
Modeling Distributed Real-Time Systems
using Adaptive Petri Nets

Olivier BALDELLON∗ Jean-Charles FABRE Matthieu ROY
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France

Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ; F-31077 Toulouse Cedex 4, France

Abstract—Industrial systems, like aircrafts or cars, are based
on real-time distributed networks and require high level of ro-
bustness, reliability and adaptability. This paper first introduces
our approach to implement a distributed monitor of real-time
properties, and then introduce a new formalism, adaptive Petri
nets, that will allow to model such complex, distributed and real-
time systems.

Keywords—Distributed Systems Models, Petri Net, Real Time

I. INTRODUCTION

On-line monitoring of complex, distributed and real-time
systems is a highly complex task that, to our knowledge, has
not yet been fully tackled. On-line monitoring of applications
(distributed or not) in a centralized way has been an active
research domain [5][6] since a few years now, but these
approaches cannot handle the case of distributed and real-time
systems, and the following two challenges must be addressed
to be able to provide online monitoring in the general case :

• the first challenge concerns property modeling, i.e., the
ability to formally reason on distributed systems with
timing constraints. Such formalism should take into ac-
count (i) temporal aspects, (ii) distribution and (iii)
evolvability. Moreover, for a formalism to be useable
by human users, it should permit to express systems’
feature in a hierarchical way, to prevent overwhelming
complexity of description.

• the second challenge concerns the transformation of for-
mal properties into a runtime support, i.e., the “compila-
tion” of properties in a runnable format. The important
points for such a transformation are (i) it should max-
imize offline work to reduce overhead at runtime, (ii)
it must provide a distributed scheme for verification of
system wide properties, and (iii) it has to provide the
most possible efficient way (both in computation and in
network load) to verify a given property.

II. OUR APPROACH

Our approach can be described in three steps represented
in Figure 1. Each step builds some tools that will allow to
“compile” a model into a distributed monitor. The first step
is to introduce a new formalism that will allow to describe
complex real-time distributed services. The second step will
transform (with three operations) the model to adapt it for
the last step, that consists in the deployment and distributed
execution of the transformed model.

The introduction of a new formal tool that can be used
to describe the system is the main subject of this paper.

This work has been supported by the french national agency (ANR) under
contract ANR-BLAN-SIMI10-LS-100618-6-01.

∗ Corresponding author: olivier.baldellon@laas.fr

description
extraction

simplification
transformation

distribution
execution

offline work online work

Figure 1. Our approach

This formal approach, called adaptive Petri net, is a scalable
and hierarchical way to define complex systems that can be
modified and adapted.

Then, some transformation work has to be done offline on
such a system. The distributed system is a network made of
nodes connected together, but because an adaptive Petri net
represents a whole system and could be huge, and because
we don’t want every node to check the whole system, we will
extract some parts of this Petri net, a part being a subsystem
that a subset of nodes will monitor. This operation is called
extraction.

The next operation will consist in simplifying the system’s
parts obtained from the previous operation, for example by
abstracting a whole set of places and transitions by a simple
place; such an operation is called simplification. It could be
useful is some nodes are supposed to monitor the global
behavior of the system, but do not need to monitor every single
operation.

Then we need to transform this piece of adaptive Petri net:
as the original adaptive Petri net only describes properties we
want to check, we need indeed to transform it to obtain a new
model that prevents and/or avoids faults as soon of possible.

The last step will be to deploy and execute the parts to
create a distributed real-time monitoring system.

Another approach based on Petri net connected together can
be found in [4], [1], but this work do neither consider real-time
systems, nor degradations.

III. COMPONENTS AND ARC TIME PETRI NETS

A bottom-up approach will be used to describe our system.
The component notion will be the first that will be introduced.
A component is the more basic part of the system and is
described by arc time Petri net [3]. An arc time Petri net is a
classical Petri net where arcs between place and transition are
labelled by a time interval (cf. Figure 2).

We suppose that the reader is familiar with the Petri net
concept. The main difference between classical Petri nets is
that every time a token appears in a place, a new timer starts.
Time passes at the same speed in all timers of every token. A
token can fire a transition if and only if the value of the timer

Actes de la 1re journée 3SL, Saint-Malo, France, 10 mai 2011

7



is contained in the time interval of the arc. For example, in
Figure 2, the first token can fire the transition after a waiting
time between 3 and 5 unit. It easy to see that if the token waits
more than 5 it will not be able to fire the transition anymore.
In this case the token is said to be dead.

To summarize, there are two main rules: the discrete rule
corresponding to the firings of transitions, and the continuous
rule corresponding to the passing of time. For a more formal
description of Arc time Petri nets, and a comparison with other
model time Petri net, the reader can look at [2].

[3, 5]

[4, 6]

[1, 3]

]0,∞[

Figure 2. An arc time Petri net

IV. DEGRADABLE COMPONENTS

A degradable component is a sequence of components
(d0, d1, d2, . . . , dn) where d0 is the nominal mode (with no
degradation) of the degradable component and the different di
represent the degraded modes.

We assume that nominal mode and degraded modes have
the same interface. The interface of a Petri net is the set of its
sources and sinks. The set of sources, the input interface, is
the set of place where no transition points to (as i1 and i2 in
Figure 3). Similarly, the set of sinks, the output interface, is
the set of place pointing to no transition (as o1 in Figure 3).

i1

i2

o1

Figure 3. A degradable component (e.g., the example of Figure 2)

V. ADAPTATIVE PETRI NETS

This section shows how a complex system architecture can
be described by connecting degradable components. Let us
consider the following example: one client and one server. The
client can be seen as a set of three components (c1, c2, c3), the
server provide three services (a read one r, a write server w1

and w2 and a deliver service c). We can first connect with
a function fc the three components c1, c2 and c3 to obtain
the client; we can then connect the two operations w1 and w2

to obtain the write subsystem; the server can be obtained by
connecting the three services together with a fs function to
obtain the server. To obtain the whole system we just have to
connect the server and the client with an appropriate function.

Due to space limitations, the formal definition of a connec-
tion function cannot be described here. The above system can
be described by a tree as shown in Figure 4. We call such a
tree an adaptative Petri net.

In the tree, every branch is a degradable system composed of
degradable components. For example if we consider the write
subsystem (w1 and w2), d0 represent the default mode (all

f

c1 c2 c3 d fw r

fc fs

w1 w2

Client Server

Figure 4. An Adaptative Petri net

information is logged and replicated), d1 could represent the
degraded mode with no replication, d2 the one with replication
but less information logged, d3 less information logged and
no replication and at last d4 the write service is stopped. In
the general case, all di are degraded modes of d0, but di+1

doesn’t have to be a degraded mode of di.
In a more formal approach, an adaptive Petri net is a

tree whose leaves are degradable components and nodes are
connecting functions. This approach allows us to associate a
degradable system to each subtree.

CONCLUSION

This paper described a formal approach based on trees and
Petri nets to model real-time embedded systems. Our current
work include the definition of a clear semantics for such a
model. Intuitively, we need to explain (1) how such a model
should be executed, (2) when and how it has to be degraded
and (3) when and how it must recover, in order to provide a
complete solution for resilient systems.

Degradations rules are not defined by the model but by the
designers. Degradations rules must reflect priorities between
components — which one is the less important and can be
degraded to preserve a more important one — and adaptive
capabilities of a system: if one component has to be changed,
which part of the system do we have to degrade to keep it in
a consistent state?

REFERENCES

[1] A. Benveniste, S. Haar, E. Fabre, and C. Jard. Distributed monitoring
of concurrent and asynchronous systems. CONCUR 2003-Concurrency
Theory, pages 1–26, 2003.

[2] M. Boyer and O. H. Roux. On the compared expressiveness of arc, place
and transition time Petri nets. Fundamenta Informaticae, 88(3):225–249,
2008.

[3] H.M. Hanisch. Analysis of place/transition nets with timed arcs and its
application to batch process control. Application and Theory of Petri Nets
1993, pages 282–299, 1993.

[4] A. Madalinski and E. Fabre. Modular construction of finite and complete
prefixes of Petri net unfoldings. Fundamenta Informaticae, 95(1):219–
244, 2009.

[5] T. Robert, J.C. Fabre, and M. Roy. On-line monitoring of real time appli-
cations for early error detection. In 14th IEEE Pacific Rim International
Symposium on Dependable Computing, pages 24–31. IEEE, 2008.

[6] W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. DMaC: Distributed
Monitoring and Checking. Lecture Notes in Computer Science, 5779:184,
2009. Olivier Baldellon Alumnus of the Rennes extension

of the École Normale Supérieure de Cachan in the
computer science department owns a MsC from
University of Rennes 1/IRISA, where he worked on
distributed calculability and consensus with Michel
Raynal. He is currently doing a PhD supervised
by Matthieu Roy and Jean-Charles Fabre on formal
tools to implement a distributed real-time monitoring
system.

Actes de la 1re journée 3SL, Saint-Malo, France, 10 mai 2011

8


