness
framework.

This section is more general than Sect. 2, in the sense that we make two abstrac-
tions: D is abstracted by RC and Ig is abstracted by O. Now, we lift definitions:

Definition 3.1 A computed incorrectness RC-symptom of P wrt O is a pair («—
¢gO by, ,...,by, ;7) such that r is an answer constraint according to RC to the goal
—cyOby,,..., by, and there exists i € {1,...,n} such that r — by, is rejected by O.

An incorrectness of P wrt O is a pair (h «— ¢Oby,...,by;r) such that for each
i€ {l,...,n}, (r Ac) — b; is not rejected by O and (r A c) — h is rejected by O.

Lemma 3.2 If there exists a computed incorrectness RC-symptom of P wrt O then
there exists an incorrectness of P wrt O.

Proof. There is just to lift the proof of Lemma2.7. If (« ¢, Ob,,,...,b, ;7) is a
computed incorrectness RC-symptom of P wrt O then there exists a finite skeleton
S not rejected by RC, rooted by « ¢, Oby,, ..., b, , such that AC(S) =r and there
exists a renamed clause head «— body according to RM labelling a node of S such
that (head < body;r) is an incorrectness of P wrt O.]

3.3 The Algorithm

The proposed algorithm consists on a top-down traversal of the skeleton along a
branch from the goal to an incorrect clause, asking questions to the oracle. The
oracle can be a human, but also an automatic system based on a partial specification
of the intended semantics.

We emphasize that our algorithm uses the constraint solver of the system. Usually,
the CLP system presents answer constraints into a simplified form. We want to
question the oracle with constrained atoms whose constraint is simplified as well as
answer constraints provided by the system. We question oracle on (3_,qp1)7) — b,
where 3_,,,(;)7 is simplified as well as answer constraints by the constraint solver,
rather than to question it on r — b. Then determining if r is a correct answer
constraint for the goal <~ ¢Oby, ..., b, is not easier than determining if (3_,ar5)7) —
b is expected (especially if b has few variables or is ground).

Algorithm uses the following functions: C(S): constraint associated to the skeleton
S; root (S): root of S; child(S,N,I): I** child of the node Nin S; label(S,N): label of
the node N in S; arity (S,N): number of children of the node N in S; i-atom(S,N,I):
I'" atom in the body of 1abel(S,N); simplify(C,V): simplification of 3 _yC (it calls
the constraint solver of the system); var (X): free variables of X; ask(C -=> B): ques-
tions the oracle for the constrained atom C — B.

Declarative incorrectness diagnosis algorithm, given a computed answer S which
provides an incorrect RC-symptom, is:

N := IncorrectNode(S)
write(< label(S,N) ; simplify(C(S),var(label(S,N))) >)

Where IncorrectNode is defined by:

function IncorrectNode(S) return node

begin
N := root(S)
loop
I :=1
loop
if T > arity(S,N) then return N
B := i-atom(S,N,I)
ask(simplify(C(S),var(B)) -—> B)
exit when answer is NO
I :=TI+1
endloop
N := child(S,N,I)
endloop
end

Proof of correctness and completeness of the algorithm is a direct consequence of
the proof of Lemma 3.2 and the fact that S is finite.

This algorithm provides only one incorrectness. More may exists in the skeleton.
It can be adapted to provide several incorrect clauses which occurs in the skeleton.

Ezample 6 We recall actual semantics and intended semantics of FIB:
METE = {fib(0,0), fib(1,1), fib(2,2), fib(3,4), fib(4,8), fib(5, 16), fib(6, 32),.. .}
IFIB = {£ib(0,0), fib(1,1), fib(2,1), fib(3,2), fib(4, 3), fib(5,5), fib(6,8),...}
For the goal « z = y O fib(z,y), the answer S4 (clauses are renamed according to
RM) provides the incorrectness symptom: z =2 Ay =2 — fib(z,y).

S4 = ‘(—x:yﬂfib(x,y)‘

|
‘fib(l”l + 1,91 +y2) = @1 > 00 fib(zy,y1), fib(w1,y2) ‘
AN
‘ fib(1,1) « true ‘ ‘ fib(1,1) « true‘
CS)isz=yAz=x1+1Ay=y1+y2Ax1 >0Az1 =1Ay; =1 Atruehz; =
1Ayy = 1 Atrue, and AC(S) = Jz13y;, Jy2 C(S) can be simplified into z = 2Ay = 2.
Now we trace the diagnosis session for skeleton S4.
x=2Ay=2— fib(z,y) expected? NO
z1 =1Ay; =1 — fib(z1,y1) expected? YES
z1 =1Ays =1— fib(z1,y2) expected? YES
Incorrectness is
(fib(zy + 1,91 +y2) < 1 > 00 fib(w1,y1), fib(z1,y2);21 = 1Ay = 1Ay2 = 1)
We can better simplify interaction with oracle. When a variable is fixed (its possible
value domain is a singleton) and its value can be expressed, we can change it by its
value in the atom of the questions. In our example, each variable is fixed.
The fact that the SLD-tree is not finite is not a problem for incorrectness diagnosis.
The fact that x =5 — fib(z,) misses is the problem of insufficiency.

4 Conclusion

We have formally defined the notions of incorrectness symptom and incorrectness for
constraint logic programs in terms of constrained atoms. In LP, abnormal valua-
tions are always expressible in the program language. It is not true in CLP, where
valuated atoms are replaced by constrained atoms (elements of the domain are only
manipulated through constraints).

We have proved that the existence of an incorrectness symptom implies that of an
incorrectness. This incorrectness can be localized in the skeleton associated to the in-
correctness symptom. Definition of incorrectness contains an incorrect clause but also
the conditions of its incorrectness (abnormal behaviour) expressed by a constraint.

We give a diagnosis algorithm. It remains to find efficient ones, in particular with
respect to the number of questions to the oracle and to implement these algorithms.

Some programs have the form: go(Z) « big-constraint. Then we observe an
incorrectness symptom and call our diagnosis which provides the incorrect clause
go(Z) « big_constraint. It is not very interesting! We can discuss here the pro-
gramming methodology and prefer a better structured program: in general, it is more
straightforward to cut a problem in easier subproblem... but it is not the matter.
Debugging the big_constraint has no mean in our framework: constraint predicates
are assumed to be correct. Concerning this program, there exists a symptom because
the programmer made an error when he wrote the big_constraint. It is certainly pos-
sible to say more than go(Z) « big_constraint is incorrect. The aim is to elaborate
appropriate formal ways based on a semantics of the variables of the constraint.

The problem of wrong answers is easier than the problem of missing ones. Indeed,
in CLP a declarative answer constraint is not covered by a single computed answer
constraint. Thus, for insufficiency diagnosis, a computed answer cannot be considered
alone. We have to consider the set (or a subset) of computed answers. We cannot
limit exploration to a single skeleton. An error is rather a non completely covered
constrained atom [3] than a non covered constrained atoms [4] as shown in [9)].

References

[1] Comini, M., Levi, G., and Vitiello, G., Declarative Diagnosis Revisited. In John Lloyd, editor,
International Logic Programming Symposium, pages 275-287. MIT Press, 1995.

[2] Deransart, P., Maluszynski, J., A Grammatical View of Logic Programming. MIT Press, 1993.

[3] Drabent, W., Nadjm-Tehrani, S., and Maluszynski, J., Algorithmic Debugging with Assertions.
In Meta-Programming wn Logic Programmang, pages 501-522. MIT Press, 1989.

[4] Ferrand, G., Error Diagnosis in Logic Programming: an adaptation of E. Y. Shapiro’s method.
Journal of Logic Programming, 4:177-198, 1987.

[5] Gabbrielli, M., and Levi, G., Modeling answer constraints in Constraint Logic Programs. In
International Conference on Logic Programming, pages 238-252. MIT Press, 1991.

[6] Giacobazzi, R., Debray, S. K., and Levi, G., Generalized Semantics and Abstract Interpretation
for Constraint Logic Programs. Journal of Logic Programming, 25(3):191-248, 1995.

[7] Jaffar, J., and Maher, M. J., Constraint Logic Programming: a survey. Journal of Logic Pro-
grammang, 19-20:503-581, 1994.

[8] Shapiro, E.Y., Algorithmic Program Debugging. MIT Press, 1982.

[9] Tessier, A., Declarative Debugging in Constraint Logic Programming: the Cover Relation.
Technical Report 96/09, LIFO, University of Orléans, 1996.

