P vs. NP

Moshe Y. Vardi

Rice University

An Outstanding Open Problem

Does $P=N P$?

- The major open problem in computer science
- A major open problem in mathematics
- A Clay Institute Millennium Problem
- Million dollar prize!
- On August 6, 2010, Vinay Deolalikar announced a proof (100-page manuscript) that $P \neq N P$.

What is this about? It is about computational complexity - how hard it is to solve computational problems.

Rally To Restore Sanity, Washington, DC, October 2010

Computational Problems

Example: $G r a p h-G=(V, E)$

- V - set of nodes
- E - set of edges

Two notions:

- Hamiltonian Cycle: a cycle that visits every node exactly once.
- Eulerian Cycle: a cycle that visits every edge exactly once.

Question: How hard it is to find a Hamiltonian cycle? Eulerian cycle?

Figure 1: The Bridges of Königsburg

Figure 2: The Graph of The Bridges of Königsburg

Figure 3: Hamiltonian Cycle

Computational Complexity

Measuring complexity: How many (Turing machine) operations does it take to solve a problem of size n ?

- Size of (V, E) : number of nodes plus number of edges.

Complexity Class P : problems that can be solved in polynomial time $-n^{c}$ for a fixed c

Examples:

- Is a number even?
- Is a number square?
- Does a graph have an Eulerian cycle?

What about the Hamiltonian Cycle Problem?

Hamiltonian Cycle

- Naive Algorithm: Exhaustive search - run time is n ! operations
- "Smart" Algorithm: Dynamic programming - run time is 2^{n} operations

Note: The universe is much younger than 2^{200} Planck time units!

Fundamental Question: Can we do better?

- Is HamiltonianCycle in P ?

Checking Is Easy!

Observation: Checking if a given cycle is a Hamiltonian cycle of a graph $G=(V, E)$ is easy!

Complexity Class $N P$: problems where solutions can be checked in polynomial time.

Examples:

- HamiltonianCycle
- Factoring numbers

Significance: Tens of thousands of optimization problems are in NP!!!

- CAD, flight scheduling, chip layout, protein folding, ...

P vs. NP

- P: efficient discovery of solutions
- NP: efficient checking of solutions

The Big Question: Is $P=N P$ or $P \neq N P$?

- Is checking really easier than discovering?

Intuitive Answer: Of course, checking is easier than discovering, so $P \neq N P!!!$

- Metaphor: finding a needle in a haystack
- Metaphor: Sudoku
- Metaphor: mathematical proofs

Alas: We do not know how to prove that $P \neq N P$.

$P \neq N P$

Consequences:

- Cannot solve efficiently numerous important problems
- RSA encryption may be safe.

Question: Why is it so important to prove $P \neq N P$, if that is what is commonly believed?

Answer:

- If we cannot prove it, we do not really understand it.
- May be $P=N P$ and the "enemy" proved it and broke RSA!

$$
P=N P
$$

S. Aaronson, MIT: "If $P=N P$, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in 'creative leaps,' no fundamental gap between solving a problem and recognizing the solution once its found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss."

Consequences:

- Can solve efficiently numerous important problems.
- RSA encryption is not safe.

Question: Is it really possible that $P=N P$?
Answer: Yes! It'd require discovering a very clever algorithm, but it took 40 years to prove that LinearProgramming is in P.

Sharpening The Problem

NP-Complete Problems: hardest problems is NP

- HamilatonianCycle is $N P$-complete!

Corollary: $P=N P$ if and only if HamiltonianCycle is in P

There are thousands of $N P$-complete problems. To resolve the $P=N P$ question, it'd suffice to prove that one of them is or is not in P.

History

- 1950-60s: Futile effort to show hardness of search problems.
- Stephen Cook, 1971: Boolean Satisfiability is NP-complete.
- Richard Karp, 1972: 20 additional NP-complete problems- 0-1 Integer Programming, Clique, Set Packing, Vertex Cover, Set Covering, Hamiltonian Cycle, Graph Coloring, Exact Cover, Hitting Set, Steiner Tree, Knapsack, Job Scheduling, ...
- All NP-complete problems are polynomially equivalent!
- Leonid Levin, 1973 (independently): Six NP-complete problems
- M. Garey and D. Johnson, 1979: "Computers and Intractability: A Guide to NP-Completeness" - hundreds of NP-complete problems.
- Clay Institute, 2000: \$1M Award!

Terminology

Terminological Chaos: The standard terminology did not converge until 1974.

Knuth, 1974, "A terminological Proposal"

- Competing terms: arduous, bad, costly, difficult, exorbitant, exparent, formidable, heavy, Herculean, impractical, interminable, intractable, obdurate, perarduous, polychronious, prodigious, Sisyphean, tricky.
- Winning terms: NP-hard and NP-complete.

Logic and Complexity

Richard Lipton, Blog, Aug. 8, 2010:
> "At the highest level he is using the characterization of polynomial time via finite-model theory. His proof uses the beautiful result of Moshe Vardi (1982) and Neil Immerman (1986)."

> Theorem: On ordered structures, a relation is defined by a first-order formula plus the Least Fixed Point (LFP) operator if and only if it is computable in polynomial time.

Paper: "The complexity of relational query languages", $1982>1100$ citations.

Terminology:

- Relation: set of tuples of elements, e.g., < is set of pairs
- Model Theory: logical theory of mathematical structures - branch of mathematical logic
- Finite-Model Theory: logical theory of finite mathematical structures between mathematical logic and computer science

The Language of Mathematics

G. Frege, Begriffsschrift, 1879: a universal mathematical language - firstorder logic

- Objects, e.g., numbers
- Predicates (relationships), e.g., $2<3$
- Operations (functions), e.g., $2+3$
- Boolean operations: "and" (\wedge), "or" (\vee), "not" (\neg), "implies" (\rightarrow)
- Quantifiers: "for all" $(\forall x)$, "there exists" $(\exists x)$

Back to Aristotle:

- "All men are mortal"
- "For all x, if x is a man, then x is mortal"
- $(\forall x)(\operatorname{Man}(x) \rightarrow \operatorname{Mortal}(x))$

First-Order Logic on Graphs

Syntax:

- Variables: x, y, z, \ldots (range over nodes)
- Atomic formulas: $E(x, y), x=y$
- Formulas: Atomic Formulas + Boolean Connectives + First-Order Quantifiers

Examples:

- φ_{1} : "node x has at least two distinct neighbors"

$$
(\exists y)(\exists z)(\neg(y=z) \wedge E(x, y) \wedge E(x, z))
$$

- φ_{2} : "nodes x and y are connected by a path of length two":

$$
(\exists z)(E(x, z) \wedge E(z, y))
$$

Formulas as Queries:

- φ_{1} "computes" the set of nodes with at least two distinct neighbors.
- φ_{2} "computes" the set of pairs of nodes connected by a path of length two.

Logic and Complexity

Theorem: [Immerman-V.]: Polynomial time computability is equivalent to computability by iterating positive first-order queries.

Significance:

- Machine-free characterization of P
- Note: No Turing machines, no polynomial, no time!
- Normal form for P

Positivity

- Positive: φ_{2} : "nodes x and y are connected by a path of length two":

$$
(\exists z)(E(x, z) \wedge E(z, y))
$$

- Non-Positive: φ_{3} : "nodes x and y are connected by an incomplete triangle":

$$
(\exists z)(E(x, y) \wedge E(x, z) \wedge \neg E(y, z))
$$

Significance of Positivity: Iteration yields an increasing sequence of relations, guaranteeing convergence.

Example: 2-Colorability

Graph Coloring:

- Graph $-G=(V, E)$
- k-coloring: $h: V \rightarrow\{1, \ldots, k\}$
- Nonmonocromacity: $h(u) \neq h(v))$ for all $(u, v) \in E$
- k-Colorability: Does G have k-coloring?

Complexity:

- 3-Colorability is NP-complete.
- 2-Colorability is in PTIME.

Figure 4: 3-Coloring

2-Colorability

Fact: A graph is 2-colorable iff it has no cycle of odd length.
Example: Logical characterization of non-2-colorability

$$
\begin{array}{rr}
O(X, Y) \leftarrow & E(X, Y) \\
O(X, Y) \leftarrow & O(X, Z), E(Z, W), E(W, Y) \\
\text { Not2Colorable } \leftarrow O(X, X) &
\end{array}
$$

Another Connection between Logic and Complexity

Boolean Satisfiability (SAT); Given a Boolean expression in the form of "and of ors", is there a satisfying solution (an assignment of 0's and 1's to the variables that makes the expression equal 1)?

Example:

$$
\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{1} \vee x_{4}\right)
$$

Solution: $x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1$

Cook-Levin Theorem: SAT is NP-complete

A Physics Perspective

- Literal: Positive or negative variable $-x_{1}, \neg x_{2}$
- Clause: Disjunction (or) of literals - $\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$

Energy State:

- Satisfied clause: 0
- Unsatisfied clause: 1
- Total energy: sum of clausal energies=number of unsatisfied clauses

Physics Perspective: Does expression have a zero-energy state?

- Formula satisfied \Leftrightarrow zero-energy state

k-SAT

k-SAT:

- Each clause contains precisely k literals.
- 2-SAT is in P.

$$
\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{4}\right)
$$

- k-SAT is $N P$-complete for $k>2$.

Random k-SAT

Random k-SAT:

- Parameters:
- number of variables - n,
- number of clauses - m
- $m / n=$ Number of clauses divided by number of variables: density fixed!
- Choose clauses at random, uniformly
- Limit: $n, m \rightarrow \infty$

Evolution of Random k-SAT

Intuition: Density analogous to temperature

- Low density: low energy state - high probability of satisfiability - limit=1
- High density: high energy state - low probability of satisfiability limit=0

Empirical Observation: Phase transition - limit probability drops from 1 to 0

- 2-SAT: phase transition at density 1 (also proved formally)
- 3-SAT: phase transition at density 4.26

1991-2010: Extensive research on statistical behavior of Random k-SAT

Phase Transition of 3-SAT

Essence of V.D.'s Proof

Crux: 9-SAT can not be in P !

- If 9 -SAT is in P, then it can be expressed in $\mathrm{FO}+\mathrm{LFP}$, by the ImmermanV. Theorem.
- But, the FO+LFP normal form is inconsistent with what is known about statistical behavior of random 9-SAT.

Reaction to Proof Announcement

A huge buzz!!!

Why?

- People announce solutions of the problem all the time.
- Every few months paper posted on arXiv.org.

But:

- V.D. is a Principal Research Scientist at HP.
- Stephen Cook (founding figure in complexity theory): "This appears to be a relatively serious claim"
- Nice connection of complexity, logic, and physics!
- Richard Lipton (senior complexity theorist and influential blogger): Blog item on August 8, 2010, slashdotted

Proof Checking at The Internet Age

"Ten Days of Fame": Proof discredited in ten days!

- Aug. 6: Manuscript sent to 22 people and put on web page
- Aug. 7: First blog post [Greg Baker]
- Aug. 8: Second blog post [Richard Lipton], Slashdot
- extensive commentary
- Aug. 9: Wikipedia article about V.D. (deleted later)
- Aug. 10: Wiki for technical discussion established
- hundreds of edits
- Fields medalists involved
- Aug. 15: CACM blogpost by Lipton
- Aug.16: New York Times article

The Flaw

A major problem: V.D.'s proof does not seem to distinguish between intractable and tractable cases of k-SAT.

Cause: Misuse of the Immerman-V. Theorem.

A Tractable Fragment of SAT

Affine Boolean Satisfiability (Affine SAT): Given a Boolean expression in the form of "and of xors", is there a satisfying solution (an assignment of 0 's and 1 's to the variables that makes the expression equal 1)?

Example:

$$
\left(\neg x_{1} \oplus x_{2} \oplus x_{3}\right) \wedge\left(\neg x_{2} \oplus \neg x_{3} \oplus x_{4}\right) \wedge\left(x_{3} \oplus x_{1} \oplus x_{4}\right)
$$

In essence: Linear equations modulo 2

- Solve using Gaussian elimination

But: Random k-SAT and Random Affine k-SAT are quite similar statistically!

Revision at the Internet Age

- First draft, Aug. 6
- Second draft Aug. 9-11
- Third draft, Aug. 11-17
- All drafts removed after Aug 17

Consensus: The P vs. NP problem withstood another challenge and remained wide open!

- Wikipedia: "However, the general consensus amongst theoretical computer scientists is now that the attempted proof is not correct, nor even a significant advancement in our understanding of the problem."

No Concession!

From V.D.'s website:
"The preliminary version was meant to solicit feedback from a few researchers as is customarily done. It illustrated the interplay of principles from various areas, which was the major effort in constructing the proof. I have fixed all the issues that were raised about the preliminary version in a revised manuscript; clarified some concepts; and obtained simpler proofs of several claims. Once I hear back from the journal as part of due process, I will put up the final version on this website."

Reflection on \mathbf{P} vs. NP

Old Cliché "What is the difference between theory and practice? In theory, they are not that different, but in practice, they are quite different."
\mathbf{P} vs. NP in practice:

- $\mathrm{P}=$ NP: Conceivably, NP-complete problems can be solved in polynomial time, but the polynomial is $(10 n)^{1000}$ - impractical!
- $\mathrm{P} \neq$ NP: Conceivably, NP-complete problems can be solved by $n^{\log \log \log n}$ operations - practica!!

Conclusion: No guarantee that solving P vs. NP would yield practical benefits.

Theory, Practice \&Programming

- Theory: You know something, but it doesn't work.
- Practice: Something works, but you don't know why
- Programming: Combine theory and practice: Nothing works, and we don't know why!

Are NP-Complete Problems Really Hard?

- When I was a graduate student, SAT was a "scary" problem, not to be touched with a 10 -foot pole.
- Indeed, there are SAT instances with a few hundred variables that cannot be solved by any extant SAT solver.
- But today's SAT solvers, which enjoy wide industrial usage, routinely solve real-life SAT instances with over one million variables!

Conclusion We need a richer and broader complexity theory, a theory that would explain both the difficulty and the easiness of problems like SAT.

