
Retrieving Information from Malware

Encrypted Output Files
Two Case Studies from Brazil

Nelson Uto

CPqD

Agenda

Introduction.

Cryptanalysis of File #1.

Cryptanalysis of File #2.

Final words.

Introduction

CPqD was hired by a big Brazilian company to find out

which information had been stolen by three different

malwares, that infected its environment.

Each one of them stored information in encrypted form

using different mechanisms.

We did only have access to the encrypted files and the

malware binaries, meaning we could not use the special

purpose hardware targeted by them.

Due to the sensitivity of the stolen data and signed NDA,

this talk will not use the real information we retrieved

from those files.

Covered topics

Detection of weak cryptosystems.

Cryptanalysis of classical algorithms.

Block ciphers.

DES.

Modes of operation.

Searching key in malware binary or in memory.

Worst scenario.

File #1 ï Sample

File #1 ï Histogram

File #1 ï Important facts

File#1 is pretty redundant.

This means a weak cryptosystem was used.

The distance between occurrences of the string

ñrobin@hooò is always multiple of its length.

Most of the bytes has values between 80 and 180.

File #1 ï Hypothesis

Hypothesis #1: a constant number is added to each

byte modulo 256 and a given string is repeated several

times in the plain text.

Not likely, but it should be tested.

How?

Hypothesis #2: a Vigenère cipher over an alphabet of

256 elements and period equals 9 was used.

Candidate key: robin@hoo

File #1 ï First attempt

File #1 ï Correction

File #1 ï Description of cipher

Alphabet of definition: A = {0, 1, 2, 3, é, 255}

Plain text: M = m0m1m2émt-1, mi ⱦ A

Cipher text: C = c0c1c2éct-1, ci ⱦ A

Key: K = k0k1k2k3k4k5k6k7k8

 = 0x52 4f 42 49 4e 20 48 4f 4f

Å Encryption function: ci = mi + k(i mod 9) mod 256

Å Decryption function: mi = ci ï k(i mod 9) mod 256

File #2 ï Sample

File #2 ï Base64 decoded

