Actes de la 1" journée 3SL, Saint-Malo, France, 10 mai 2011

Testing micro-kernel syscalls to discover
vulnerabilities

Amaury Gauthier®, Clément Mazin*, Julien Iguchi-Cartigny* and Jean-Louis Lanet*
*Smart Secure Devices Team — Xlim Laboratories
University of Limoges
France
{amaury.gauthier, clement.mazin, julien.cartigny, jean-louis.lanet} @xlim.fr

Abstract—Virtual machine monitor is a hot topic in the embed-
ded community. Most of the current hypervisors for embedded
devices use the paravirtualization technique which runs well on
small processor without virtualization instructions. This is the
case of the OKL4 kernel which is based on the L4 micro-kernel
and implements among other the Linux kernel as guest OS.

We introduce our method based on fuzzing and constraints
solving for testing the security of OKL4. We have chosen to focus
on the lower level OKL4 interface usable from an external actor:
the system calls API. Because all operating system components
use directly or indirectly these system calls, a minor flaw at this
level can impact in chain the entire system including a virtualized
kernel.

I. INTRODUCTION

Virtualization is an attractive technology which brings a
lot of flexibility whatever the application domain is. But this
flexibility has implication on the system security. Embedded
virtual machine monitors are still young, and currently, the
security impact of a vulnerability in this software piece is not
known. This fact motivated our work on the security analysis
of these components.

We begin this paper with a section which explains the main
arguments in favor of embedded virtualization in a mobile
phone context. Then, we present a new grammar which enables
the formalization of the OKL4 system calls. Finally, we talk
about the use of these models to test the system calls.

II. VIRTUALIZATION IN MOBILE PHONE

The first argument used by Companies which develop
mobile virtual machine monitors is the cost reduction. In-
deed, we can use a hypervisor to make current operating
systems run seamlessly on new hardware components with
only modifications to the hypervisor architecture dependent
code. Depending on the hypervisor architecture, we only need
to write a hypervisor driver if we change or add a new
device on the system. All operating systems running on top
of the hypervisor will be able to use directly the new device
functionalities. A hypervisor also enables the possibility to run
a real time operating system dedicated to radio communication
and a “user experience” operating system on the same system
on chip. Nowadays, the majority of mobile phones use two
systems on chip when the user experience part of the phone
is slightly advanced.

There is also the software update management problem
which appeared with the success of smart phone. It can be
resolved at least in part by delegating update management to
the hypervisor.

Finally, Companies are more and more concerned by the
assets management. A hypervisor can be used to build a trusted
chain at low level and enforces a Company policies when
employees use the same mobile phone for unrelated context
(e.g. business and personal context). Hence, a Company can
use hypervisor capabilities to protect their assets and enforce
a Company security policies.

III. TESTING THE OKL4 MICRO-KERNEL

There is little work focused on the hypervisor security. But
this domain is very close to the more developed operating
system security field. Several approaches exist to test the
kernel of an operating system like statical analysis, fuzzing
or formal verification[1]. We choose to base our work on the
fuzzing technique.

A. System calls formalization for OKLA4

In OKL4, a system call is a function taking at least one
arguments and providing one or more results. There are two
types of input and output arguments: standard parameters and
virtual registers.

Standard parameters are like normal arguments of any
function in a simple program and virtual registers are objects
which are associated to each thread in the system. The user
can interact with them with “getter” and “setter” functions.
They can be mapped directly on processor registers and must
be set before running a system call.

Some conditions must also be verified before running a
system call to ensure its success. The system should be in
a precise state described in the OKL4 Micro-kernel Reference
Manual[2].

After a system call, some results are returned. There is
always a Result parameter which indicates if the system call
is successful or not. If the Result is set to false, the ErrorCode
parameter provides some information about the error. The
different errors are described in [2]. In case of a successful
system call, the manual describes in which state OKL4 should
be after this call.

B. A grammar for system calls testing

In order to enhance test generation, we have designed a
grammar to model OKL4 system calls. This grammar allows
to model precisely a system call: its execution context, its
parameters, their constraints and the results of the system call.

Then, the data stored in these models can be used to perform
computation. These models have two goals. Firstly, they will
be used as inputs for the space test generation algorithm.

Actes de la 1" journée 3SL, Saint-Malo, France, 10 mai 2011

Secondly, they will be used to automatically configure the
fuzzer.

As an example, we have modeled the OKL4 IPC system
call. This system call is used when two processes want to
exchange data.

Name Ipc
Args
Name ’TargetIN’
Type ’ThreadlD’
VirtualRegister ’ParameterQ’
Constraint ’=NilThread OR
in(SysState . ExistingThread)’

Name ’SourceIN’
Type ’ThreadID’
VirtualRegister ’Parameterl’

Constraint =WaitNotify OR =AnyThread OR
=ThreadID OR =NilThread’
Name ’AcceptorIN”’
Type ’*Acceptor’
VirtualRegister *Acceptor’
Constraint ’=True OR =False’
Name ’TagIN’
Type ’MessageTag’
VirtualRegister ’'MessageDate(’
Constraint ’’
InputRegisters
Name’ DatalIN’
Type *Word’
VirtualRegister
Constraint ’’
Output
Name ’ReplyCapOUT’
Type ’*ThreadID’
VirtualRegister ’Result0’
Constraint ’TargetIN=NilThread
Name ’SenderSpaceOUT’

’MessageDatal ’

=> undefined’

Type ’SpacelD’

VirtualRegister ’SenderSpace’

Constraint *TargetIN=NilThread => undefined’
Name ’ErrorCodeOUT’

Type ’*ErrorCode’

VirtualRegister ’ErrorCode’

’=NoPartner OR = InvalidPartner OR
=MessageOverflow OR =IpcRejected OR
=IpcConcelled OR =IpcAborted ,
TargetIN=NilThread => undefined’
Name ’TagOUT’
Type ’MessageTag’
VirtualRegister *MessageData0’
Constraint *TargetIN=NilThread
=> TagOUT. Untyped=0"
Name ’DataOUT’
Type *Word’
VirtualRegister
Constraint ’’
Success
*TagOUT .E=False AND ErrorCode=undefined ,
TargetIN=NilThread AND SourceIN=NilThread
=> null_syscall ,
SourceIN in(WaitNotify , AnyThread , Threadld)
=> ReplyCapOutSysState . ExistingThread ’
Failure
*>Targetln . NotWaiting => ErrorCode=NoPartner,
Targetln notIn(SysState.ExistingThread)
=> ErroCode=InvalidPartnerr ,
TagIN . Untyped>MaxMessageData’

Constraint

*’MessageData0’

system calls. But this set can not be used as fuzzing input
directly because the input domain is too large to be evaluated
in a reasonable time.

But, we can use the Constraint property of the model in a
manner to remove some testing values from this first set and
therefore reduce it. Indeed, this property allows the elimination
of all values which are not valid. We just need to keep
some values which are out of these bounds to effectively test
verifications operated by the kernel at system call invocation.

The main algorithm of our method is defined in the next
pseudo-code fragment. It takes as parameter a system call
formalized with the grammar and the system state. This last
argument enables the computation of constraints which use
the operating system state to restrict the set of values. The
function returns a set of values to be tested on the system call
in addition to the expected values.

computeValues (Grammar syscall ,
output {
syscall . Args,
syscall . InputRegisters as argf{
space <— computeConstraint(arg.Constraint ,
state)

SystemState state)

foreach

foreach space as
output[arg] <—
output[arg] <—
output[arg] <—

}

value {
value
lowerBound (value)
upperBound (value)

}
output[Success] <—
computeConstraint(syscall.Success,
output[Failure] <—
computeConstraint(syscall . Failure ,
foreach syscall.Output as out {
output[Success] <—
computeConstraint (out. Constraint ,
output[Failure] <—
computeConstraint(out. Constraint ,

state)

state)

state)

state)

A constraint like TargetIN=NilThread => undefined means
that if TargetIN value is NilThread, then the value of Reply-
CapOUT will be undefined.

IV. HOW TO USE OUR SYSTEM CALLS MODEL TO
GENERATE USEFUL FUZZER OUTPUTS

From the above model, we can compute some properties.
The set of properties allows the generation of each valid

V. FUTURE WORKS

This is an on going work, so it remains a lot of work to
make this method fully functional and automatic.

When this goal will be reached, we will work on the
portability of this method to make it usable on other micro-
kernels and then we will try to apply it to more traditional
virtual machine monitors like Xen[3].

REFERENCES

[1] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, “selL4: Formal verification of an OS kernel,” Commu-
nications of the ACM, vol. 53, no. 6, pp. 107-115, Jun 2010.

[2] O. K. Labs, “Okl4 microkernel reference manual.”

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles. New York, NY, USA: ACM, 2003, pp. 164-177.

A. GAUTHIER is a second year PhD student, in
the Xlim laboratories at University of Limoges,
working in the Smart Secure Devices team on the
security of hypervisor for embedded devices. His
research interests include operating system security
and hypervisors for embedded systems.

