
7th International Workshop
on Constraint Solving and

Language Processing
(CSLP’12)

Orléans, France – 13 & 14 September 2012

http://www.univ-orleans.fr/lifo/evenements/CSLP2012/

Proceedings

Denys Duchier and Yannick Parmentier (Eds.)

Sponsors:

http://www.univ-orleans.fr/lifo/evenements/CSLP2012/

II

Preface

These are the proceedings of the seventh International Workshop on Constraint
Solving and Language Processing (CSLP). The first CSLP workshop took place
in 2004 in Roskilde, Denmark. It opened a decade of research on the role of
constraints in the representation and processing of language.

While constraints are widely used in many fields, including linguistics, com-
putational linguistics, psycholinguistics, etc., their use and interpretation differs
according to the research domain. In this context, the CSLP workshops aim at
gathering researchers from various fields to allow them to exchange ideas about
their conception of the role of constraints in language understanding and pro-
cessing. Contributions to the CSLP workshops include (but are not limited to):

• Constraints in human language comprehension and production ;
• Context modelling and discourse interpretation ;
• Acquisition of constraints ;
• Constraints and learning ;
• Cross-theoretical view of the notion of constraint ;
• New advances in constraint-based linguistic theories ;
• Constraint satisfaction (CS) technologies for NLP ;
• Linguistic analysis and linguistic theories biased towards CS or constraint

logic programming (CLP) ;
• Application of CS or CLP for NLP ;
• CS and CLP for other than textual or spoken languages, e.g., sign languages

and biological, multimodal human-computer interaction, visual languages ;
• Probabilistic constraint-based reasoning for NLP . . .

This year, 11 papers have been selected via the rigorous efforts of a Program
Committee composed of renowned researchers. Each paper has been reviewed by
three independent committee members. For the first time, the CSLP workshop
welcomed both long and short papers, the latter being devoted to the report of
ongoing work and partial results.

CSLP 2012 would not have been possible without the precious help of the
program committee, the organizing committee, the local organizing committee
and our sponsors. Thanks to them all.

Wishing you a fruitful reading,
yours faithfully

September 2012 Denys Duchier & Yannick Parmentier
Local Chairs

CSLP’12

Organization

CSLP’12 is organized by the Laboratory for Fundamental Computer Science
(LIFO), University of Orléans, France.

Executive Committee

Workshop Chairs: Denys Duchier and Yannick Parmentier
(Université d’Orléans, FR)

Steering Committee

Philippe Blache CNRS & Universit de Provence, France (FR)
Henning Christiansen Roskilde University, Denmark (DK)
Vernica Dahl Simon Fraser University, Canada (CA)
Denys Duchier Université d’Orléans (FR)
Jørgen Villadsen Technical University of Denmark (DK)

Program Committee

Philippe Blache, CNRS - Université de Provence, France
Adriane Boyd, Universität Tübingen, Germany
Aoife Cahill, ETS Princeton, USA
Henning Christiansen, Roskilde University, Denmark
Berthold Crysmann, CNRS - Paris 7, France
Verónica Dahl, Simon Fraser University, Canada
Helen de Hoop, Radboud University Nijmegen, Netherlands
Eric De La Clergerie, INRIA - Paris 7, France
Denys Duchier, Université d’Orléans, France
Claire Gardent, CNRS - LORIA, France
Barbara Hemforth, CNRS - Université Paris 7, France
Maria Dolores Jiménez-López, Universitat Rovira i Virgili, Spain
Laura Kallmeyer, Heinrich Heine Universität, Düsseldorf, Germany
Ruth Kempson, King’s College London, UK
Stephan Kepser, Codecentric AG Düsseldorf, Germany
Patrick McCrae, Langtec Hamburg, Germany
Wolfgang Menzel, Universitt Hamburg, Germany
Detmar Meurer, Universitt Tbingen, Germany
Véronique Moriceau, Université Paris XI, France
Yannick Parmentier, Université d’Orléans, France
Jean-Philippe Prost, Université de Montpellier, France
Adam Przepiórkowski, IPIPAN, Warsaw, Poland

V

Christian Rétoré, Université de Bordeaux, France
Frank Richter, Universitt Tbingen, Germany
Sylvain Salvati, INRIA - Université de Bordeaux, France
Sylvain Schmitz, ENS Cachan, France
Kiril Simov, Bulgarian Academy of Sciences, Bulgaria
Jesse Tseng, CNRS - Université de Toulouse, France
Jørgen Villadsen, Technical University of Denmark

Sponsoring Institutions

Laboratoire d’Informatique Fondamentale d’Orléans.
Université d’Orléans.
Conseil Régional du Centre.
Conseil Général du Loiret.
Mairie d’Orléans.

Invited Speakers

Ruth Kempson King’s College London

Stergios Chatzikyriakidis Royal Holloway University of London and Open
University of Cyprus

Grammars as Mechanisms for Real-Time Tree-Growth: Explaining Clitic Pro-
nouns

Abstract: In this talk, we argue for a shift of perspective into defining
grammars as mechanisms for incremental growth of interpretation reflecting the
time-line of processing (Dynamic Syntax: Kempson et al. 2001, Cann et al. 2005,
Chatzikyriakidis & Kempson 2011). The core syntactic notion of this framework
is that of monotonic context-relative tree growth (following Blackburn & Meyer-
Viol 1994), with both content and structural parameters of underspecification
and update. Our case study is the puzzle of clitic pronoun clusters of Modern
Greek dialects, which illustrate both the low level morphological idiosyncracy of
such clusterings, and yet the broad cross-linguistic constraints to which they are
subject: these dialects display variants of the so-called Person Case Constraint,
a constraint whose generality continues to provide a major challenge for current
theoretical frameworks (Adger & Harbour 2007, Heap 2005, among others). We
show first how the limits on variation displayed in such clusters are explicable
in terms of a constraint debarring more than one underspecified tree relation of
a type at a time, a constraint only expressible in a dynamical grammar frame-
work; and we give an analysis of Greek dialectal variation in these terms. Then
we explore the consequences of this theoretical perspective, viz. the domain-
generality of the system of growth underpinning natural-language syntax; and
we will suggest that metrical ambiguities and metrical dissonance displayed in
music (Vazan & Schober 2004, London 2012) are subject to the same restriction
on real-time structural processing.

VI

Table of contents

Long papers

• An Account of Natural Language Coordination in Type Theory with Coer-
cive Subtyping . 1
Stergios Chatzikyriakidis and Zhaohui Luo.

• A Predicative Operator and Underspecification by the Type Theory of Acyclic
Recursion . 18
Roussanka Loukanova.

• A Speaker-Referring OT Pragmatics of Quantity Expressions30
Chris Cummins.

• Inducing Lexical Entries for an Incremental Semantic Grammar 39
Arash Eshghi, Matthew Purver, Julian Hough and Yo Sato.

• Modelling Language, Action and Perception in Type Theory with Records
. .51
Simon Dobnik, Robin Cooper and Staffan Larsson.

• Ontology driven Contextual Reference Resolution in Embodied Construction
Grammar . 63
Jesús Oliva, Jerome Feldman, Luca Giraldi and Ellen Dodge.

• Resolving Relative Time Expressions in Dutch Text with Constraint Han-
dling Rules . 74
Matje van de Camp and Henning Christiansen.

Short papers

• Describing Music with Metagrammars . 86
Simon Petitjean.

• Estimating Constraint Weights from Treebanks . 93
Philippe Blache.

• On Language Acquisition Through Womb Grammars 99
Emilio Miralles, Veronica Dahl and Leonor Becerra-Bonache.

• What Constraints for Representing Multilinearity in Sign Language ? . 106
Michael Filhol and Annelies Braffort.

An Account of Natural Language Coordination

in Type Theory with Coercive Subtyping?

Stergios Chatzikyriakidis1 and Zhaohui Luo2

1 Dept of Computer Science, Royal Holloway, Univ of London
Egham, Surrey TW20 0EX, U.K; Open University of Cyprus

stergios.chatzikyriakidis@cs.rhul.ac.uk,
2 Dept of Computer Science, Royal Holloway, Univ of London
Egham, Surrey TW20 0EX, U.K; Open University of Cyprus

zhaohui@cs.rhul.ac.uk

Abstract. We discuss the semantics of NL coordination in modern type
theories (MTTs) with coercive subtyping. The issue of conjoinable types
is handled by means of a type universe of linguistic types. We discuss
quantifier coordination, arguing that they should be allowed in principle
and that the semantic infelicity of some cases of quantifier coordination
is due to the incompatible semantics of the relevant quantifiers. Non-
Boolean collective readings of conjunction are also discussed and, in par-
ticular, treated as involving the vectors of type V ec(A,n), an inductive
family of types in an MTT. Lastly, the interaction between coordination
and copredication is briefly discussed, showing that the proposed account
of coordination and that of copredication by means of dot-types combine
consistently as expected.

1 Introduction

The literature on NL coordination dates back to [22] and a number of proposals
have been put forth within the Montagovian tradition since then. However, a
number of central issues as regards NL coordination have not been clarified
yet. In this paper we depart from single-sorted versions of type theory found in
Montague’s work (as well as in most of the subsequent work within the same
tradition) and employ a many-sorted modern type theory (MTT)3, as proposed
and studied for NL semantics in [30, 17, 18], to deal with two central issues in NL
coordination. These issues concern the notion of conjoinable types, in effect the
question of which NL elements can be coordinated, and non-Boolean conjunction,
where a collective rather than the expected Boolean distributive reading of and
arises. The difference between collective and distributive readings is exemplified

? This work is supported by the research grant F/07-537/AJ of the Leverhulme Trust
in the U.K.

3 Examples of modern type theories include Martin-Löf’s type theory [21, 26], the
Unifying Theory of dependent Types (UTT) [15] and the type theory implemented
in the Coq proof assistant (pCIC) [7].

in the examples below, where the same conjoined NP is interpreted distributively
in (1) but collectively in (2):

(1) John and Mary came to the Party.

(2) John and Mary met at the Party.

We shall investigate how collective readings can be interpreted by means of
the inductive family of types of vectors in an MTT.

We further discuss the interaction between dot-types for coordinated NPs.
Dot-types have been proposed by Pustejovsky [28, 29] for lexical interpretations
of inherently polysemous words in phenomena such as co-predication (see, for
example, [2]).4 For example, book according to [28] can be represented with
the dot-type Phy • Info, a type whose objects have both a physical and an
informational aspect. Dot-types have been formally introduced into MTTs with
coercive subtyping [17, 18] and a computational implementation of this account
in Plastic5 has also been done [35]. What we want to look at in this paper is the
interaction between these types and coordination, i.e. examples of the following
sort:

(3) The book and my lunch were sent by mistake to someone else.

(4) John picked up the newspaper and the book from the floor.

Given that the dot-types of the coordinated phrases are different and assuming
that the NL coordination operate on the same types, we will have to explain
how coordination is possible in these cases. The problem that arises in examples
like (3) and (4) is that the individual NPs of the conjunction (e.g. the book and
my lunch in (3) have different types (Phy • Info for book and Event •Phy for
lunch). The challenge is to account for the possibility of coordination in these
cases by, at the same time, retaining the assumption that coordination operates
on elements of the same type. As we shall see, the coercive subtyping mechanism
actually allows us to combine the proposed typing for NL coordinations and the
account with dot-types in a rather straightforward way.

2 Type Theory with Coercive Subtyping

In this paper, we employ modern type theories (MTTs) as the language for
formal semantics. A brief introduction to the relevant features of MTTs are
briefly given here.

An MTT has a number of differences when compared to Church’s simple type
theory as employed in Montague semantics [6, 23]. One of the most important

4 See also [3] for a critique of the flaws in the various formalizations of dot-types in
their original formulation as well as in much of the later work based on that.

5 Plastic [5] is a proof assistant, an implementation of the modern types theory UTT
[15] on the computer for formalised proof development. In the context of linguistic
semantics, type theory based proof assistants such as Agda [1], Coq [7] and Plastic
can be used to formalise and reason about the formal semantics based on MTTs.

2

differences between an MTT and the simple type theory, is that the former can
be regarded as many-sorted while the latter single-sorted. MTTs use many types
to interpret Common Nouns (CN) such as man and table, while single-sorted
type theories use only one type (e) for the type of all entities (and another type t
for logical truth values), with CNs being interpreted as predicates of type e → t.

In Montague semantics, an Intransitive Verb (IV) is interpreted as a function
from entities to truth values (e → t), a type which is shared with CNs and
intersective adjectives, and a quantified NP as of the type from properties to
truth values ((e → t) → t).

In an MTT, types (‘sorts’) are used to interpret the domains to be repre-
sented. Some of them are:

– the propositional types (or logical propositions),
– the inductive types such as the type of natural numbers and Σ-types of

dependent pairs,
– the inductive families of types such as the types V ec(A, n) of vectors (or

lists) of length n, and
– other more advanced type constructions such as type universes.

For example, within such a many-sorted logical system CNs are not interpreted
as predicates as in the Montagovian tradition but rather as Types. Theoreti-
cal motivation behind such a proposal has been provided by the second author
based on the notion of identity criteria that CNs have according to [9]. (See [19]
for the exact details of this proposal.) Then given the interpretation of CNs as
types, adjectives are interpreted as a predicate over the type interpreting the
domain of the adjective. For example, the adjective handsome is interpreted
as [[handsome]] : [[man]] → Prop, with Prop being the type of logical proposi-
tions.6 Modified CNs are then interpreted as Σ-types, the types that intuitively
represent subset types but contain explicit proof objects.7

One of the important features of MTTs is the use of dependent types. Two
examples of basic constructors for dependent types are Π and Σ. The Π-type
corresponds to universal quantification in the dependent case and implication in
the non-dependent case. In more detail, when A is a type and P is a predicate
over A, Πx:A.P (x) is the dependent function type that, in the embedded logic,
stands for the universally quantified proposition ∀x:A.P (x). A Π-type degener-
ates to the function type A → B in the non-dependent case. In the case of Σ, if
A is a type and B is an A-indexed family of types, then Σ(A,B), or sometimes
written as Σx:A.B(x), is a type, consisting of pairs (a, b) such that a is of type

6 MTTs have consistent internal logics based on the propositions-as-types principle
[8, 14]. For example, in a predicative type theory such as Martin-Löf’s type theory,
the logical proposition A&B corresponds to the product type A×B (a special case
of Σ-type – see below) and a pair of a proof of A and a proof of B corresponds to an
object of the product type. In an impredicative types theory such as UTT, logical
propositions are similarly constructed as types but, furthermore, there is the type
Prop – a totality of logical propositions.

7 See [30, 17] for more details on this.

3

A and b is of type B(a). When B(x) is a constant type (i.e., always the same
type no matter what x is), the Σ-type degenerates into product type A × B
of non-dependent pairs. Σ-types (and product types) are associated projection
operations π1 and π2 so that π1(a, b) = a and π2(a, b) = b, for every (a, b) of
type Σ(A,B) or A×B.

Coercive subtyping is an adequate subtyping mechanism for MTTs [16, 20]
and, in particular, it avoids a problem associated with the ordinary notion of sub-
typing (subsumptive subtyping), namely violation of canonicity [17].8 Basically,
coercive subtyping is an an abbreviation mechanism: A is a (proper) subtype of
B (A < B) if there is a unique implicit coercion c from type A to type B and, if
so, an object a of type A can be used in any context CB[] that expects an object
of type B: CB[a] is legal (well-typed) and equal to CB[c(a)]. For instance, one
may introduce [[man]] < [[human]]. Then, if we assume that [[John]] : [[man]] and
[[shout]] : [[human]] → Prop, the interpretation (6) of (5) is well-typed, thanks
to the coercive subtyping relation between [[man]] and [[human]]:

(5) John shouts.

(6) [[shout]]([[John]])

Ending our discussion on the preliminaries of TTCS, we mention one further
more advanced feature of the theory, that of universes. A universe is a collection
of (the names of) types into a type [21]. This can be seen as a reflection princi-
ple where the universe basically reflects the types whose names are its objects.
Universes are extremely useful in accounts of lexical semantics using MTTs.
Specifically, universes can help semantic representations. To give an example,
one may use the universe cn : Type of all common noun interpretations and,
for each type A that interprets a common noun, there is a name A in cn. For
example,

[[man]] : cn and Tcn([[man]]) = [[man]] .

In practice, we do not distinguish a type in cn and its name by omitting the
overlines and the operator Tcn by simply writing, for instance, [[man]].

Summarizing, we can say that the use of TTCS in interpreting NL semantics
has given a number of interesting results and insights. These include an increased
type granularity when compared to Montague Semantics given its type richness
as well as an adequate subtyping mechanism.9 Furthermore the interpretation
of CNs as Types rather than predicates seems to be closer to the idea accord-
ing to which the distinguishing feature of CNs, when compared to other parts
of speech, is that only the former have what Geach called, criteria of identity
[9]. The work presented in [19] provides strong arguments for supporting the
non-predicate view on CNs based on Geach’s identity criteria. The successful
formalization [17] and subsequent implementation in Plastic [35] of dot.types is
another achievement of this line of research given that no proper formalization

8 See [17] for the notion of canonicity.
9 This subtyping mechanism is however in line with canonicity and as such computa-
tionally more attractive [17].

4

of dot.types existed up to that point. The use of universes has been also proven
fruitful in looking at alternative ways for defining the types for quantifiers and
adverbs among others. Lastly, parts of the various proposals made in the afore-
mentioned papers have been tested using the Coq interactive theorem prover.
Some first results can be seen in [18] as well as in this paper. Current work of the
first author concentrates on the use of Coq to prove valid NL theorems10 as well
as building universes relevant to NL semantics (e.g. CN, LType) in Plastic.11

3 Conjoinable Types

The issue of defining which NL types are conjoinable is of very high importance
to all accounts of coordination proposed so far. Most of the accounts that have
been proposed in the Montagovian tradition argue that conjoinable types are
either of type t or of a function type that ends with t. The formalization might
be different in individual cases but the core of the proposal is pretty much the
same. The definition as given by Winter [34] is given below (using the term
t-reducible):12

(7) τ is a t-reducible type iff τ = t or τ = τ1τ2, where τ1 is any type and τ2 is
a t-reducible type.

Such type of formulation allows coordination of categories ending in type t only,
with type e conjunction not being possible. Thus, in these accounts proper name
coordination is either assumed to involve type-lifting to quantifier type or proper
names are assumed to be quantifiers in all cases. However, Partee & Rooth [27]
propose a definition of e conjoinable types to deal with collective reading cases.
Similar proposals have been made by Hoeksema [11]. Of course, an inductive
definition of an e-conjoinable type does not make much sense given that at least
in standard Montagovian semantics, the only e conjoinable types are the type
of individual concepts, of type s → e, i.e the type from indices to individuals, so
the definition basically covers just one case.

Moving away from the simple type theory in Montague Grammar and using
many-sorted MTTs, the first question to ask ourselves is how conjoinable cat-
egories can be defined. Well, the first question to be asked is which linguistic
types can be conjoined? Surprisingly (or not) it seems that all linguistic cate-
gories can be conjoined. We first note the obvious cases of sentence and predicate
coordination (8 and 9) to CN coordination (10):

(8) John walks and Mary talks.

(9) John walks and talks.

10 An example of this type is the following: if John and Mary met then John met Mary.
Such theorems can be proved if the correct semantics are given in each case.

11 This is not possible in Coq.
12 We follow the notation as this is given in [34]. As such, τ1τ2 should be taken to mean

τ1 → τ2.

5

(10) A friend and colleague came.

Then, quantified NP coordination (11), quantifier coordination (12) and proper
name (PN) coordination are possible (13):

(11) Every student and every professor arrived.

(12) Some but not all students got an A.

(13) John and Mary went to Italy.

Adverb conjunction(14), preposition conjunction(15), PP conjunction (16)

(14) I watered the plant in my bedroom but it still died slowly and agonizingly.

(15) I can do with or without you.

(16) The book is on the table and next to the chair.

Lastly, coordination of subordinate connectives is also possible (17):

(17) When and if he comes, you can ask him.

3.1 Universe of Linguistic Types

In this section we will propose a way to handle the flexibility NL coordination
exhibits by using a MTT. The key idea behind the account we are going to
propose is the notion of a universe.

A universe, as we have already mentioned at the end of §2, is a collection of
(the names of) types into a type [21]. In the case of coordination, the universe
cn of the types that we have used to interpret common nouns is far too small
to capture the generality of the phenomenon. Given that all linguistic categories
can be coordinated, the universe we need, has to be far more general than CN.

The idea is to introduce a type universe LType of Linguistic Types. Intu-
itively, LType contains (the names of) all types that are employed in linguistic
semantics. Of course, in doing so, we will have to specifically say what we con-
sider a linguistic type to be. Even though a thorough discussion of meticulously
constructing the universe of linguistic types is out of the scope of this paper, we
shall indicate positively what types may have names in the universe LType.13

Figure 1 contain some of the introduction rules for LType, where we have used
the so-called Russell-style formulation of a universe to omit the names of its
objects. The informal explanations of the rules in Figure 1 are given below.

– The type Prop of logical propositions is a linguistic type. (It is of type
PType14 by the first rule and hence of type LType by the last rule.)

13 We leave this most thorough and complete discussion of the universe LType for future
work.

14 Ptype can be thought of as the universe of predicates. It is an intermediate universe
used to build LType.

6

PType : Type Prop : PType

A : LType P (x) : PType [x:A]

Πx:A.P (x) : PType

LType : Type cn : LType

A : cn

A : LType

A : PType

A : LType

Fig. 1. Some (not all) introduction rules for LType.

– If A are linguistic types and P is an A-index family of types in PType, so is
the Π-type Πx:A.P (x). In particular, in the non-dependent case, if Ai are
linguistic types, so is the arrow type A1 → ... → An → Prop. (It is of type
PType by repeated uses of the third rule and hence of type LType by the
last rule.)

– The universe CN (of types that interpret common nouns) is an object of
type LType.

– If A interprets a common noun, then A is a linguistic type in LType. For
example, the Σ-types that interpret modified CNs are in LType.

Other example types in LType include the type of VP adverbs and that of
quantifiers, shown in the following examples:

(18) ΠA : cn. (A → Prop) → (A → Prop)

(19) ΠA : cn. (A → Prop) → Prop

Please note that we have only listed some of the introduction rules for LType.
For example we have not yet included the type for PP-modifiers. At the moment,
we shall leave the universe LType to be open in the sense that we may introduce
new types into it in the future.15

Having described the universe of linguistic types, we can now use it to de-
scribe the type of coordinators: every (binary) coordinator is of the following
type:

(20) ΠA : LType. A → A → A

For instance, the coordinator and is of the above type.
To give an example of how this type works, let us imagine three cases of

coordination: PN coordination (John and George), propositional coordination
(John runs and Mary drives) and VP coordination (John cycles and drives). In
the first case, John and George are of type [[Man]], so the A in this case is
of type [[Man]] which is in LType given that it is of type CN . In the case of
propositional coordination, our A is of type Prop, which being a PType is also
an LType. In the third case our A is of type [[Man]] → Prop which is also in
LType. Similar considerations apply to all the cases from (8) to (17). Thus, this
type captures the flexibility associated with coordination.16 It is not difficult to

15 Formally, openness of a universe would imply that we do not impose an elimination
rule for it. We omit the technical details here.

16 Of course, there are cases discussed in the literature where coordination of different
categories seems to be possible. One such example is discussed in [24], where an

7

see that all examples of coordination from (8) to (17) are predicted via the type
given for coordination above.17 However, what we need to discuss is examples
where the rule proposed in (20) might seem to overgenerate or departs from the
standard assumptions as these are made in the formal semantic literature.

3.2 Quantifier Coordination

The type for coordination we have proposed might be argued to overgenerate
for cases involving coordination of two quantifiers like the ones shown below:

(21) # Some and every man came

(22) # No and some boy read

The above sentences seem to be generated via the rule we have proposed for
coordination. Note, that this problem applies to all coordination accounts pro-
posed. Given that quantifiers involve a function type ending in t, they should be
conjoinable according to the accounts proposed in the Montagovian literature.
No explicit discussion has been made of how cases like these are disallowed, so
it would be good to see in more detail what is going on in these cases.

The basic problem is that some quantifiers seem to be able to be coordinated
and some others do not. Between the cases of quantifiers that cannot be coordi-
nated with a coordinator there are cases where adding a modal adverb between
the coordinator and the second conjunct make a difference in acceptability. For
example, adding the modal adverb possibly in (21) but not in (24) makes the
sentence semantically felicitous:

(23) Some and possibly every man came

(24) # No and possibly some boy read

For the rest of the cases, whether such sentences will be semantically felicitous
depends on the type of coordination in each case (cf. the two examples below):

(25) # One and two of my students came to the party.

(26) One or two of my students came to the party.

So, it seems that in principle, we should allow coordination of quantifiers,
since there are clear cases where this is possible. However, allowing coordination
of quantifiers to be in principle possible, we will have to explain semantically
infelicitous cases like (25). A way that can help us rule out a number of infelic-
itous semantic cases is to look at the semantics of the individual quantifiers in

adjective is coordinated with a NP: John is either stupid or a liar. We will not
pursue an account here but we could note that an account in a similar vein to the
one proposed by [25] where coordination even in this case operates on like and not
on unlike categories is possible.

17 All the examples have been checked using the Coq theorem prover [7]. The code can
be found in the Appendix.

8

combination with the coordinator in each case. Let us take the example of the
following NP:

(27) # Some and no men arrived.

The quantifiers in the above example can be coordinated via the rule we have
proposed. However, the semantics we get for the coordinated NP some and no
man are the following, in effect a contradiction:

(28) ∃x : [[man]] .P (x)∧ ∼ ∃x : [[man]] .P (x)

We can quite plausibly assume that the contradictory semantics is the reason
the conjunction is infelicitous in (31), especially when uttered out of the blue
without any context. Now imagine the following situation: someone is lying and
has stated that no men arrived on one occasion and that some men arrived on
another. Then, the hearer might spot this contradiction and utter the following
‘some and no men arrived? ’. In this case, some and no men is perfectly felic-
itous.18 Disjunction of the same quantifiers is possible without the aid of some
special context. Examples of this quantifier combination are quite frequently
found in NL:

(29) People with some or no academic training.

(30) This license may grant the customer the ability to configure some or no
parts of the software themselves.

The semantics of some or no x in contrast to the semantics of some and
no x do not give rise to a contradiction. To the contrary, they are always true
under any interpretation. The example below depicts the semantics of some or
no men:19

(31) ∃x : [[man]]P (x)∨ ∼ ∃x : [[man]] .P (x)

Further examples of quantifiers that do not need a special context are some
but not all, more than three and less than five. It might then be the case, that
quantifier combinations that are always false need a special context in order to be
felicitous while quantifier combinations that do not fall into this category do not.
Of course, there are obvious counterexamples to such a proposal, for example
cases like some and all or most and all, which are of course infelicitous in the
absence of any special context contrary to what we expect in case what we say is
true. However, quantifiers like some and most in NL carry a quantity implicature
(see e.g. [13], [12] and [10] among others). The idea is that a speaker uttering
some and not the stronger all, does that because he believes that substitution
for the stronger value cannot be done salva veritate. For if the latter was true, he
would have uttered the stronger all. A quantifier combination like some and all
cancels out this implicature, so this might be the reason for the infelicitousness of

18 The same kind of example can be devised for cases like (23).
19 This is the case assuming a logical interpretation of some. If the quantity implicature

is taken into consideration, the quantifier combination is not always true.

9

this quantifier combination when uttered out of context. The same can be argued
for the case of most and all. The issue requires more careful examination in order
to see whether what we have argued is true or not. In particular, one has to check
whether cases of quantifier combinations that are always false need the aid of
some special context in order to be felicitous. Then, cases where infelicitousness
arises unexpectedly must be shown to arise from other independent factors (like
the quantity implicature for example). We believe that what we have proposed
can produce a fruitful line of research as regards quantifier coordination but at
least for this paper, we will not examine the issue any further. What is rather
uncontroversial, no matter the assumptions we make as regards the interplay
of quantifier coordination and the use of context, is that we need a rule for
coordination that will in principle allow quantifier coordination. The rule we
have proposed in (24) suffices for this reason.

Recapitulating, we propose a general rule for coordination which extends
over a universe that contains all linguistic types, the universe LType. This rule is
general enough to allow all types of coordination we find in NL. The rule might
seem to overgenerate in the case of quantifier coordination, but as we have seen,
in principle quantifier coordination should be allowed. The infelicitous cases
(when uttered out of the blue) are attributed to the semantics of the individual
quantifiers under the coordinator involved in each case.

3.3 Non-Boolean Conjunction

The first thing we have to see is what is the prediction our typing rule proposed
for coordination makes for these cases. But before doing this, we first have to
discuss the typing of predicates like meet in their collective interpretation. Such
predicates can be seen as one place predicates that take a plural argument and
return a logical proposition (something in Prop in our case), an assumption
already made in a number of the accounts within the Montagovian tradition
(e.g. [34, 33]). The plausible question is how plural arguments are going to be
represented.

An interesting account of plurality within an MTT is presented by [4], where
Martin-Löf’s type theory is used for linguistic semantics. In this account, plural
count nouns are interpreted using the type List(A). Such an account is shown to
give a uniform treatment of both singular and plural anaphora, being compatible
with the classical type-theoretic treatment of anaphora, as this is given by [32].20

In MLTT, List(A) corresponds to the set of lists of elements of a set A. We will
keep the intuition regarding the need to represent lists of objects but instead
of using the inductive type List(A), we will use the inductive family of types
Vec(A,n). V ec(A, n) and List(A) are very much alike, with the difference being
mainly that V ec(A, n) involves an additional argument n of type Nat, which

20 Another interesting account of plurals is given by [31] using Girard’s system F. It is
shown that the basic properties of plurals can be effectively accounted for by using
a second-order system like Girard’s system F.

10

counts the number of the elements in a list (that is why they are called vectors):21

(32) V ec : (A : Type)(n : Nat)Type

Now, collective predicates can be given types in a more appropriate way. For
example, the collective predicate meet can be given the following type:

(33) Πn:Nat. V ec([[human]], n+ 2) → Prop

Please note that, as n ≥ 0, an object of type V ec([[human]], n+2) has length of
at least 2 or longer – this means that meet can only be applied to at least two
people, but not less. Such more exact requirements are captured in typing by
means of the inductive families like V ec(A, n).

Now, let us explain how to interpret sentences like (34):

(34) John and Mary met.

The above typing of meet assumes that the typing for humans can distinguish
the number for the plural cases. In other words, this assumes that, collective and
should be given the following type:

(35) ΠA : CN. Πn,m:Nat. V ec(A, n) → V ec(A,m) → V ec(A, n+m)

Therefore, for example, assuming that J : V ec([[human]], 1) andM : V ec([[human]], 1),
then J and M is of type V ec([[human]], 2). In order to type phrases like John
and Mary, we need to introduce the following coercions, for every type A:

A <c V ec(A, 1)

where the coercion c maps any a to [a], the vector with only element a. With
John : [[man]] < [[human]] and Mary : [[woman]] < [[human]], we have that
John and Mary is interpreted as of type V ec([[human]], 2) and therefore, the
above sentence (34) gets interpreted as intended.

However, we are not done yet with collective predication, given that we have
not yet discussed cases involving quantifiers. Such a case is shown below:

(36) Three men and five women met.

Given the type associated with quantifiers, the rule for collective coordination
as this was given in (35) will not work. What we propose is to use a unit type
which will encode both typings for collective and. There is no space here to

21 See Chapter 9 of [15] for the formal definition of V ec(A,n). We omit the formal
details here. Furthermore, and as suggested by an anonymous reviewer, one might
consider using finite types (see for example Appendix B of [19]) instead of vector
type. This seems to be a good suggestion and will be considered for future refinements
of the proposals found in this paper.

11

explain the notion of a unit type but let us say that such a type will encode both
the typings in (37) via the coercions in (38):22

(37) [[and1]] : ΠA : CN. Πn,m:Nat. V ec(A, n) → V ec(A,m) → V ec(A, n+m)
[[and2]] : ΠA : cn. ((V ec(A, n) → Prop) → Prop) → ((V ec(A,m) →
Prop) → Prop) → ((V ec(A, n+m) → Prop) → Prop)

(38) c1(and) = [[and1]] and c2(and) = [[and2]]

Now, given [[man]], [[woman]] < [[human]], we have:

(39) and([[three men]])([[five women]]) : ((V ec([[human]], 3 + 5) → Prop) →
Prop)

Meet is applied to the above type and the sentence is well-typed.

Remark 1. Another way of dealing with collective predication is to assume a
type for collective and that extends over the universe LType rather than CN .
This rule will produce the following typing in case of quantifier coordination
V ec(((A → Prop) → Prop), n+m). However, given such a type since meet will
not be able to apply assuming the type in (40). The solution in this case will
be to have a unit type for meet, where one of the two types of the unit type is
type lifted and turned into a functor taking a GQ as an argument. We leave the
discussion on the consequences and formalization of such proposal open due to
space limitations. ut

One further welcoming extension of the account proposed is a straightforward
explanation of the way the reciprocal each other functions in English. Verbs like
meet are reciprocal predicates in the sense that they do not need an overt recip-
rocal to give rise to a reciprocal reading (basically what we have been calling the
collective reading so far). For non-reciprocal predicates, there is the possibility
of getting these readings via the use of each other. The idea is that each other in
English turns a transitive predicate into an intransitive one whose sole argument
is a vector A : CN with n of at least 2:23

(40) [[eachother]] : ΠA : cn.(A → A → Prop) → (V ec(A, n+ 2)Prop)

22 Another possibility will be to assume that only the type relevant for the collec-
tive interpretation of GQs is needed. In this case, proper names can be interpreted
collectively only in their GQ guise.

23 If we want to generalize the rule to verbs with arity of more than two, we can use
the following: [[eachother]] : ΠA : cn.(A → A → A∗ → Prop) → (V ec(A, 2) →
A∗Prop), where A∗ stands for 0 or more A arguments.

12

4 Interaction of Coordination and Copredication

Dot-types have been successfully formalized in MTTs with coercive subtyping
[17, 18], and an implementation of them in the proof assistant Plastic also exists
[35]. We first summarize the account proposed for dot-types and then proceed
and discuss the interaction between dot-types and coordination. We will use book
as our prototypical example in presenting the account.

Book is assumed to be a dot-type having both a physical and an informational
aspect. The type-theoretic formalization of this intuition proceeds as follows.
Let Phy and Info be the types of physical objects and informational objects,
respectively. One may consider the dot-type Phy•Info as the type of the objects
with both physical and informational aspects. A dot-type is then a subtype of
its constituent types: Phy • Info < Phy and Phy • Info < Info. A book may
be considered as having both physical and informational aspects, reflected as:

(∗) [[book]] < Phy • Info.

Now, consider the following sentence:

(41) John picked up and mastered the book.

We assume the following typing for pick-up and master respectively:

[[pick up]] : [[human]] → Phy → Prop

[[master]] : [[human]] → Info → Prop

Because of the above subtyping relationship (∗) (and contravariance of subtyping
for the function types), we have

[[pick up]] : [[human]] → Phy → Prop

< [[human]] → Phy • Info → Prop

< [[human]] → [[book]] → Prop

[[master]] : [[human]] → Info → Prop

< [[human]] → Phy • Info → Prop

< [[human]] → [[book]] → Prop

Therefore, [[pick up]] and [[master]] can both be used in a context where terms
of type [[human]] → [[book]] → Prop are required and the interpretation of the
sentence (41) can proceed as intended.

The first case of interaction has already been introduced and involves exam-
ples like (41). It is to see how this is going to be predicted given what we have
said.24

24 See [17, 18] for an account of this.

13

The next step is to take a look at examples where two words with dot-types
are coordinated. Such an example is shown below:

(42) The book and my lunch were sent by mistake to someone else.

In the above example we have two dot-types involved, Phy • Info and Phy •
Event, representing the types for book and lunch respectively. Let us see whether
the rule for coordination we have along with the treatment of dot-types will give
us the correct results.

We need to coordinate the two NPs:

[[the book]] : [[book]] and [[my lunch]] : [[lunch]] .

Furthermore, the passive send is of the following type:

[[sendpass]] : Human → Phy → Prop.

Now, because
[[book]] < Phy • Info < Phy

[[lunch]] < Phy • Event < Phy

the above sentence (42) can be interpreted as intended. In other words, the
coercive subtyping mechanism interacts with that for coordination correctly.

5 Conclusions

In this paper we presented an account of NL coordination using Type Theory
with Coercive Subtyping. The issue of conjoinable types was taken care of by
proposing an inductive type for coordination which extends over the universe
of Linguistic Types, called LType. This type has been shown to be sufficient to
explain the flexibility of NL coordination. We argued that a rule for NL coor-
dination should in principle allow quantifier coordination and showed that the
infelicitous quantifier combination cases are due to the inherent semantics of the
quantifier combination under the coordinator in each case, along with general
pragmatic implicatures associated with quantifiers (e.g. the quantity implica-
ture for quantifiers some and most). Non-Boolean conjunction was accounted
for, assuming that collective predicates take one vector argument representing
plurality. A second rule for collective and was proposed which takes two vector
arguments of n and m length and produces a vector type of length n+m. Lastly,
the interaction of dot.types with coordination was briefly discussed. It was shown
that the coordination account proposed in combination with the co-predication
account as this was given in [18] gives the correct predictions.

References

1. The Agda proof assistant (version 2). Available from the web page:
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php (2008)

14

2. Asher, N.: Lexical Meaning in Context: a Web of Words. Cambridge University
Press (2012)

3. Bassac, C., M.B., Retor, C.: Towards a type-theoretical account of lexical seman-
tics. Journal of Logic Language and Information 19, 229–245 (2010)

4. Boldini, P.: The reference of mass terms from a type-theoretical point of view.
Paper from the 4th International Workshop on Computational Semantics (2001)

5. Callaghan, P., Luo, Z.: An implementation of LF with coercive subtyping and
universes. Journal of Automated Reasoning 27(1), 3–27 (2001)

6. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(1)
(1940)

7. The Coq Development Team: The Coq Proof Assistant Reference Manual (Version
8.3), INRIA (2010)

8. Curry, H., Feys, R.: Combinatory Logic, vol. 1. North Holland (1958)
9. Geach, P.: Reference and Generality: An examination of some Medieval and Mod-

ern Theories. Cornell University Press (1962)
10. Geurts, B.: Quantity Implicatures. Cambridge University Press (2010)
11. Hoeksema, J.: The semantics of non-boolean and. Journal of Semantics 6, 19–40

(1998)
12. Horn, L.: The border wars: a neo-gricean perspective. In: von Heusinger, K.,

Turner, K. (eds.) Where semantics meets pragmatics,s, pp. 21–46. Amsterdam:
Elsevier. (2006)

13. Horn, L., R.: A Natural History of Negation. University of Chicago Press (1989)
14. Howard, W.A.: The formulae-as-types notion of construction. In: Hindley, J.,

Seldin, J. (eds.) To H. B. Curry: Essays on Combinatory Logic. Academic Press
(1980)

15. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Ox-
ford Univ Press (1994)

16. Luo, Z.: Coercive subtyping. Journal of Logic and Computation 9(1), 105–130
(1999)

17. Luo, Z.: Type-theoretical semantics with coercive subtyping. Semantics and Lin-
guistic Theory 20 (SALT20), Vancouver (2010)

18. Luo, Z.: Contextual analysis of word meanings in type-theoretical semantics. In:
Logical Aspects of Computational Linguistics (LACL’2011). LNAI 6736 (2011)

19. Luo, Z.: Common nouns as types. In: Bechet, D., Dikovsky, A. (eds.) Logical As-
pects of Computational Linguistics (LACL’2012). LNCS 7351 (2012)

20. Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: theory and implementation.
Submitted manuscript (2012)

21. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
22. Montague, R.: The proper treatment of quantification in ordinary English. In:

Hintikka, J., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Languages
(1973)

23. Montague, R.: Formal Philosophy. Yale University Press (1974)
24. Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.)

Handbook of Logic and Language. Elsevier/Mit press (1997)
25. Morril, G.: Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic

Publishers (1994)
26. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-

ory: An Introduction. Oxford University Press (1990)
27. Partee, B., Rooth, M.: Generalized conjunction and type ambiguity. In: Bauerle,

R., S.C., von Stechow, A. (eds.) Meaning, use, and interpretation of language.
Mouton De Gruyter (1983)

15

28. Pustejovsky, J.: The Generative Lexicon. MIT (1995)
29. Pustejovsky, J.: Meaning in Context: Mechanisms of Selection in Language. Cam-

bridge Press (2005)
30. Ranta, A.: Type-Theoretical Grammar. Oxford University Press (1994)
31. Retoré, C.: Variable types for meaning assembly: a logical syntax for generic noun

phrases introduced by ‘most’. Recherches linguistiques de Vincennes 41, 83–102
(2012)

32. Sundholm, G.: Proof theory and meaning. In: Gabbay, D., Guenthner, F. (eds.)
Handbook of Philosophical Logic III: Alternatives to Classical Logic. Reidel (1986)

33. Winter, Y.: Flexibility Principles in Boolean Semantics. MIT Press, New York
(2002)

34. Winter, Y.: A unified semantic treatment of singular np coordination. Linguistics
and Philosophy 19, 337–391

35. Xue, T., Luo, Z.: Dot-types and their implementation. Logical Aspects of Compu-
tational Linguistics (LACL 2012). LNCS 7351 (2012)

A Implementations in Coq

We use Coq’s predifined Type Universe instead of LType. Bvector is needed
for vectors (Require Import Bvector). The coercion A <c V ec(A, 1) for proper
nouns is not possible in Coq, so we have to introduce the coercions as separate
entries.

A.1 Conjoinable types

(* Categories*)

Definition CN := Set.

Parameters Bank Institution Human Man Woman Object Animal OObject: CN.

Parameter John Stergios Zhaohui : Man.

Parameter Mary: Woman.

Axiom mh : Man->Human. Coercion mh : Man >-> Human.

Axiom wh : Woman->Human. Coercion wh : Woman >-> Human.

Axiom ha: Human-> Animal. Coercion ha: Human>-> Animal.

Axiom ao: Animal->Object. Coercion ao: Animal>-> Object.

Axiom ooo: OObject-> Object. Coercion ooo: OObject>->Object.

Parameter walk: Animal ->Prop.

Parameter talk cycle drive: Human->Prop.

Parameter attack killed: Animal -> Animal -> Prop.

Parameter If when: Prop-> Prop-> Prop.

Parameter the some most all: forall A:CN, (A->Prop)->Prop.

Parameter die: OObject-> Prop.

Parameter slowly agonizingly: forall A:CN, (A->Prop)->(A->Prop).

Parameter And: forall A:Type, A->A->A. (*Predefined Type universe

instead of LType*)

(*Cases to check*)

Check And Man (Stergios)(Zhaohui)

Check And Man (Stergios)(Mary) (*does not go through because Mary:Woman*)

Check And Human (Stergios)(Mary) (*this is fine given Woman Man<Human*)

16

Check And ((Human->Prop)->Prop) (some Man)(some Woman) (*Quantifier NP coordination*)

Check And (forall A: CN, (A->Prop)->Prop) (some)(all).(*Quantifier coordination*)

Check And (Human->Prop) (cycle)(drive) (*VP coordination*)

Check And (forall A:CN, (A->Prop)->(A->Prop))(slowly)(agonizingly). (*VP adverb coordination*)

Check And (Prop->Prop->Prop) (If)(when) (*subordinate conjunction coordination*)

A.2 Non-Boolean Conjunction

Require Import Bvector.

Variables n m: nat.

Parameter meetc:forall n:nat, vector Human(n+2)->Prop. (*collective meet*).

Parameter John1 George1: vector Human 1.(*coercions do not work with vectors so we use Human

instead of Man here*)

(*Unit type for collective And*)

Inductive OneAndc : Set := Andc.

Definition AndSem1 := forall A: CN,forall n:nat,forall m:nat, vector (A)(n)

->vector(A)(m)->vector(A)(n+m).

Definition AndSem2 :=forall A: CN,forall n:nat,forall m:nat, ((vector A n)->Prop)->Prop->

((vector A m)->Prop)->Prop->((vector A (n+m))->Prop).

Parameter Andc1 : AndSem1.

Parameter Andc2 : AndSem2.

Definition a1 (a:OneAndc) : AndSem1 := Andc1. Coercion a1 : OneAndc >-> AndSem1.

Definition a2 (a:OneAndc) : AndSem2 := Andc2. Coercion a2 : OneAndc >-> AndSem2.

Some interesting cases to check

Check meetc 0 ((Andc:AndSem1 (Human)(1)(1)(John1)(George1)) (*John and George met, with both George

and John of lower type*)

A.3 Co-predication

(* Phy dot Info *)

Parameter Phy Phy1 Info : CN. (*Phy1 should be taken to be the same as Phy*)

Record PhyInfo : CN := mkPhyInfo { phy :> Phy; info :> Info }.

Parameter Book: PhyInfo.

Parameter Event : CN.

Record EventPhy : CN := mkEventPhy { event :> Event; phy1 :> Phy1}. (*Phy1 is used because Phy

cannot be used twice*)

Parameter lunch: EventPhy.

Axiom po: Phy->Object. Coercion po:Phy>->Object.

Axiom pp: Phy1->Phy. Coercion pp: Phy1>->Phy.(*We introduce this coercion to mean that the two

Phy and Phy1 are the same.*)

Parameter was_given_to_someone_else: Object->Prop.

Interesting case to check)

Check was_given_to_someone_else (And(Object)(Book)(lunch)).

17

A Predicative Operator and Underspecification
by the Type Theory of Acyclic Recursion

Roussanka Loukanova

Sweden

Abstract. We introduce a generalized predicative operator in the type
theory of acyclic recursion Lλar. We are investigating the potential use of
such an operator for computational semantics and algorithmic classifica-
tion of predicative expressions. The paper is an investigation of several
kinds of predicative expressions that are headed by the copula verb be,
by using the language and theory Lλar of typed acyclic recursion and the
introduced predicative operator.

Keywords: intension, denotation, underspecification, type theory, acyclic
recursion

1 Background of Lλar

The work Moschovakis [3] initiated development of a new approach to the math-
ematical notion of algorithm. A great prospect for applications of the new ap-
proach is to computational semantics of artificial and natural languages1 (NLs).
In particular, the theory of acyclic recursion Lλar, see Moschovakis [4], models
the concepts of meaning and synonymy in typed models. For initial applica-
tions of Lλar to computational syntax-semantics interface in Constraint-Based
Lexicalized Grammar (CBLG) of human language (HL), see Loukanova [2].

Moschovakis’ formal system Lλar, see Moschovakis [4], is a higher-order type
theory, which is a proper extension of Gallin’s TY2, see Gallin [1], and thus, of
Montague’s Intensional Logic (IL), see Montague [6]. The type theory Lλar and its
calculi extend Gallin’s TY2, at the level of the formal language and its semantics,
by using several means: (1) two kinds of variables (recursion variables, called
alternatively locations, and pure variables); (2) by formation of an additional
set of recursion terms; (3) systems of rules that form various calculi, i.e., the
reduction calculus and the calculus of referential synonymy. In the first part of
the paper, we give a very brief, informal view of the syntax and denotational
semantics of the language of Lλar. Then, we introduce the intensional semantics
of Lλar. The major part of the paper is devoted to using the possibilities for
underspecification at the object level of the type system Lλar for analysis of
expressions with predicative VPs formed by a head copula like the verb be.

1 Natural Language (NL) is a traditional way of address to human languages, which
we follow in this work. However, we maintain the view that natural languages form
a broader class of languages in nature.

18

2 Mini introduction to the type theory Lλar

Types of Lλar: The set Types is the smallest set defined recursively (using a
wide-spread notation in computer science): τ :≡ e | t | s | (τ1 → τ2).

2.1 Syntax of Lλar

The vocabulary of Lλar consists of pairwise disjoint sets, for each type τ : Kτ =
{c0, c1, . . . , ckτ }, a finite set of constants of type τ ; PureVarsτ = {v0, v1, . . .},
a set of pure variables of type τ ; RecVarsτ = {p0, p1, . . .}, a set of recursion
variables, called also locations, of type τ .
The Terms of Lλar: In addition to application and λ-abstraction terms, Lλar
has recursion terms that are formed by using a designated recursion operator,
which is denoted by the constant where and can be used in infix notation. The
recursive rules2 for the set of Lλar terms can be expressed by using a notational
variant of “typed” BNF:

A :≡ cτ : τ | xτ : τ | B(σ→τ)(Cσ) : τ | λvσ(Bτ) : (σ → τ)

| Aσ0 where {pσ1
1 := Aσ1

1 , . . . , pσnn := Aσnn } : σ

where {pσ1
1 := Aσ1

1 , . . . , pσnn := Aσnn } is a set of assignments that satisfies the
acyclicity condition defined as follows: For any terms A1 : σ1, . . . , An : σn, and
locations p1 : σ1, . . . , pn : σn (where n ≥ 0, and pi 6= pj for all i, j such that
i 6= j and 1 ≤ i, j ≤ n), the set {p1 := A1, . . . , pn := An} is an acyclic system
of assignments iff there is a function rank : {p1, . . . , pn} −→ N such that, for all
pi, pj ∈ {p1, . . . , pn}, if pj occurs free in Ai then rank(pj) < rank(pi).

Terms of the form Aσ0 where {pσ1
1 := Aσ1

1 , . . . , pσnn := Aσnn } are called recur-
sion terms. Intuitively, a system {p1 := A1, . . . , pn := An} defines recursive
computations of the values to be assigned to the locations p1, . . . , pn. Requiring
a ranking function rank, such that rank(pj) < rank(pi), means that the value of
Ai, which is assigned to pi, may depend on the values of the location pj , as well
as on the values of the locations pk with lower rank than pj . An acyclic system
guarantees that computations close-off after a finite number of steps. Omitting
the acyclicity condition gives an extended type system Lλlr, which admits full
recursion, but is not in the subject of this talk.

2.2 Two kinds of semantics of Lλar

Denotational Semantics of Lλar: The language Lλar has denotational seman-
tics that is given by a definition of a denotational function for any semantic
structure with typed domain frames. The denotational semantics of Lλar follows
the structure of the Lλar terms, in a compositional way.

2 In an explicit definition of the Lλar terms, the acyclicity condition is a proper part
of the case of recursion terms, as the above notational variant of BNF is taken.

19

Intensional Semantics of Lλar: The notion of intension in the languages of re-
cursion covers the most essential, computational aspect of the concept of mean-
ing. The referential intension, Int(A), of a meaningful term A is the tuple of func-
tions (a recursor) that is defined by the denotations den(Ai) (i ∈ {0, . . . n}) of the
parts (i.e., the head sub-term A0 and of the terms A1, . . . , An in the system of
assignments) of its canonical form cf(A) ≡ A0 where {p1 := A1, . . . , pn := An}.
Intuitively, for each meaningful term A, the intension of A, Int(A), is the al-
gorithm for computing its denotation den(A). Two meaningful expressions are
synonymous iff their referential intensions are naturally isomorphic, i.e., they are
the same algorithms. Thus, the algorithmic meaning of a meaningful term (i.e.,
its sense) is the information about how to “compute” its denotation step-by-step:
a meaningful term has sense by carrying instructions within its structure, which
are revealed by its canonical form, for acquiring what they denote in a model.
The canonical form cf(A) of a meaningful term A encodes its intension, i.e., the
algorithm for computing its denotation, via: (1) the basic instructions (facts),
which consist of {p1 := A1, . . . , pn := An} and the head term A0, that are
needed for computing the denotation den(A), and (2) a terminating rank order
of the recursive steps that compute each den(Ai), for i ∈ {0, . . . , n}, for incre-
mental computation of the denotation den(A) = den(A0). Thus, the languages of
recursion offer a formalisation of central computational aspects: denotation, with
(at least) two semantic “levels”: referential intensions (algorithms) and denota-
tions. The terms in canonical form represent the algorithmic steps for computing
semantic denotations by using all necessary basic components:

Some notations and abbreviations: As a typical practice, we skip some
“understood” parentheses, use different shapes and sizes of parentheses, and
some extra parentheses for clarity.

– The symbol “=” is an identity predicate constant from the vocabulary of Lλar.
It is also the identity relation between objects from the semantic domains T
of Lλar structures.

– The symbol “≡” is a meta-symbol (i.e., it is not in the vocabulary of the
language Lλar), which we use to specify orthographical identity between ex-
pressions and types of Lλar. E.g., we use it to introduce abbreviations and
aliases.

– The symbol “:≡” is a meta-symbol that we use in inductive definitions, e.g.,
of types and terms. We use it also for the replacement operation3:

Definition 1. For any given terms A : σ, X : τ (typically, a variable or a
constant), and C : τ , the term A{X :≡ C } : σ is the result of the simultaneous
replacement of all free (unless otherwise stated) occurrences of X with C in A.

3 The author is working on a forthcoming work on a formal introduction to the type
theory of acyclic recursion, with more an detailed definitions.

20

3 Underspecified be

Let P :
(
(ẽ → t̃) → t̃

)
and p : (ẽ → (ẽ → t̃)) be recursion variables. We render

the lexical entry be into an underspecified term (1):

be
render−−−→ λxP

(
λyp(y)(x)

)
: (ẽ→ t̃) (1)

Given typical nominal expressions, we use recursive rendering:

good doctor
render−−−→ good(doctor) : (ẽ→ t̃) (2a)

⇒cf good(d) where {d := doctor} by (ap) (2b)

Then, in a compositional way:

a good doctor
render−−−→ a

(
good(doctor)

)
: (ẽ→ t̃)→ t̃ (3a)

⇒ a(g) where {g := good(doctor)} by (ap) (3b)

⇒cf a(g) where {g := good(d), d := doctor} by (rep3) (3c)

Then, we can use (1) by suitable specifications depending on its complements:

is a good doctor
render−−−→ λxP

(
λyp(y)(x)

)
where (4a)

{P := a
[
good(doctor)

]
} : (ẽ→ t̃) (4b)

⇒cf λxP
(
λyp(y)(x)

)
where (4c)

{P := a(g), g := good(d), d := doctor} (4d)

Note that p is a free recursion variable in (4a)–(4d). By this, we render the
expression is a good doctor into an underspecified term, by virtue of the free
recursion variable p. It is a reasonable to do so when there isn’t sufficient infor-
mation about how the verb be is used. In (5a)–(5g), p is bound by the assignment
p := is. Here we leave the question if the term is is a constant or more complex
term denoting the identity relation or some other relation, e.g., by adding time
information by respecting the inflection of the verb be (or reflecting professional
qualification of John over time). In what follows, the identity relation symbol
“=” is a constant that denotes identity relation between objects of type ẽ, i.e.,
= ∈ Kẽ→(̃e→t̃). We use curried terms for “=”, e.g., = (B)(A) ≡ A = B, to avoid
λ-abstracts where possible.

John is a good doctor
render−−−→

[
λxP

(
λyp(y)(x)

)]
(john) where (5a)

{P := a
[
good(doctor)

]
, (5b)

p := is} : t̃ (5c)

⇒cf

[
λxP

(
λyp(y)(x)

)]
(j) where (5d)

{P := a(g), g := good(d), (5e)

d := doctor , (5f)

p := is, j := john} (5g)

21

is Mary
render−−−→ λxP

(
λyp(y)(x)

)
where (6a)

{P :=
(
λv v(m) where {m := mary}

)
} (6b)

: (ẽ→ t̃)

⇒cf λxP
(
λyp(y)(x)

)
where (6c)

{P := λv v(m), (6d)

m := mary} by (B-S) (6e)

The sub-term
(
λv v(m) where {m := mary}

)
, in the assignment (6b), suggests

the underspecified term
(
λxP

(
λyp(y)(x)

)
where {P := λv v(m)}

)
, which can be

used for expressions that prompt a name, like “is . . . ”, e.g., when it is clear that
“. . . ” has to be a name:

is . . .
render−−−→ λxP

(
λyp(y)(x)

)
where {P := λv v(m)} (7)

In (6a)-(6e), p is a free recursion variable. In (8a)–(8d), p is bound to the
equality constant, by the assignment p := =. (Depending on context, an utter-
ance of this sentence may be interpreted differently, e.g., that the singer is named
Mary.)

The singer is Mary
render−−−→

[
λxP

(
λyp(y)(x)

)]
(t) where (8a)

{P := λv v(m), m := mary , (8b)

t := the(r), r := singer , (8c)

p := =} (8d)

4 Predicative operator

Throughout what follows, unless otherwise specified, we assume that Pr and C
are recursion variables of the following types:

Pr, C ∈ RecVars, (9a)

Pr :
(
(ẽ→ t̃)→ (ẽ→ t̃)

)
, (9b)

C : (ẽ→ t̃) (9c)

We render the base form of the lexeme be into the following underspecified
Lλar term:

be
render−−−→ Pr : (ẽ→ t̃), (10)

We can use (10) by suitable specifications of the recursion variable Pr.

22

4.1 The predicative operator and time locations

In this paper, similarly to Moschovakis [4], we assume that a state is a quadruple
u = 〈i, j, k, A, δ〉 where i is a possible world, j is a period of time (which can
collapse into a point), k is a space location, A is a speaker, and δ is a (speaker’s
reference) function, which assigns values to occurrences of speaker dependent
expressions such as proper names.

In the rest of the paper4, we use a rigid reference operator designated by the
constant dere and defined similarly to Moschovakis [4]:

Definition 2 (a-la-Carnap rigid reference operator dere).

dere(X, a)(b)
def
= X(a), for all X : s→ σ, and a, b : s (11)

Informally, for any term X : s → σ, that may denote state dependent object5,
and any state a : s, dere(X, a) : s → σ denotes a constant function such that
dere(X, a)(b) = X(a), i.e., evaluated to the denotation of X(a) in all states b : s.

We call the recursion variable Pr in (10) underspecified predicative operator.
In this work, the recursion variable Pr may specify time (and aspect) information
expressed by the inflection of the verb be. In addition, it can be further specified
with other information depending on phrasal combinations headed by the verb
be, e.g., with specific information carried by its complement.

was
render−−−→ Pr where (12a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
}, (12b)

for t′ < time(u) (12c)

is
render−−−→ Pr where (13a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
}, (13b)

for t′ ◦ time(u) (13c)

In this work, the constant < : ẽ→ (ẽ→ t̃) denotes the precedence relation be-
tween times; the constant ◦ : ẽ→ (ẽ→ t̃) denotes the overlapping relation be-
tween time periods. We use the infix relational notation for both.

In the following sections, we demonstrate this role of the predicative operator
Pr by considering 3rd-singular past tense form of be. We consider predicative
VPs formed with the copula verb be and complements of the syntactic categories
AdjV, predicative PPs, and NPs that are proper names, referential definite de-
scriptions, or predicative indefinite descriptions.

4 There are other possibilities for context and agent dependent reference operator in
our future work on the topic, which are not in the subject of this paper.

5 For sake of space we do not express the details between terms and denotations.

23

5 Predicative nominal descriptions

In general, if A is a nominal phrase, of syntactic category that is often denoted

by NOM, and A
render−−−→ A : (ẽ → t̃), then, by circumventing the indefinite (exis-

tential) quantification, we set:

is an A
render−−−→ Pr(C) where (14a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (14b)

C := A}, (14c)

for t′ ◦ time(u) (14d)

was an A
render−−−→ Pr(C) where (15a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (15b)

C := A}, (15c)

for t′ < time(u) (15d)

In (14a)–(14c) and (15a)–(15c), we assume that A is a proper (i.e., not an im-
mediate) term, otherwise it is simpler to take C ≡ A and spare C := A.

Now the VP is a good doctor can be rendered as follows:

is a good doctor
render−−−→ Pr(C) where (16a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (16b)

C := good(doctor)} (16c)

: (ẽ→ t̃)

⇒cf Pr(C) where (16d)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (16e)

C := good(d), d := doctor}, (16f)

for t′ ◦ time(u) (16g)

John is a good doctor
render−−−→ T1 (17a)

≡ Pr(C)(john) where (17b)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (17c)

C := good(doctor)} (17d)

: t̃

⇒cf Pr(C)(j) where (17e)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (17f)

C := good(d), d := doctor , (17g)

j := john}, (17h)

for t′ ◦ time(u) (17i)

24

In essence, the terms (17b) and (17e) ascribe the property denoted by the
term good(doctor), in the present time, to the object denoted by john. I.e., they
have the same denotation as

[
dere

(
good(doctor)

)
(u{j :≡ t′})

]
(john) without

stating that John is one of the good doctors, which is more closely rendered by
(5a) and (5d). Now we consider the term (18a):

T2 ≡
[
dere

(
good(doctor)

)
(u{j :≡ t′})

]
(john) (18a)

⇒cf

[
dere(C)(u{j :≡ t′})

]
(j) where (18b)

{C := good(d), d := doctor , (18c)

j := john}, (18d)

for t′ ◦ time(u) (18e)

Corollary 1. The terms T1, in (17a), and T2, in (18a), are denotationally
equivalent, while not algorithmically (referentially) synonymous, e.g.,

T1 6≈ T2 (19a)

T1 |=| T2 (19b)

Proof. (19a) follows from the Referential Synonymy Theorem (see Moschovakis [4]).
(19b) follows from the definition of the denotation function den (for the definition
see Moschovakis [4]).

The algorithmic (i.e. computational) difference between T1 and T2 is that
in T1 the temporal information is moved into the assignments. The tempo-
ral reference is computed and stored in the location Pr by the assignment
Pr := λX

[
dere(X)(u{j :≡ t′})

]
. The term T1 presents a computational pat-

tern Pr(C)(j) for predicative statements with a copula presented by Pr (here
we consider just the copula be). The pattern Pr(C)(j) provides possibilities for
varying the predicate term C : (ẽ→ t̃) and the individual term j : ẽ by their as-
signments. Moving the term λX

[
dere(X)(u{j :≡ t′})

]
into the assignment part

of Pr provides variant temporal information, which can be modified or combined
with additional information.

6 Proper names in a predicative position

In general, if M is a proper name and M
render−−−→M , then:

is M
render−−−→ Pr(C) where (20a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (20b)

C := =(m) (20c)

m := M}, for t′ ◦ time(u) (20d)

25

was M
render−−−→ Pr(C) where (21a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (21b)

C := =(m) (21c)

m := M}, for t′ < time(u). (21d)

Now, from (21a), when M ≡ Mary and M ≡ mary , by the reduction rule (recap),
we have:

The singer was Mary
render−−−→ Pr(C)(the(singer)) where (22a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (22b)

C := =(m), (22c)

m := mary} (22d)

⇒cf Pr(C)(t) where (22e)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (22f)

C := =(m), (22g)

t := the(r), r := singer , (22h)

m := mary}, for t′ < time(u). (22i)

Note that the term (22e)–(22i) is not referentially synonymous to the terms in
a direct rendering of the sentence The singer was Mary such as in (23a)-(23e),
while these terms are denotationally equal. The head and the first assignment
parts in (22e)–(22i) present the additional computational steps needed by the
general predicative pattern.

The singer was Mary
render−−−→

[
dere

(
=(mary)

)
(u{j :≡ t′})

]
(the(singer)) (23a)

⇒cf

[
dere

(
C
)
(u{j :≡ t′})

]
(t) where (23b)

{C := =(m), (23c)

t := the(r), r := singer , (23d)

m := mary}, for t′ < time(u). (23e)

7 Adjective phrases (AdjPs) in a predicative position

If A is a predicative6 AdjP and A
render−−−→ A : (ẽ→ t̃), then:

is A
render−−−→ Pr(C) where (24a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (24b)

C := A}, (24c)

for t′ ◦ time(u) (24d)

6 Which adjectives and which AdjPs are predicative is determined by specific gram-
mars of NL.

26

was A
render−−−→ Pr(C) where (25a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (25b)

C := A}, (25c)

for t′ < time(u). (25d)

Then:

Peter was happy
render−−−→ Pr(C)(p) where (26a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (26b)

C := happy , (26c)

p := peter}, (26d)

for t′ < time(u). (26e)

A direct rendering of the same sentence is in (28a)–(28b). The difference
in the terms is in their heads and the additional assignment part (26b). The
term (26b) determines the additional computational step needed by the general
predicative pattern (26a).

was happy
render−−−→ dere(happy)(u{j :≡ t′}) (27a)

Then:

Peter was happy.
render−−−→

[
dere(happy)(u{j :≡ t′})

]
(peter) (28a)

⇒cf

[
dere(C)(u{j :≡ t′})

]
(p) where (28b)

{C := happy , p := peter}, (28c)

for t′ < time(u). (28d)

8 Prepositional phrases in a predicative position

For any predicative prepositional phrase (PP) A, in which the head preposition

is relational, and such that A
render−−−→ A : (ẽ→ t̃), we set:

is A
render−−−→ Pr(C) where (29a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (29b)

C := A}, for t′ ◦ time(u) (29c)

was A
render−−−→ Pr(C) where (30a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (30b)

C := A}, for t′ < time(u). (30c)

27

For example:

on the table
render−−−→ on

(
the(table)

)
(31a)

⇒cf on(t) where {t := the(b), b := table} (31b)

the book
render−−−→ the(book) (32a)

⇒cf the(b1) where {b1 := book} (32b)

From (30a) and (31b) by (recap), (rep3), (B-S), we have:

was on the table
render−−−→ Pr(C) where (33a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (33b)

C := on
(
the(table)

)
} (33c)

⇒cf Pr(C) where (33d)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (33e)

C := on(t), t := the(b), b := table}, (33f)

for t′ < time(u). (33g)

Now, from (33d) and (32b) by (rep3), . . . , (B-S), etc., we have:

the book was on the table
render−−−→ Pr(C)(the(book)) where (34a)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (34b)

C := on
(
the(table)

)
(the(book))} (34c)

⇒cf Pr(C)(t1) where (34d)

{Pr := λX
[
dere(X)(u{j :≡ t′})

]
, (34e)

C := on(t), (34f)

t := the(b), b := table, (34g)

t1 := the(b1), b1 := book}, (34h)

for t′ < time(u). (34i)

9 Future work

We plan to extend the work in this paper by investigating the predictive operator
for other applications. In particular, a perspective for other applications is to
analyse other kinds of predicative expressions, other copula verbs, and other
uses of the verb be, e.g., the existential be and passive aspects.

Another direction of work is computational syntax-semantics interface of
predicative VPs. The analysis of the verb be, and other related semantic phe-
nomena of NL, would be better by using some computational grammar for ren-
dering NL expressions into Lλar terms. This can be done by using a generalized

28

CBLG covering variety of grammar systems. It is very interesting to see such
rendering defined with the new grammatical framework GF, see Ranta [5].

Elaboration of the semantic domain frames of Lλar is very important for ad-
equate coverage of semantic phenomena related to context dependency, e.g, by
using resource situations (states) in semantic representations of sub-expressions,
and in resolution of underspecification by using context information. A primary
prospect in this direction is development of enriched semantic structures of ver-
sions of Lλar (and Lλlr with full recursion) having enriched domain of the states,
e.g., by using suitable versions of situation-theoretical structures.

References

1. D. Gallin. Intensional and Higher-Order Modal Logic. North-Holland, 1975.
2. R. Loukanova. Semantics with the language of acyclic recursion in constraint-based

grammar. In G. Bel-Enguix and M. D. Jiménez-López, editors, Bio-Inspired Models
for Natural and Formal Languages, pages 103–134. Cambridge Scholars Publishing,
2011.

3. Y. N. Moschovakis. Sense and denotation as algorithm and value. In J. Oikkonen
and J. Vaananen, editors, Lecture Notes in Logic, number 2 in Lecture Notes in
Logic, pages 210–249. Springer, 1994.

4. Y. N. Moschovakis. A logical calculus of meaning and synonymy. Linguistics and
Philosophy, 29:27–89, 2006.

5. A. Ranta. Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford, 2011.

6. R. H. Thomason, editor. Formal Philosophy: Selected Papers of Richard Montague,
ed. Richmond Thomason. Yale University Press, New Haven, Connecticut, 1974.
Edited, with an introduction, by Richmond H. Thomason.

29

A Speaker-Referring OT Pragmatics of Quantity Expressions

Chris Cummins

SFB 673 – Alignment in Communication, Universität Bielefeld, Germany

c.r.cummins@gmail.com

Abstract

Constraint-based approaches to pragmatics have customarily focused on the hearer, and

aim to identify the optimal interpretation of utterances. Blutner (2006 i.a.) has argued that

it is necessary also to consider the role of the speaker, and thus motivates a bidirectional

Optimality Theory (OT) pragmatics. However, as he notes, this may have limited

explanatory potential from a processing standpoint. A recent account, focusing on

expressions of quantity, proposes instead to model the speaker’s choice of expression by

unidirectional OT. In this paper I discuss the merits of this versus the bidirectional

account, and in particular explore the implications for the hearer, who is required to solve

the problem of utterance interpretation by different means in the two models. I consider

the predictions arising from the unidirectional account, with reference to interpretation and

processing, and discuss its theoretical implications for pragmatics in general.

1. Introduction

Perhaps the most general problem in linguistic pragmatics is to establish how enrichments to the meaning of an

utterance are computed by hearers, given that – in principle – virtually any utterance may (under appropriate

contextual conditions) be used to convey virtually any meaning.
1
 Hendriks and de Hoop (2001) explore the

possibility of treating this as a problem of constraint satisfaction on the part of the hearer. They analyse

anaphora resolution as a case in which a highly ambiguous discourse entity, such as the “one” of “Who wants

one?”, acquires an interpretation that is optimal with respect to a set of contextual, intonational and syntactic

constraints. Blutner (2000) argues, on the basis of examples of blocking and pronoun binding, that it is

preferable to adopt a bidirectional OT account, making reference to the speaker as well as the hearer. Within

such an account, one can explain the impermissibility of a given interpretation on the basis that such an

interpretation would have been expressed in a different way. This provides a mechanism for generating the

markedness implicatures discussed by Horn (1984), Levinson (2000) and others, in which the use of an indirect

expression (such as “cause to die”) implicates that the corresponding direct expression (“kill”) would have been

inappropriate.

However, as discussed by Blutner (2006), the implications of a bidirectional mechanism for processing are not

generally straightforward. He observes that there are two methods for obtaining the Hornian markedness

implicatures: either you posit linking constraints explicitly specifying that unmarked forms should carry

unmarked meanings and marked forms should carry marked meanings, or you adopt an approach of ‘weak

bidirection’ (Blutner 1998) which is more permissive than the strong form. Briefly, in the strongly bidirectional

model, a form-meaning pair <f, m> is optimal if there exists no alternative meaning m’ such that <f, m’>

satisfies the constraints better than <f, m>, and there exists no alternative form f such that <f’, m> satisfies the

constraints better than <f, m>. In the weakly bidirectional model, a form-meaning pair <f, m> is ‘super-

optimal’ if there exists no alternative meaning m’ such that <f, m’> satisfies the constraints better than <f, m>

and <f, m’> is itself super-optimal, and there exists no alternative form f’ such that <f’, m> satisfies the

constraints better than <f, m> and <f’, m> is itself super-optimal.

1
 For example, if S asks a yes/no question, an irrelevant response on the part of H may convey an affirmative or

negative response, irrespective of the semantics of the response itself. This is traditionally analysed as an

implicature arising from the flouting of relevance (Grice 1989).

30

In the absence of a linking constraint, neither marked forms nor marked meanings can participate in strongly

optimal pairs. If we consider the form “cause to die”, as a marked alternative to “kill” (Levinson 2000: 142),

and pair this with the meaning m1, the pair <cause to die, m1> will satisfy the constraints less well than <kill,

m1>, and therefore not be optimal. However, <cause to die, m1> can still be super-optimal, if <kill, m1> is not

itself super-optimal – in other words, if there is some m2 such that <kill, m2> satisfies the constraints better than

<kill, m1>.

Thus, as Blutner (2006: 16) puts it, weak bidirection “typically allows marked expressions to have an optimal

interpretation, although both the expressions and the situation they describe have a more efficient counterpart”.

However, as he acknowledges, this weak bidirectional account requires global solution and consequently

“[does] not even fit the simplest requirements of a psychologically realistic model of online, incremental

interpretation” (ibid.). Meanwhile, the strong bidirectional approach is essentially ad hoc (Blutner 2000: 10).

An alternative approach, apparently under-explored within this line of research, is to consider the role of the

speaker as primary. If we assume that the role of the hearer is to attempt to reconstruct the communicative

intention of the speaker, then the authorship of the utterance is primary, in that the speaker determines which

meanings are present in the utterance and therefore which meanings the hearer should attempt to reconstruct. In

the above example, the ‘correct’ resolution of the meaning of “one” seems uncontroversially to be ‘whatever the

speaker meant by it’. From this perspective, positing a hearer-referring OT system seems unreasonable: for it to

work, the speaker would have to encode intentions in a way that was decipherable by this system. However,

hearer-referring accounts do not typically explain how the speaker is able to accomplish this non-trivial task,

instead considering the utterance to be ‘given’, and implicitly assuming that it is related to the speaker’s

intention in some appropriate way. It could be more effective to posit instead that the speaker is engaging in a

constraint-governed process of production and that the hearer attempts to ‘undo’ this to reconstruct the intended

meaning. Such an approach resembles the Dual Optimization of Smolensky (1996), in which production and

comprehension are distinct processes, rather than the simultaneous optimisation of bidirectional OT.

In this paper I discuss a recent proposal concerning the pragmatics of numerically-quantified expressions, which

adopts the speaker-referring unidirectional stance. I consider its relation to bidirectional accounts of numerical

quantification, and in particular I examine the obligations it places on the hearer to unpack the various aspects of

communicated meaning. I will argue that this model has some explanatory advantages with respect to recent

data, and that it also invites the drawing of testable hypotheses about the hearer’s reasoning processes. I

conclude by looking at the potential of this model to capture other aspects of meaning that have been considered

in the OT semantics/pragmatics literature.

2. An OT Model of Speaker Behaviour

Cummins (2011) proposes an OT model of the production of numerically-quantified expressions. This domain

has been studied from a constraint-based perspective (e.g. Krifka 2002, 2009), and is particularly amenable to

such an approach for several reasons. Firstly, there are frequently numerous semantically truthful candidate

expressions for a given communicative intention, because of the rich entailment relations that exist among

numerical expressions: if “more than 100” is true, so is “more than 99/98/97…”, and so on. There is therefore a

non-trivial mapping problem to address in this domain. Secondly, the numerical domain tends to offer a

convenient means for quantifying constraint violations: for instance, we could think of “more than 99” as

including one extra possibility (in the cardinal case) by comparison with “more than 100”. Thirdly, the use of

numerical quantifiers has been argued to depend upon a range of considerations traditionally connected with

different fields of enquiry, ranging from philosophical semantics through linguistic pragmatics to numerical

psychology, and a constraint-based account provides a convenient way to capture all these competing factors

within a single coherent model.

Drawing upon various sources of theoretical and experimental work, Cummins (2011) proposes six constraints

on the use of numerically-quantified expressions: informativeness, granularity, numerical salience, quantifier

simplicity, numeral priming, and quantifier priming. Two of these, numerical salience and quantifier simplicity,

are treated as markedness constraints, as they govern the form of the utterance irrespective of context. The

31

others are treated as faithfulness constraints, as they govern the relationship between the ‘situation’ (broadly

construed) and the utterance. Numeral and quantifier priming require the reuse of contextually activated

material, granularity requires the use of the appropriate level of specificity in the choice of numeral (see Krifka

2009), and informativeness requires the use of a maximally informative expression given the communicative

intention of the speaker (which in Cummins 2011 is considered initially in terms of excluding possibilities that

the speaker knows to be false).

Cummins (2011) discusses how these constraints combine to yield novel predictions, as well as matching

existing predictions under less stipulative assumptions. This work offers an alternative pragmatically-based

account of the differences between “more than” and “at least” (Geurts and Nouwen 2007), also extending to

related classes of expressions (Nouwen 2010). It also sketches an alternative explanation for the preferences for

approximate interpretation of round number words discussed by Krifka (2009). Moreover, it draws novel

predictions about the range of usage and interpretation associated with modified round numerals (“more than

100”, etc.), which are borne out experimentally by Cummins, Sauerland and Solt (2012).

The above predictions are made both with respect to the choice of expression and to its interpretation. Clearly

in order to draw predictions about interpretation it is necessary to take a position on the actions of the hearer

within such a model. In the following section I discuss how the hearer’s role differs within this account to that

posited in bidirectional and hearer-referring OT approaches, before going on to consider the evidence that

hearers do indeed behave in the way the speaker-referring account predicts.

3. The Hearer’s Task in a Speaker-Referring Model

Under the assumptions of the model discussed above, the speaker’s choice of expression is ultimately dependent

on various facets of the situation (specifically, those referred to by the constraints). These include the speaker’s

communicative intention, but also factors pertaining to the discourse context (i.e. which linguistic entities are

activated or salient within it) and the structure of the number and quantifier systems (i.e. which numbers and

quantifiers are generally easier to use). To the speaker, all these considerations can be treated as part of the

input, and the linguistic expression produced is the output.

The hearer’s task, however, is not simply to reverse this process and attempt to map the utterance to the

appropriate situation. In fact, the hearer also typically shares some of this information about the context, such as

which discourse entities are activated and which numerals are generally salient. The hearer’s role is to infer the

information to which s/he is not privy, crucially including the speaker’s intention.

In this respect, the hearer’s task within this speaker-referring model is unlike the hearer’s task within either a

bidirectional model or a hearer-referring model. In the bidirectional case, the system specifies optimal form-

meaning pairings, and if the hearer is able to identify these in the same way as the speaker, the hearer can simply

read off the speaker’s meaning. In the hearer-referring case, the hearer computes a preferred interpretation

given the utterance and the hearer’s own interpretative preferences (about which s/he may be presumed fully

knowledgeable).

As a consequence, the unidirectional speaker-referring account is able to address aspects of pragmatics that do

not appear to admit straightforward treatments within the other formalisms. Consider the case of “more than n”,

for round values of n, and its preferred interpretations. If the hearer wishes to describe a quantity in excess of

73, say, then (1a-c) are candidate utterances (among many others which I ignore here for expository purposes).

(1a) more than 73

(1b) more than 70

(1c) more than 60

Assuming no prior contextual commitments, the relevant constraints here are informativeness (INFO) and

numeral salience (NSAL). Schematically, assuming that 60 and 70 are equally more salient than 73, the tableau

would be as follows.

32

 INFO NSAL

more than 73 *

more than 70 *

more than 60 **

With INFO ranked above NSAL, “more than 73” would be preferred; with NSAL above INFO, “more than 70”

would be preferred. Now by contrast, if the numeral “60” is activated in the preceding discourse, the numeral

priming constraint (NPRI) also becomes relevant, and is violated by those forms that do not (re)use this number,

resulting in the following tableau.

 INFO NSAL NPRI

more than 73 * *

more than 70 * *

more than 60 **

Now if INFO > {NSAL, NPRI}, “more than 73” is again preferred. However, if NPRI > INFO, “more than 60”

is preferred. Only if NSAL > INFO > NPRI is “more than 70” still the preferred option.

Let us take the hearer’s perspective and consider the rational interpretation that could be placed on the utterance

arising under these circumstances. The hearer may assume that the utterance is optimal, given the constraints

placed upon the speaker, if the speaker is behaving cooperatively. Within this model, ‘optimal’ specifically

means that the speaker is producing the preferred utterance according to the situation (as they see it), including

their intention, given their constraint ranking.

Ignoring contextual factors, the hearer might rationally interpret the utterances as follows. “More than 73”

would arise only if INFO was the top-ranked constraint, and therefore would signal that the speaker’s

knowledge extends to the quantity under discussion being “greater than 73”. “More than 70” would arise if

NSAL > INFO, if the speaker’s intention was “more than 70”, or “more than 71”, and so on up to “more than

79”. It would also arise if INFO > NSAL and the speaker’s knowledge extended to “more than 70”. In either

case, it would signal that the speaker could not commit to “more than 80”, as otherwise “more than 80” would

be a preferable output. Similarly, “more than 60” could arise only if the speaker was not able to commit to

“more than 70”.

Note that, in both cases, there is a many-to-one mapping between the speaker’s intention and the optimal

utterance: it is therefore not possible for the hearer to recapture the details of that intention. This again contrasts

with the bidirectional model, in which (typically) a unique preferred interpretation is associated with each form,

and vice versa. This permits the unidirectional model to generalise to a case in which distinct intentions are

associated with identical preferred forms. Such a case would naturally arise if we considered a speaker’s

knowledge about a quantity as a probability distribution over possible values, as this would seem to permit

greater nuance in the speaker’s knowledge representation than could plausibly be represented in their choice of

linguistic form.

If we consider contextual factors, the hearer’s task becomes more complex. Suppose first that the hearer knows

“60” to be contextually activated (e.g. because they have just asked whether the quantity under discussion is

over 60). In this case, the interpretation of “more than 73” or “more than 70” proceeds as above. However, if

the utterance is “more than 60”, the hearer should be aware that this might reflect adherence to NPRI on the part

33

of the speaker, and thus be entirely compatible with an intention of “more than 70” and even higher values. So

in this case the implicature that “more than 60” signals the speaker’s inability to commit to “more than 70”

should not arise.

Moreover, it is possible that a numeral might be primed without the hearer being aware of it. Therefore, any

utterance should be interpreted (according to this model) as a potential case of priming. The utterance of “more

than 73” might in fact reflect the action of a highly-ranked priming constraint in a situation in which the speaker

has more precise information but considers 73 a significant threshold worthy of mention. The same applies to

“more than 70”, and thus the implicature that “not more than 80” should not be exceptionless. The hearer

should, however, be able to infer that either the speaker is not willing to commit to “not more than 80”, or the

numeral mentioned has especial significance (or both).

It may appear that this model places unreasonable burdens on the hearer. Nevertheless, recent experimental data

suggests that hearers not only can, but actually do interpret expressions of quantity in approximately this way.

Cummins, Sauerland and Solt (2012) demonstrated that the preferred interpretation of an expression such as

“more than 70” is one in which a pragmatic upper bound is inferred, i.e. the hearer infers that the speaker is

unwilling to commit to the truth of “more than 80”. They further showed that when the numeral is mentioned as

a threshold value in the preceding conversational turn, this implicature is attenuated: i.e. the hearer more often

accepts the idea that the speaker may know that “more than 80” holds but has deliberately chosen to make a

weaker statement.

In both conditions, these inferences are frequent but not universal, and thus also accord with the prediction that

hearers should factor in possible intentional use of a specific numeral. However, more direct evidence in

support of this prediction comes from examples such as (2a-c), in which the selected numeral is not understood

to give rise to a range implicature but rather to make reference to a critical threshold.

(2a) Samaras insists his party can still get more than 150 seats in Parliament to form a government on his

own.
2

(2b) [Sachin Tendulkar] has now scored more than 11,953 runs in the five-day game.
3

(2c) The only painting to sell for more than $135 million was, perhaps unsurprisingly, one of Pollock’s.
4

The ostensibly correct interpretation of each of these sentences requires the inference that the choice of numeral

carries additional information. In the case of (2a), it is that you need 151 seats to command a majority in the

Greek Parliament; in the case of (2b), it is that the record Tendulkar broke stood at 11,953 runs; in the case of

(2c), it is that the next-most-costly painting ever sold (at that time) cost $135 million (and was not by Pollock).

While the precise inferences require encyclopaedic knowledge in order to be drawn, the fact that some kind of

inference of this type is available appears to be a pragmatic property of the utterance, and can only be explained

under the assumptions that (i) the speaker may choose to use a numeral that is contextually salient and (ii) the

hearer is aware of this and interprets the utterance accordingly.

It could therefore be argued that this type of approach captures useful generalisations about the interpretation of

utterances. However, the above discussion does not consider how the hearer is able to perform this task, which

is presumed to be a complex matter of abductive inference. In the following section I turn to the question of

heuristics with a view to outlining some practical hypotheses about the interpretation of quantity expressions.

2
 http://www.ekathimerini.com/4dcgi/_w_articles_wsite1_31219_22/04/2012_438798, retrieved 12 May 2012

3
 http://www.eatsleepsport.com/cricket/tendulkar-breaks-laras-test-record-800854.html#.T67HduVPQms,

retrieved 12 May 2012.
4
 http://www.dailyiowan.com/2011/02/15/Opinions/21376.html, retrieved 12 May 2012.

34

4. Constraining the Hearer’s Reasoning

Given the above constraint-based model, the hearer is entitled to assume that any alternative utterance would

have been non-optimal, and to draw pragmatic inferences based on this observation. However, in principle this

task requires infinitely many reasoning steps. Moreover, the inferences drawn would include many that were

not useful. For instance, an utterance of “more than 70” indicates that “more than 1 million” and “more than

50” are both less appropriate as alternative utterances, but the corresponding inferences are hardly worth

calculating. In the former case, “not more than a million” is unlikely to be an interesting conclusion (and is in

any case entailed by stronger available inferences such as “not more than 100”). In the latter case, “more than

70” already entails “more than 50”, and the inference that the latter is not maximally informative is redundant –

the hearer already knows this on the basis of the semantics of the expression uttered.

Thus, to make this account psychologically plausible, it appears necessary also to specify some conditions

governing the hearer’s reasoning. In particular, we wish to constrain the possible alternatives that are

considered – or, more precisely, to account for how the hearer manages to locate the alternatives that would give

rise to pragmatically useful implicatures.

One possible technique is to appeal to scale granularity, in the sense of Krifka (2009). It is evident that many

quantity scales have especially salient divisions and units: in number in general, the set (10, 20, 30, …) seems to

constitute a natural coarse-grained subscale within the scale of integers, as does (50, 100, 150, …), while for

instance (7, 17, 27, …) does not. These scales vary across domains: for instance, in time, (15, 30, 45, 60) is a

scale for minutes, but (3, 6, 9, 12) is one for months, and so on. A hearer could exploit this by considering the

next relevant scale point and using this to derive an alternative utterance that gives rise to pragmatic

enrichments. In the case of expressions such as “more than”, or existential contexts, the relevant direction is

upwards, as in (3a) and (3b); in the case of “fewer than”, it is downwards, as in (3c).

(3a) The child is more than 3 months old.

 Next scale point: 6 months. Alternative: The child is more than 6 months old.

 Inference: The child is not more than 6 months old.

(3b) We can comfortably accommodate 250 guests.

 Next scale point: 300. Alternative: We can comfortably accommodate 300 guests.

 Inference: It is not the case that we can comfortably accommodate 300 guests.

(3c) There are fewer than 70 places remaining.

 Next scale point: 60. Alternative: There are fewer than 60 places remaining.

 Inference: There are not fewer than 60 places remaining.

This type of reasoning is somewhat appealing intuitively, and matches the self-reported behaviour of some

participants in Cummins et al. (2012). Within the constraint-based account discussed here, it is also a very

efficient approach. The numeral salience and granularity constraints require the use of a number with a

particular level of prominence, and disfavour alternatives with less prominent numbers. For instance, in a case

such as (3a), it would potentially violate granularity to say “more than 4 months”. Consequently, the inference

that such an expression was actually untrue of the situation is not justified – the decision to use another

expression might reflect adherence to a granularity constraint rather than any uncertainty on the speaker’s part

as to the validity of the semantic content. Thus, the inference based on the next scale point is the first safe

inference. It is also the strongest safe inference, in that it entails all the inferences that could be drawn by

considering more distant scale points (“not more than 9 months”, “not more than 12 months”, and so on).

In the case of numerals which have been previously mentioned in the context, the constraint-based approach

predicts that no implicatures of the above kind are robust. In this case, the heuristic is very simple – the hearer

should not consider expressions with any alternative numerals, on the basis that all such alternatives are

potentially dispreferred for reasons that have nothing to do with their semantic content. However, this leaves

open the question of how the hearer should respond if the numeral might, but might not, be being used because

35

of prior activation (which is arguably the typical case in real life, and is crucial to the interpretation of (2a-c)

above). One possible account is that the hearer proceeds to consider alternatives, along the lines sketched

above, but draws inferences with varying degrees of confidence. For instance, a hearer encountering (3c) and

believing 70 not to be a salient number should draw the inference “not fewer than 60” with high confidence,

while a hearer encountering (3c) when 70 might be a salient number should draw the inference with low

confidence. The descriptive accuracy of this account is an empirical question that has not yet been explored.

It has also been observed in the literature that expressions such as “more than four” fail to implicate “not more

than five”, and “at least four” fails to implicate “not at least five” (Krifka 1999, Fox and Hackl 2006). In both

cases, the semantic meaning and the implicature would, taken together, entail a precise value (“five” and “four”

in the above examples). By contrast, Cummins et al. (2012) provide evidence that, for instance, “more than 70”

does implicate “not more than 80”. Moreover, it appears introspectively that “more than 4 metres” does

similarly implicate “not more than 5 metres”. This suggests that the granularity-based heuristic does not operate

when scale points are adjacent, for the practical reason that it would generate enriched meanings that could be

better expressed by bare numerals. However, an alternative explanation is that the implicatures discussed by

Krifka (1999) and Fox and Hackl (2006) are sometimes available, but that the examples they consider involve

the repetition of contextually salient values, thus invoking priming constraints and causing the failure of

inference. For instance, (4) is especially felicitous in a context in which having three children is a critical

threshold of some kind, e.g. for the receipt of benefits, that has already been established in the discourse. Again,

empirical work could establish whether either or both of these explanations could be tenable.

(4) John has more than three children.

Perhaps a more interesting question concerns the treatment of different quantifiers. When we consider

alternative expressions that involve the same number, clearly the number-referring constraints cannot adjudicate

between them. In the model discussed here, the relevant constraints are quantifier simplicity and quantifier

priming. Where no priming is in effect, the hearer should be entitled to conclude that the speaker could not use

a simpler quantifier and the same number. Clearly it is crucial to establish what constitutes a ‘simpler’

quantifier: a bare numeral (i.e. null quantifier) could be argued to be the simplest, but precedence among other

expressions is not straightforward. Cummins and Katsos (2010) argue from experimental data that the

superlative quantifiers ‘at least’ and ‘at most’ are more complex than the corresponding comparative quantifiers

‘more than’ and ‘fewer than’. This would entitle the hearer to draw the inferences specified in (5a) and (5b)

from the use of the superlative quantifiers.

(5a) John has at least four children.

 Alternative 1: John has four children.

 Inference 1: The speaker is not certain that John has (exactly) four children.

 Alternative 2: John has more than four children.

 Inference 2: The speaker is not certain that John has more than four children.

(5b) John has at most four children.

 Alternative 1: John has four children.

 Inference 1: The speaker is not certain that John has (exactly) four children.

 Alternative 2: John has fewer than four children.

 Inference 2: The speaker is not certain that John has fewer than four children.

By contrast, if we hold the numeral constant, “John has more/fewer than four children” admits no such

inferences. “At least/most” would be a more complex alternative and is therefore exempt from consideration.

The bare numeral would give an alternative expression (“(exactly) four”) that is already contradicted by the

semantics of the original statement. Crucially, the inferences from “more than n-1” are thus systematically

different from those arising from “at least n”, even under the assumption that these expressions are semantically

equivalent. Hence, this approach captures the difference observed by Geurts and Nouwen (2007) between the

interpretation of comparative and superlative quantifiers. A similar account could be offered for any of the class

B quantifiers of Nouwen (2010).

36

Generally, the major stipulation of this account is that certain specific alternatives are considered in place of

actually uttered material. From a pragmatic perspective, this could be seen as occupying an intermediate

position between default and contextual accounts of implicature. In common with default accounts, this

approach suggests that certain expressions serve as triggers for inferences about the falsity of other expressions.

However, in common with contextual accounts, this approach predicts that the implicatures do not arise in cases

where their licensing conditions are not met. The justification for positing the partial element of defaultness in

this model is practical, as discussed earlier – it is not feasible for a hearer to evaluate all the logically possible

alternatives, and the search-space for pragmatically significant alternatives must be curtailed in some way.

However, I propose that these potential alternatives are then evaluated on their merits, and that there is no rush

to judgement. This accords with the experimental pragmatic literature, which has so far obtained limited

evidence for any default inferences, while also respecting the intuitions of theorists such as Levinson (2000).

5. Conclusion

A unidirectional OT approach to numerical quantification yields novel predictions as to usage and interpretation.

By comparison with alternative accounts, it places a considerable burden of reasoning on the hearer, and

considers it generally impossible that speaker meaning is fully and accurately communicated. However, aspects

of both hearers’ behaviour and their introspective experience support the proposal. This account can be usefully

enriched by positing particular heuristics as to how hearers reason, which aim to make the task of seeking

pragmatic enrichments tractable by restricting it to a small finite search space. This approach in turn appears

generally to cohere with an intermediate position between default and contextual accounts of pragmatic

enrichment.

References

Blutner, R. (1998): Lexical Pragmatics. Journal of Semantics 15, 115–162.

Blutner, R. (2000): Some Aspects of Optimality in Natural Language Interpretation. Journal of Semantics 17,

189–216.

Blutner, R. (2006): Embedded Implicatures and Optimality Theoretic Pragmatics. In: Solstad, T., Grønn, A. and

Haug, D. (eds.) A Festschrift for Kjell Johan Sæbø: in partial fulfilment of the requirements for the celebration

of his 50th birthday. Oslo.

Cummins, C. (2011): The Interpretation and Use of Numerically-Quantified Expressions. PhD thesis, available

online at http://www.dspace.cam.ac.uk/handle/1810/241034.

Cummins, C. and Katsos, N. (2010): Comparative and Superlative Quantifiers: Pragmatic Effects of

Comparison Type. Journal of Semantics 27, 271–305.

Cummins, C., Sauerland, U. and Solt, S. (2012): Granularity and Scalar Implicature in Numerical Expressions.

Linguistics and Philosophy 35, 135-169.

Fox, D. and Hackl, M. (2006): The Universal Density of Measurement. Linguistics and Philosophy 29, 537–

586.

Geurts, B. and Nouwen, R. (2007): “At least” et al.: the Semantics of Scalar Modifiers. Language 83, 533–559.

Grice, H. P. (1989): Studies in the Way of Words. Harvard University Press, Cambridge MA.

Hendriks, P. and de Hoop, H. (2001): Optimality Theoretic Semantics. Linguistics and Philosophy 24, 1–32.

Horn, L. R. (1984): Towards a New Taxonomy for Pragmatic Inference: Q-based and R-based Implicature. In:

Schiffrin, D. (ed.) Meaning, Form and Use in Context (GURT ’84), pp.11–42. Georgetown University Press,

Washington DC.

Krifka, M. (1999): At least some Determiners aren’t Determiners. In: Turner, K. (ed.), The

Semantics/Pragmatics Interface from Different Points of View. Current Research in the Semantics/Pragmatics

Interface Vol. 1, pp.257–292.

37

Krifka, M. (2002): Be Brief and Vague! And how Bidirectional Optimality Theory allows for Verbosity and

Precision. In: Restle, D. and Zaefferer, D. (eds.) Sounds and Systems. Studies in Structure and Change. A

Festschrift for Theo Vennemann, pp.439–458. Mouton de Gruyter, Berlin.

Krifka, M. (2009): Approximate Interpretations of Number Words: a Case for Strategic Communication. In:

Hinrichs, E. and Nerbonne, J. (eds.) Theory and Evidence in Semantics, pp.109–132. CSLI Publications,

Stanford.

Levinson, S. C. (2000): Presumptive Meanings. MIT Press, Cambridge MA.

Nouwen, R. (2010): Two Kinds of Modified Numerals. Semantics and Pragmatics 3, 1–41.

Smolensky, P. (1996): On the Comprehension/Production Dilemma in Child Language. Linguistic Inquiry 27,

720–731.

38

Inducing lexical entries for an incremental semantic
grammar

Arash Eshghi1, Matthew Purver1, Julian Hough1, and Yo Sato2

1 Interaction Media and Communication
School of Electronic Engineering and Computer Science

Queen Mary University of London
{arash,mpurver,jhough}@eecs.qmul.ac.uk

2 Adaptive Systems Research Group
Science and Technology Research Institute

University of Hertfordshire
y.sato@herts.ac.uk

Abstract. We introduce a method for data-driven learning of lexical entries in
an inherently incremental semantic grammar formalism, Dynamic Syntax (DS).
Lexical actionsin DS are constrained procedures for the incremental projection
of compositional semantic structure. Here, we show how these can be induced
directly from sentences paired with their complete propositional semantic struc-
tures. Checking induced entries over an artificial dataset generated using a known
grammar demonstrates that the method learns lexical entries compatible with
those defined by linguists, with different versions of the DS framework induced
by varying only general tree manipulation rules. This is achieved without requir-
ing annotation at the level of individual words, via a method compatible with
work on linguistic change and routinisation.

1 Introduction

Dynamic Syntax (DS) is an inherently incremental semantic grammar formalism [1, 2]
in which semantic representations are projected on a word-by-word basis. It recognises
no intermediate layer of syntax (see below), and generationand parsing are interchange-
able. Given these properties, it seems well suited for dialogue processing, and can in
principle model common dialogue phenomena such as unfinished or co-constructed ut-
terances, mid-utterance interruption and clarification etc. [3]. However, its definition in
terms of semantics (rather than the more familiar syntacticphrase structure) makes it
hard to define or extend broad-coverage grammars: expert linguists are required. On
the other hand, as language resources are now available which pair sentences with se-
mantic logical forms (LFs), the ability to automatically induce DS grammars could lead
to a novel and useful resource for dialogue systems. Here, weinvestigate methods for
inducing DS grammars, and present an initial method for inducing lexical entries from
data paired with complete, compositionally structured, propositional LFs.

From a language acquisition perspective, this problem can be seen as one of con-
straint solving for a child: given (1) the constraints imposed through time by her un-
derstanding of the meaning of linguistic expressions (fromevidence gathered from e.g.

39

2

her local, immediate cognitive environment, or interaction with an adult), and (2) in-
nate cognitive constraints on how meaning representationscan be manipulated, how
does she go about separating out the contribution of each individual word to the overall
meaning of a linguistic expression? And how does she choose among the many guesses
she would have, the one that best satisfies these constraints?

This paper represents an initial investigation into the problem: the method presented
is currently restricted to a sub-part of the general problem(see below). Future work
will adapt it to a more general and less supervised setting where the input data con-
tains less structure, where more words are unknown in each sentence, and applicable to
real-world datasets – but the work here forms a first important step in a new problem
area of learning explicitly incremental grammars in the form of constraints on semantic
construction.

2 Previous work on grammar induction

Existing grammar induction methods can be divided into two major categories: super-
vised and unsupervised. Fully supervised methods, which use a parsed corpus as the
training data and generalise over the the phrase structure rules to apply to a new set of
data, has achieved significant success, particularly when coupled with statistical esti-
mation of the probabilities for production rules that sharethe same LHS category (e.g.
PCFGs [4]). However, such methods at best only capture part of the grammar learn-
ing problem, since they presuppose prior linguistic information and are not adequate
as human grammar learning models. Unsupervised methods, onthe other hand, which
proceed with unannotated raw data and hence are closer to thehuman language acquisi-
tion setting, have seen less success. In its pure form —positive data only, without bias—
unsupervised learning has been demonstrated to be computationally too complex (‘un-
learnable’) in the worst case [5]. Successful cases have involved some prior learning or
bias, e.g. a fixed set of known lexical categories, a probability distribution bias [6] or a
hybrid, semi-supervised method with shallower (e.g. POS-tagging) annotation [7].

More recently another interesting line of work has emerged:supervised learning
guided bysemanticrather than syntactic annotation – more justifiably arguable to be
‘available’ to a human learner with some idea of what a stringin an unknown language
could mean. This has been successfully applied in Combinatorial Categorial Gram-
mar [8], as it tightly couples compositional semantics withsyntax [9, 10] and [11] also
demonstrates a limited success of a similar approach with partially semantically an-
notated data that comes from a controlled experiment. Sincethese approaches adopt
a lexicalist framework, the grammar learning involves inducing a lexicon assigning to
each word its syntactic and semantic contribution.

Such approaches are only lightly supervised, using sentence-level propositional log-
ical form rather than detailed word-level annotation. Also, grammar is learnt ground-up
in an ‘incremental’ fashion, in the sense that the learner collects data and does the
learning in parallel, sentence by sentence. Here we follow this spirit, inducing gram-
mar from a propositional meaning representation and building a lexicon which spec-
ifies what each word contributes to the target semantics. However, taking advantage
of the DS formalism, a distinctive feature of which isword-by-wordprocessing of

40

3

semantic interpretation, we bring an added dimension of incrementality: not only is
learning sentence-by-sentence incremental, but the grammar learned is word-by-word
incremental, commensurate with psycholinguistic resultsshowing incrementality to be
a fundamental feature of human parsing and production [12, 13]. Incremental parsing
algorithms have correspondingly been proposed [14–16], however, to the best of our
knowledge, a learning system for an explicitly incrementalgrammar is yet to be pre-
sented – this work is a step towards such a system.

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

−→ ?Ty(t)

Ty(e),
john

?Ty(e → t),
♦

−→

?Ty(t)

Ty(e),
john

?Ty(e → t)

?Ty(e),
♦

Ty(e → (e → t)),
λyλx.upset′(x)(y)

−→ Ty(t),♦,
upset′(john′)(mary′)

Ty(e),
john

Ty(e → t),
λx.upset′(x)(mary′)

Ty(e),
mary′

Ty(e → (e → t)),
λyλx.upset′(x)(y)

Fig. 1. Incremental parsing in DS producing semantic trees:“John upset Mary”

3 Dynamic Syntax

Dynamic Syntax is a parsing-directed grammar formalism, which models the word-
by-word incremental processing of linguistic input. Unlike many other formalisms, DS
models the incremental building up ofinterpretationswithout presupposing or indeed
recognising an independent level of syntactic processing.Thus, the output for any given
string of words is a purelysemantictree representing its predicate-argument structure;
tree nodes correspond to terms in the lambda calculus, decorated with labels expressing
their semantic type (e.g.Ty(e)) and formula, with beta-reduction determining the type
and formula at a mother node from those at its daughters (Figure 1).

These trees can bepartial, containing unsatisfied requirements for node labels (e.g.
?Ty(e) is a requirement for future development toTy(e)), and contain apointer ♦
labelling the node currently under development. Grammaticality is defined as parsabil-
ity: the successful incremental construction of a tree withno outstanding requirements
(a completetree) using all information given by the words in a sentence.The input
to our induction task here is therefore sentences paired with such complete,semantic
trees, and what we try to learn are constrained lexical procedures for the incremental
construction of such trees.

41

4

3.1 Actions in DS

The central tree-growth process is defined in terms of conditional actions: procedural
specifications for monotonic tree growth. These take the form both of general structure-
building principles (computational actions), putatively independent of any particular
natural language, and of language-specific actions inducedby parsing particular lexical
items (lexical actions). The latter are what we here try to learn from data.

Computational actionsThese form a small, fixed set. Some merely encode the prop-
erties of the lambda calculus itself and the logical tree formalism (LoFT, [17]) – these
we terminferentialactions. Examples include THINNING (removal of satisfied require-
ments) and ELIMINATION (beta-reduction of daughter nodes at the mother). These ac-
tions are entirely language-general, cause no ambiguity, and add no new information to
the tree; as such, they apply non-optionally whenever theirpreconditions are met.

Other computational actions reflect DS’s predictivity and the dynamics of the frame-
work. For example, replacing feature-passing concepts, e.g. for long-distance depen-
dency, *ADJUNCTION introduces a single unfixed node with underspecified tree po-
sition; LINK -ADJUNCTION builds a paired (“linked”) tree corresponding to semantic
conjunction and licensing relative clauses, apposition and more. These actions repre-
sent possible parsing strategies and can apply optionally at any stage of a parse if their
preconditions are met. While largely language-independent, some are specific to lan-
guage type (e.g. INTRODUCTION-PREDICTION in the form used here applies only to
SVO languages).

Lexical actionsThe lexicon associates words with lexical actions, which like computa-
tional actions, are each a sequence of tree-update actions in an IF..THEN..ELSE format,
and composed of explicitly proceduralatomic actionslike make, go, put (and others).
make creates a new daughter node.go moves the pointer to a daughter node, andput
decorates the pointed node with a label. Fig. 2 shows a simplelexical action forJohn.
The action says that if the pointed node (marked as♦) has a requirement for typee,
then decorate it with typee (thus satisfying the requirement); decorate it with formula
John′ and finally decorate it with the bottom restriction〈↓〉⊥ (meaning that the node
cannot have any daughters). In case the IF condition?Ty(e) is not satisfied, the action
aborts, meaning that the word ‘John’ cannot be parsed in the context of the current tree.

Action Input tree Output tree

John

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′)
put(〈↓〉⊥)

ELSE ABORT

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

John−→ ?Ty(t)

Ty(e), ?Ty(e)
John′, 〈↓〉⊥,♦

?Ty(e → t)

Fig. 2.Lexical action for the word ‘John’

42

5

3.2 Graph Representation of DS Parsing

Given a sequence of words(w1, w2, ..., wn), the parser starts from theaxiom treeT0

(a requirement?Ty(t) to construct a complete tree of propositional type), and applies
the corresponding lexical actions(a1, a2, . . . , an), optionally interspersing computa-
tional actions – see Figure 1. [18] shows how this parsing process can be modelled on
a Directed Acyclic Graph(DAG), rooted atT0, with partial trees as nodes, and compu-
tational and lexical actions as edges (i.e. transitions between trees):

T0

T1intro T2

pred

T3

‘john’

T1′*Adj T2′
‘john’

T3′
intro

T4′
pred

T5′

In this DAG, intro, predand*Adj correspond to the computational actions INTRO-
DUCTION, PREDICTION and *-ADJUNCTION respectively; and ‘john’ is a lexical ac-
tion. Different paths through the DAG represent different parsing strategies, which may
succeed or fail depending on how the utterance is continued.Here, the pathT0 − T3

will succeed if ‘John’ is the subject of an upcoming verb (“John upset Mary”);T0 − T4

will succeed if ‘John’ turns out to be a left-dislocated object (“John, Mary upset”).
This DAG is taken to represent thelinguistic contextavailable during a parse, used

for ellipsis and pronominal construal [19, 20]. It also provides us with a basis for imple-
menting a best-first probabilistic parser, by taking the current DAG, plus a backtracking
history, as theparse state. Given a conditional probability distributionP (ai|f(t)) over
possible actionsai given a set of features of the current partial treef(t), the DAG
is then incrementally constructed and traversed such that at any node (partial tree), the
most likely action (edge) is traversed first, with backtracking allowing other possibilities
to be explored. Estimation of this probability distribution is not a problem we address
here – we assume a known probability distribution for the known grammar fragment.

4 Learning lexical actions

4.1 Assumptions and Problem Statement

Assumptions.Our task here is data-driven learning of lexical actions forunknown
words. Throughout, we will assume that the (language-independent)computationalac-
tions are known. To make the problem tractable at this initial stage, we further make
the following simplifying assumptions: (1) The supervision information is structured:
i.e. our dataset pairs sentences with the DS tree that expresses their predicate-argument
structure – rather than just a less structured Logical Form as in e.g. [9] (Note that this
does not provide word-level supervision: nodes do not correspond to words here) (2)
The training data does not contain any pronouns or ellipsis (3) We have a seed lexicon
such that there are no two adjacent words whose lexical actions are unknown in any
given training example. As we will see this will help determine where unknown actions

43

6

begin and end. We will examine the elimination of this assumption below. Relaxing any
of these assumptions means a larger hypothesis space.

Input. The input to the induction procedure to be described is now asfollows:

– the set of computational actions in Dynamic Syntax,G.
– a seed lexiconLs: a set of words with their associated lexical actions that are taken

to be known in advance.
– a set of training examples of the form〈Si, Ti〉, whereSi is a sentence of the lan-

guage andTi – henceforth referred to as thetarget tree– is the complete semantic
tree representing the compositional structure of the meaning ofSi.

Target. The output is the lexical actions associated with previously unknown words.
We take these to be conditioned solely on the semantic type ofthe pointed node (i.e.
their IF clause takes the form IF?Ty(X)). This is true of most lexical actions in DS
(see examples above), but not all. This assumption will leadto some over-generation:
inducing actions which can parse some ungrammatical strings.The main output of the
induction algorithm is therefore the THEN clauses of the unknown actions: sequences
of DS atomic actions such asgo, make, andput (see Fig. 2). We refer to these sequences
aslexical hypotheses. We first describe our method for constructing lexical hypotheses
with a single training example (a sentence-tree pair). We then discuss how to generalise
over and refine these outputs incrementally as we process more training examples.

4.2 Hypothesis construction

DS isstrictly monotonic: actions can onlyextendthe tree under construction, deleting
nothing except satisfied requirements. Thus, hypothesising lexical actions consists in
an incremental search through the space of all monotonic extensions of the current tree
Tcur that subsume (i.e. can be extended to) the target treeTt. Not all possible trees and
tree extensions are well-formed (meaningful) in DS, makingthe search constrained to
a degree. The constraints are: (1) Lexical actions add lexical content —formula & type
labels together— only toleaf nodes with the corresponding type requirement. Non-
terminal nodes can thus only be given typerequirements(later receiving their type and
content via beta-reduction); (2) Leaf nodes can only be decorated by one lexical action,
i.e. once a leaf node receives its semantic content, no lexical action will return to it
(anaphora, excluded here, is an exception); (3) Once a new node is created, the pointer
must move to it immediately and decorate it with the appropriate type requirement.

The process of hypothesis construction proceeds by locallyand incrementally ex-
tendingTcur, using sequences ofmake, go, andput operations as appropriate and
constrained as above, each time takingTcur one step closer to the target tree,Tt, at
each stage checking for subsumption ofTt.This means that lexical actions are not hy-
pothesised in one go, but left-to-right, word-by-word.

Hypothesis construction for unknown words is thus interleaved with parsing known
words on the same DAG: Given a single training example,〈(w1, . . . , wn), Tt〉, we be-
gin parsing from left to right. Known words are parsed as normal; when some unknown
wi is encountered,(wi, . . . , wn) is scanned until the next known wordwj is found
or the end of the word sequence is reached (i.e.j = n). We then begin hypothesis-
ing for wi, . . . , wj−1, incrementally extending the tree and expanding the DAG, using

44

7

both computational actions, and hypothesised lexical treeextensions until we reach a
tree where we can parsewj . This continues until the tree under development equals
the target tree. All such possibilities are searched depth-first via backtracking until no
backtracking is possible, resulting in a fully explored hypothesis DAG. Successful DAG
paths (i.e. those that lead from the axiom tree to the target tree) thus provide the success-
ful hypothesised lexical sub-sequences; these, once refined, become the THEN clauses
of the induced lexical actions.

For unknown words, possible tree extensions are hypothesised as follows. Given the
current tree under constructionTcur and a target treeTt, possible sequences of atomic
actions (e.g.go, put, make) are conditioned on the nodeNt in Tt which corresponds
to – has the same address as – the pointed nodeNcur in Tcur. If Nt is a leaf node,
we hypothesiseput operations which add each label onNt not present onNcur, thus
unifying them. Otherwise, we hypothesise adding an appropriate type requirement fol-
lowed bymake, go andput operations to add suitable daughters.

?Ty(t)

Ty(e),
john

?Ty(e → t),
♦

Ty(t),
upset′(john′)(mary′)

Ty(e),
john

Ty(e → t),
λx.upset′(x)(mary′)

Ty(e),
mary′

Ty(e → (e → t)),
λyλx.upset′(x)(y)

Fig. 3.The tree under developmentTcur (left) and the target treeTt (right)

Figure 3 shows an example. Here,Tt is the complete tree on the right, andTcur the
partial tree on the left. SinceTcur ’s pointed node corresponds to a non-leaf node inTt,
we hypothesise two local action sequences: one which buildsan argument daughter with
appropriate type requirement (make(↓0);go(↓0);put(?Ty(e))), and another which
does the same for a functor daughter (make(↓1);go(↓1);put(?Ty(e → (e → t))).

This method produces, for each training example〈Si, Ti〉, a hypothesis DAG repre-
senting all possible sequences of actions that lead from an Axiom tree to the associated
target tree,Ti, using known lexical actions for known sub-strings ofSi, new hypothe-
sised lexical actions for unknown sub-strings, and the known computational actions of
DS. Such a DAG is in effect a mapping from the unknown word sub-strings ofSi into
sequences of local action hypotheses plus general computational actions that may have
applied between words.

This method does not in principle require us to know any of thewords in a given
training example in advance if we employed some method of ‘splitting’ sequences asso-
ciated with more than one adjacent word (a tactic employed in[10] as well as [11]). We
will discuss this possibility in the next section, but currently, since producing a compact
lexicon requires us to generalise over these action sequence hypotheses, we opt for the
simpler alternative of assuming that in any pair of adjacentwords one of them is known.

45

8

First Training Example: ‘john’ in subject position:

S invisible

CA:intro Finvisible

CA:predict
invisible

LH:put(Ty(e));put(fo(John’))
invisible

CA:thin
invisible

CA:complete CA:anticip

Second Training Example: ‘john’ on unfixed node, i.e. left-dislocated object:

S invisible

LH:put(Ty(e));put(fo(John’)) F

invisibleCA:anticip

invisible

CA:intro

invisible invisible

CA:intro CA:predict

invisible

CA:thin CA:complete

invisible

CA:pred
invisible

CA:star-adj

Third training example: ‘john’ before parsing relative clause ‘who. . .’:

S invisible

LH:put(Ty(e));put(fo(John’))
F

invisible
CA:complete

invisible

CA:link-adj

invisible invisible

CA:intro CA:predict
CA:thin

invisibleCA:anticip

invisible

CA:intro
invisible

CA:pred

invisible

CA:star-adj

Fig. 4. Incremental intersection of candidate sequences

4.3 Hypothesis generalisation and refinement

Hypotheses produced from a single training example are unlikely to generalise well to
other unseen examples: words occur at different syntactic/semantic positions in differ-
ent training examples. We therefore require a method for theincremental, example-by-
example refinement and generalisation of the action hypotheses produced for the same
unknown word in processing different〈S, Tt〉 pairs as above.

DS’s general computational actions can apply at any point before or after the appli-
cation of a lexical action, thus providing strategies for adjusting the syntactic context
in which a word is parsed. We can exploit this property to generalise over our lexical
hypotheses: by partitioning a sequence into sub-sequenceswhich can be achieved by
computational actions, and sub-sequences which must be achieved lexically. Removing
the former will leave more general lexical hypotheses.

However, we need a sequence generalisation method which notonly allows com-
putational action subsequences to be removed when this aidsgeneralisation, but also
allows them to become lexicalised when generalisation is not required – i.e. when all
observed uses of a word involve them3. For example, the parsing of relative clauses in
current DS grammars involves the computational action LINK -ADJUNCTION building
a paired tree. Parse DAGs for sentences including relativeswill therefore include LINK -
ADJUNCTION in all successful paths. If every observed use of the relative pronounwho
is now associated with a sequence containing LINK -ADJUNCTION, this computational
action can become part of its lexical entry, thus increasingparsing efficiency.
Generalisation through sequence intersection.The hypothesis construction process
above produces a set of parse/hypothesis DAGs,Di, from a corresponding set of train-
ing examples,〈Si = (w1, . . . , wn), Ti〉. Each of these provides a mapping,CSi(w),
from any unknown wordw /∈ Ls in Si (whereLs is the seed lexicon), into a set of
sequences of (partial) trees, connected bycandidate sequencesof actions (see Figure
4) made up of both computational actions and the local lexical hypotheses (marked as

3 See e.g. [21] for an explanation of syntactic change via calcification or routinisation, whereby
repeated use leads to parsing strategies becoming fixed within some lexicaldomain.

46

9

“LH” in Figure 4). Given our first simplifying assumption from Section 4.1 above, these
candidate sequences must always be bounded on either side byknownlexical actions.
As we process more training examples, the set of candidate sequences forw grows
as per:CS(w) =

⋃i
n=1 CSi(w). The problem now is one of generalisation over the

candidate sequences inCS(w).
Generalisation over these sequences proceeds by removingcomputationalactions

from the beginning or end of any sequence. We implement this via a single packed data-
structure which we term thegeneralisation DAG, as shown in Figure 4: a representation
of the full set of candidate sequences via their intersection (the central common path)
and differences (the diverging paths at beginning and end),under the constraint that
these differences consist only of computational actions. Nodes here therefore no longer
represent single trees, but sets of trees. As new candidate sequences are added from new
training examples, the intersection is reduced. Figure 4 shows this process over three
training examples containing the unknown word ‘john’ in different syntactic positions.
The ‘S’ and ‘F’ nodes here mark the start and finish of the current intersection subse-
quence –initially the entire sequence. As new training examples arrive, the intersection –
the maximal common path – is reduced as appropriate. Lexicalhypotheses thus remain
as general as possible, with initial/final action sub-sequences which depend on syntac-
tic context delegated to computational actions, but computational actions thatalways
precede or follow a sequence of lexical hypotheses becomng lexicalised, as desired.

Eventually, the intersection is then taken to form the THEN clause of the new
learned lexical entry. The IF clause is a type requirement, obtained from the pointed
node on all partial trees in the ‘S’ node beginning the intersection sequence. As lexical
hypotheses within the intersection are identical, and lexical hypotheses are constrained
to add type information before formula information (see Section 4.2), any type infor-
mation must be common across these partial trees. In Figure 4for ‘john’, this is?Ty(e),
i.e. a requirement for typee, common to all three training examples.4

Lexical Ambiguity. Of course, it may well be that a new candidate sequence forw
cannot be intersected with the current generalisation DAG for w (i.e. the intersection
is the null sequence). Such cases indicate differences in lexical hypotheses rather than
in syntactic context – either different formula/type decoration (polysemy) or different
structure (multiple syntactic forms) – and thus give rise tolexical ambiguity, with a new
generalisation DAG and lexical entry being created.

Splitting Lexical Items.Our assumption that no two adjacent words are unknown in any
training example reduces the hypothesis space: candidate sequences correspond to sin-
gle words and have known bounds. Relaxing this assumption can proceed in two ways:
either by hypothesising candidate action sequences for multi-word sequences, and then
hypothesising a set of possible word-boundary breaks (see e.g. [10, 11]); or by hypothe-
sising a larger space of lexically distinct candidate sequences for each word. Due to the
incremental nature of DS, hypotheses for one word will affect the possibilities for the
next, so connections between lexical hypotheses for adjacent words must be maintained
as the hypotheses are refined; we leave this issue to one side here.

4 As we remove our simplifying assumptions, IF conditions must be derived by generalising
over all features of the partial trees in the start node. We do not address this here.

47

10

5 Testing and Evaluation

We have tested a computational implementation of this method over a small, artificial
data set: following [22] we use an existing grammar/lexiconto generate sentences with
interpretations (complete DS trees), and test by removing lexical entries and compar-
ing the induced results. As an initial proof of concept, we test on two unknown words:
‘cook’ (in both transitive and intransitive contexts) and ‘John’ (note that results gener-
alise to all words of these types); the dataset consists of the following sentences paired
with their semantic trees: (1) ‘John likes Mary’ (2) ‘John, Mary likes’ (3) ‘Mary likes
John’ (4) ‘Bill cooks steak’ (5) ‘Pie, Mary cooks’ (6) ‘Bill cooks’. (1), (2) and (3) have
‘John’ in subject, left-dislocated object, and object positions respectively. The struc-
turally ambiguous verb ‘cooks’ was chosen to test the ability of the system to distin-
guish between its different senses.

Original Induced

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′))
put(〈↓〉 ⊥)

ELSE ABORT

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′))
put(〈↓〉 ⊥)
delete(?Ty(e))

ELSE ABORT

Fig. 5.Original and Induced lexical actions for ‘John’

The original and learned lexical actions for a proper noun (‘John’) are shown in Fig-
ure 5. The induced version matches the original with one addition: it deletes the satisfied
?Ty(e) requirement, i.e. it lexicalises the inferential computational action THINNING

(see Figure 4: THINNING occurs in all observed contexts, hence its lexicalisation).
Verbs provide a stronger test case. In the original conception of DS [1], the compu-

tational actions INTRODUCTIONand PREDICTION (together, INTRO-PRED) were taken
to build argument and functor daughters of the rootTy(t) node in English, accounting
for the strict SVO word order and providing a node ofTy(e → t) as trigger for the verb.
However, more recent variants [23] have abandoned INTRO-PRED in favour of a more
language-general LOCAL*-A DJUNCTION rule, motivated independently for Japanese
and all languages with NP clustering and scrambling (see [2], chapter 6).5 Such variants
require markedly different lexical actions for verbs, triggered by?Ty(t) and building a
complete propositional template while merging in argumentnodes already constructed.

We therefore test verb induction given different sets of computational actions (i.e.
one with LOCAL*-A DJUNCTION, one with INTRO-PRED). Fig. 6 shows the results for a
transitive verb: the induced actions match the original manually defined actions for both
variants, given only this change in the general computational actions available. With
INTRO-PRED, the induced action is triggered by?Ty(e → t) and does not need to build
the root node’s daughters; with LOCAL*-A DJUNCTION, the action builds a complete
propositional template triggered by?Ty(t), and merges the unfixed node introduced by
LOCAL*-A DJUNCTION into its appropriate subject position.

5 This rule allows the addition of a second localunfixed nodewith its merge point restricted to
any argument position. See [23, 2] for details.

48

11

Moreover, in the sequence intersection stage of our method,the action for the in-
transitive ‘cook’ (from training sentence (6), but not included here for reasons of space)
was successfully distinguished from that of the transitiveform in Fig. 6; the candidate
sequences induced from sentences (4) and (5) were incompatible with those from (6),
and thus resulted in a null intersection, giving rise to two separate lexical entries.

Original Induced with Intro-Pred Induced with Local*-Adj

IF ?Ty(e → t)
THEN make(↓1); go(↓1)

put(Fo(λyλx.cook(x, y)))
put(Ty(e → (e → t)))
put(〈↓〉 ⊥)
go(↑);make(↓0); go(↓0)
put(?Ty(e))

ELSE ABORT

IF ?Ty(e → t)
THEN make(↓1); go(↓1)

put(?Ty(e → (e → t)))
put(Fo(λyλx.cook(x, y)))
put(Ty(e → (e → t)))
put(〈↓〉 ⊥)
delete(?Ty(e → (e → t)))
go(↑);make(↓0); go(↓0)
put(?Ty(e))

ELSE ABORT

IF ?Ty(t)
THEN make(↓0); go(↓0)

put(?Ty(e))
merge
make(↓1); go(↓1)
put(?Ty(e → t))
make(↓1); go(↓1)
put(?Ty(e → (e → t)))
put(Fo(λyλx.cook(x, y)))
put(Ty(e → (e → t)))
delete(?Ty(e → (e → t)))
go(↑);make(↓0); go(↓0)
put(?Ty(e))

ELSE ABORT

Fig. 6.Original and Induced lexical actions for transitive ‘cook’

6 Conclusions and Future work

In this paper we have outlined a novel method for the induction of new lexical entries
in an inherently incremental and semantic grammar formalism, Dynamic Syntax, with
no independent level of syntactic phrase structure. Methods developed for other non-
incremental or phrase-structure-based formalisms could not be used here. Our method
learns from sentences paired with semantic trees representing the sentences’ predicate-
argument structures: hypotheses for possible lexical action subsequences are formed
under the constraints imposed by the known sentential semantics and by general facts
about tree dynamics. Its success on an artificially generated dataset shows that it can
learn new lexical entries compatible with those defined by linguists, with different vari-
ants of the DS framework inducible by varying only general tree manipulation rules.

Our research now focusses on relaxing our simplifying assumptions and applying
to real data. Firstly, we are developing the method to removethe assumptions limiting
the number of unknown words. Secondly, the induction methodhere is more super-
vised than we would like; work is under way to adapt the same method to learn from
sentences paired not with trees but with less structured LFsusing Type Theory with
Records [24] and/or the lambda calculus, for which corpora are available. Other work
planned includes integrating this method with the learningof conditional probability
distributions over actions, to provide a coherent practical model of parsing and induc-
tion with incremental updates of both the lexical entries themselves and the parameters
of the parsing model.

49

12

References

1. Kempson, R., Meyer-Viol, W., Gabbay, D.: Dynamic Syntax: The Flow of Language Under-
standing. Blackwell (2001)

2. Cann, R., Kempson, R., Marten, L.: The Dynamics of Language.Elsevier, Oxford (2005)
3. Gargett, A., Gregoromichelaki, E., Kempson, R., Purver, M., Sato, Y.: Grammar resources

for modelling dialogue dynamically. Cognitive Neurodynamics3(4) (2009) 347–363
4. Charniak, E.: Statistical Language Learning]. MIT Press (1996)
5. Gold, E.M.: Language identification in the limit. Information and Control10(5) (1967)

447–474
6. Klein, D., Manning, C.D.: Natural language grammar induction with a generative

constituent-context mode. Pattern Recognition38(9) (2005) 1407–1419
7. Pereira, F., Schabes, Y.: Inside-outside reestimation from partiallybracketed corpora. In:

Proc. 30th Meeting of the Association for Computational Linguistics. (1992) 128–135
8. Steedman, M.: The Syntactic Process. MIT Press, Cambridge, MA (2000)
9. Zettlemoyer, L., Collins, M.: Online learning of relaxed CCG grammarsfor parsing to logical

form. In: Proceedings of the Joint Conference on Empirical Methodsin Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL). (2007)

10. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Inducing probabilistic CCG
grammars from logical form with higher-order unification. In: Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing. (2010) 1223–1233

11. Sato, Y., Tam, W.: Underspecified types and semantic bootstrapping of common nouns and
adjectives. In: Proc. Language Engineering and Natural LanguageSemantics. (2012)

12. Lombardo, V., Sturt, P.: Incremental processing and infinite local ambiguity. In: Proceedings
of the 1997 Cognitive Science Conference. (1997)

13. Ferreira, F., Swets, B.: How incremental is language production?evidence from the pro-
duction of utterances requiring the computation of arithmetic sums. Journal of Memory and
Language46 (2002) 57–84

14. Hale, J.: A probabilistic Earley parser as a psycholinguistic model. In: Proc. 2nd Conference
of the North American Chapter of the Association for Computational Linguistics. (2001)

15. Collins, M., Roark, B.: Incremental parsing with the perceptron algorithm. In: Proceedings
of the 42nd Meeting of the ACL. (2004) 111–118

16. Clark, S., Curran, J.: Wide-coverage efficient statistical parsing with CCG and log-linear
models. Computational Linguistics33(4) (2007) 493–552

17. Blackburn, P., Meyer-Viol, W.: Linguistics, logic and finite trees. Logic Journal of the
Interest Group of Pure and Applied Logics2(1) (1994) 3–29

18. Sato, Y.: Local ambiguity, search strategies and parsing in DynamicSyntax. In: The Dy-
namics of Lexical Interfaces. CSLI (2010) to appear.

19. Cann, R., Kempson, R., Purver, M.: Context and well-formedness: the dynamics of ellipsis.
Research on Language and Computation5(3) (2007) 333–358

20. Purver, M., Eshghi, A., Hough, J.: Incremental semantic construction in a dialogue system.
In: Proc. of the 9th International Conference on Computational Semantics. (2011) 365–369

21. Bouzouita, M.: At the syntax-pragmatics interface: clitics in the historyof spanish. In: Lan-
guage in Flux: Dialogue Coordination, Language Variation, Change and Evolution. College
Publications, London (2008) 221–264

22. Pulman, S.G., Cussens, J.: Grammar learning using inductive logic programming. Oxford
University Working Papers in Linguistics6 (2001)

23. Cann, R.: Towards an account of the english auxiliary system: building interpretations incre-
mentally. In: Dynamics of Lexical Interfaces. Chicago: CSLI Press (2011)

24. Cooper, R.: Records and record types in semantic theory. Journal of Logic and Computation
15(2) (2005) 99–112

50

Modelling language, action, and perception in
Type Theory with Records

Simon Dobnik, Robin Cooper, and Staffan Larsson

Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg, Box 200, 405 30 Göteborg, Sweden

{simon.dobnik@,staffan.larsson@ling,robin.cooper@ling}.gu.se
http://www.flov.gu.se

Abstract. We present a formal model for natural language semantics
using Type Theory with Records (TTR) and argue that it is better suited
for representing the meaning of spatial descriptions than traditional for-
mal semantic models. Spatial descriptions include perceptual, conceptual
and discourse knowledge which we represent all in a single framework.
Being a computational framework TTR is suited for modelling language
and cognition of conversational agents in robotics and virtual environ-
ments where interoperability between language, action and perception
is required. The perceptual systems gain access to abstract conceptual
meaning representations of language while the latter can be justified in
action and perception.

Keywords: language, action, perception, formal semantics, spatial de-
scriptions, learning and classification

1 Introduction

Classical formal model-theoretic semantics [2] does not deal with perception,
action and dynamic meaning. It assumes that there is some fixed denotation
function which mediates between natural language or semantic representations
and the world but how this function is determined is left unaccounted for. Fur-
thermore, there are many cases where the meaning of linguistic expressions is
underspecified and can only be recovered from the context. Deictic pronouns are
a well known example – they must be resolved against a contextually present
entity which can typically be recovered from the discourse. Spatial descriptions
such as “to the left of” or “near” rely on the physical context to an even greater
extent as they must be evaluated against a particular pair of objects, their ge-
ometric representation and arrangement and the size of the scene. At the same
time they also rely on our world knowledge about the interaction of objects.

Previously, there has not been a unified model of spatial language. Proposals
include first order logic representations that we find in [30] and [23]. These
only represent the conceptual knowledge but ignore how this knowledge maps
to the environment. On the other hand there are approaches such as [13] and
[21] that completely ignore the conceptual dimension of spatial descriptions and
only consider perceptual parameters such as distances and angles in two or three
dimensional space.

A need for an integrated model of language, action and perception is ex-
pressed most strongly in robotics ([27], [26], [15] and [22]). They are concerned

51

2 Dobnik, Cooper, Larsson

to represent and apply linguistic knowledge in robotic control (of a particular
system) but they are less concerned with developing a general theory of mean-
ing. [11] describes a system where mobile robots situated in a real room learn
the meaning of perceptual descriptions as classifiers which they use to generate
descriptions of new scenes or to answer questions about the scene and perform
actions. In this paper we build on this experience by attempting to re-formulate
it in a theoretical framework known as Type Theory with Records (TTR) [4, 6]
which can represent perceptual, conceptual and discourse constraints that make
up the meaning of words of natural language. This way we take an important
step towards a more cognitive model of robotic perception and control.

2 TTR: a theory of natural language semantics

Types are intensional – that is, there can be distinct types which have identical
extensions. They are semantic categories which are linked to perception. Percep-
tion events are assignments to types. The notion of truth is linked to judgements
that an object a is of type T (a : T).

The theory defines a few basic types such as Ind and Ev which correspond to
basic human conceptual categories such as individuals and events1 but there are
also complex types built from simple types and from other complex types. Most
important among these are record types which are similar to feature structures
which contain label-value pairs. Proof objects of record types are called records.
Here is an example of what a record type Apple might be:

x : Ind
capple : apple(x)

cash : apple-shape(x)

cac : apple-colour(x)

cat : apple-taste(x)

cas : apple-smell(x)

The example introduces types which are constructed from predicates (like
“apple”) and objects which are arguments to these predicates like x. An object
belonging to such p-type (also known as a proof object or a witness) can be
considered to be an event or a situation [9, 1]. It follows that types can be
used as propositions true just in case there is an object of that type. Types
constructed with predicates may be dependent. An argument of a predicate may
be represented by labels (on the left of “:”) elsewhere in the record type. The
type of cash is dependent on x (as is also cac). The letter “c” in labels stands for
constraints.

As demonstrated by this example the type representation combines both con-
ceptual (capple) and perceptual constraints (cash) that must be verified against
records containing individuals in order that such individuals may be judged
as of type Apple. The model brings the semantic theory for natural language
and models of perception and action in robotics close together. The verifica-
tion may be modelled as classification where the classifier is learned through

1 Later this set will be extended with Real and Vector for representing real numbers.

52

Language, action, and perception in TTR 3

machine learning. [17] presents a model of a single-layer perceptron within the
TTR framework. The important consequence of such a combined model is that
natural language semantics does not only involve conceptual or categorial knowl-
edge but also distributional knowledge from perception. This model has, among
other things, advantages in the treatment of intensionality, vagueness and dia-
logue structure [5, 18, 7, 14]. The model also contributes to (artificial) perception
since this gets access to conceptual knowledge represented in language which
recently has been argued to be necessary for a more successful image recognition
[12]. Overall, the TTR brings formal semantics closer to human cognition than
classical model-theoretic approaches.

3 Spatial descriptions

By spatial descriptions we mean two or three place prepositional predicates
that refer to the location of objects usually known as the located object and
the reference object [16] or referent and relatum [23] or figure and ground [28].
Examples are: on(spider,wall) and between(apple,vase,glass). Events may also
be arguments of such predicates as shown by in(eat(George,apple),garden) or
in(put(book),bag). The preceding references provide a survey of semantics of spa-
tial descriptions in English. Its constraints fall under four headings:

1. Scene geometry: the size of the scene and the angles and distances between
objects as represented, for example, in the attentional vector sum model [25];

2. View on the scene: spatial descriptions do not refer to the actual objects
but to their geometric representations which may be points, lines, areas and
volumes. For example:“the crack in the vase” refers to a situation where the
vase is viewed as a surface whereas “the water in the vase” refers to the vase
as a volume enclosed by the object.

3. World knowledge: [8] show experimentally that human participants some-
times ignore geometry and consider descriptions such as “the umbrella is over
a man” acceptable even in situations where the umbrella is held horizontally
but is providing protection from the rain whereas for “above” the geometry
is more important.

4. Perspective: directionals such as to the left of require a contextually defined
perspective – something on may left may be on your right or may be behind
relative to someone else. In our forthcoming work we discuss how perspective
is aligned in conversation.

4 A TTR account of spatial descriptions

In this section we discuss how the constraints (1–3) can be expressed in TTR to
represent the meaning for a robotic agent.

4.1 Objects and geometric spatial representations

In robotics the location of the robot and other objects in its environment is
frequently determined using a method known as SLAM which stands for si-
multaneous localisation and map building [10]. A robot starts in an unknown

53

4 Dobnik, Cooper, Larsson

location and in an unknown environment and uses its relative observations to
build an absolute map of the environment incrementally using probabilistic un-
supervised machine learning. A laser scanner detects distances to points: a set of
beams is emitted and a vector of distances is returned. The observation is made
at a particular time and at a particular location on the estimated global map.
An observation can therefore be represented as a record of the following type:

Observation =

scan : RealVectorn
time : Time
at : Real2
cls : laser-scan(scan)

where RealVectorn is the type of vectors of n real numbers, Time is the type of the
temporal record when the observation is made, Real2 is the type of the location
where the observation is made and there is a constraint specifying a dependency
between the object scan and the p-type laser-scan. The observations from the
sensors of some entity are records which form a probability distribution which
corresponds to the type. These records of perceptual samples are not the actual
objects in the world (if these indeed exist) – in other words one cannot really
access the thing-in-itself.

During the learning stage, the SLAM algorithm, here simplified as a func-
tion f , takes iterative sensor scans of distances to points (scan : RealVectorn)
and constructs an absolute map of the environment consisting of Point objects
(reification). When the map is initialised it contains no points. The value of the
“at” label is a type RealVector2, a vector containing the x and y coordinates of
an individual a on the global absolute map with some random origin.

f : Observation → (PointMap → PointMap)

Point =

a : Ind
at : RealVector2
cpoint : point(a)

cloc : loc(a,at)

 PointMap =

p1 : Point

...
...

pn : Point

Note that the robot is mobile but the points are static. After the learning step
a mobile robot can use the map it has previously built and its current observation
to find out its current location on that map. The function g is applied every time
the robot changes its location.

g: Observation → PointMap →

x : Ind
at : RealVector2
crobot : robot(x)

cloc : loc(x,at)

One could object to our treatment of individuals as points. However, we do
refer to whole objects as if they were points, for example “This point here is
the museum” (pointing at a map) or “The town is at the border” (a point at a
line). Complex objects will be sets of simple point objects. Such cases are also
attested in human cognition as exemplified by the well-known sorites paradox.
In computational approaches to spatial cognition typically a bounding region or

54

Language, action, and perception in TTR 5

a volume is defined which envelopes the object and which is known as convex
hull. We need to specify at least three points for a region and at least four points
for a volume.

f : λr. PointMap (

a : Ind
p1 : r.Point

...
pn : r.Point
creg : region(a)

cinc : includes(a,〈p1,. . . pn〉)
conv-hull : 〈pi, pj, pk〉
chulled : hulled(〈p1,. . . pn〉,conv-hull)

)

Determining the function f which picks out a list of convex points (conv-hull)
and all the points within the region hulled by these points from the point map
is not trivial. It could be learned from sets of annotated maps where objects of
type Point may be enriched with other features such as colour beforehand. The
constraint chulled ensures that all the points from the point map p1. . . pn fall
within the convex region defined by the convex points. Note also that a region
now represents a new a : Ind.

In [11] we use such maps as geometric spatial representations of scenes from
which we learn classifiers for spatial descriptions. This is more suitable for the
task than image data since it gives us very accurate representations of distances
and angles in a scene. The identification of objects is done manually.

Being a semantic theory of natural language TTR provides an account of
events which can be extended to the domain of robotic control. By represent-
ing the semantics of natural language and of robotic control within the same
framework we facilitate the mediation of information between the two and give
robotic control a more cognitive aspect. A system using such representations
could exploit interaction in natural language with humans to learn new more
complex actions from the primitive ones (explanation based learning [20]) or use
knowledge expressed in types to reason about the outcomes of actions before
committing to a particular one (mental simulations used for planning).

Robots are equipped with sensors and they are continuously perceptually
aware. The frequency (sfreq) determines the temporal rate at which an agent
wants to update its knowledge. The constraint csense ensures that the sensing
event is initiated at that frequency. Robot has one sensor which is focused at
some location. The sensor also has a reading. The constraint csloc ensures that
the reading inherits the location at which it is made. Sensing is an event which
involves applying the sfunc function which returns the reading.

s: sense(x,x.sensor1) iff s:

x : Robot
sfunc : RealVector2 → Observation
x.sensor1.reading : sfunc(x.sensor1.focus)

55

6 Dobnik, Cooper, Larsson

Robot =

x : Ind
loc : RealVector2

sensor1 :

y : Ind
focus : RealVector2
reading : Observation
csensor : sensor(y)

csloc : equal(focus,reading.loc)

sfreq : MSeconds
crobot : robot(x)

csense : at(sense(x,x.sensor1),sfreq)

The mapping between the perceptual and conceptual or language domains
can only be learned through experience as a (probabilistic) classifier – it is unclear
otherwise how one would specify a mapping from a continuous numeric domain to
a symbolic domain with a sufficient level of complexity required to model human
spatial cognition.2 Having classifiers which are generalisations of distributional
knowledge also allows us to account for the vagueness of spatial descriptions as
we will discuss later. The mapping from Observation to PointMap in the SLAM
procedure is an example of probabilistic classification. Subsequently, the map-
ping involves increasingly higher conceptual categories rather than individuals as
points. TTR does not distinguish between symbolic and sub-symbolic domains
that are common in the traditional AI approaches. Instead, we refer to low-level
and high level types which contain conceptual or distributional information or
both.

A perceptual classifier for spatial descriptions such as “to the left of” is a
function from a pair of records of type Region to records of type Left. The
mapping is further constrained by a classifier function f which considers some
values of labels on the input types and applies them to classifier knowledge π
which represents a theory of Left in geometric terms. Note also that we store the
convex hulls of objects r.Region1.c-hull and r.Region2.c-hull as these represent
proofs that that spatial relation holds for Region1 and r.Region2.

λr: 〈

a1 : Ind
creg : region(a1)

...
c-hull : : 〈pi, pj, pk〉

,

a2 : Ind
creg : region(a2)

...
c-hull : : 〈pi, pj, pk〉

〉 (Left)

Left =

x1 : r.Region1.a
x2 : r.Region2.a
c-hullr1 : r.Region1.c-hull
c-hullr2 : r.Region2.c-hull
classifier : π

cleft : f(π,c-hullr1,c-hullr2) =

{
left(x1,x2) ∨
¬ left(x1,x2)

2 Spatial templates [21] capture such probabilistic knowledge as they represent for
each cell the degree of applicability of a particular spatial expression.

56

Language, action, and perception in TTR 7

Regions may also be sub-types of other record types: we need to assign them
a name such as “chair” or “table” rather than just “region” using perceptual
classification. Here we assume that this is accomplished only by considering
the shape of the point cloud but typically in object identification and image
recognition a richer sensory information is used.

Region v Chair

Chair =

b : Ind
p1 : Point

...
pn : Point
creg : region(b)

cchair : f(π,〈 p1 . . . pn〉) =

{
chair(b) ∨
¬ chair(b)

The classifier knowledge π represents a model that has been learned through
observing a number of situations containing two regions matched by a linguistic
description “left”. In practical robotic applications any popular machine learning
classifier could be used [31]. In [11] we used a decision tree learning method based
on the ID3 algorithm and the Näıve Bayes method. Recently, the probabilistic
Bayesian methods have become very popular in cognitive science as a model of
human learning and cognitive development [3, 29]. Equally, for natural language
semantics [19] argues that vague predicates like “tall” (and we may add spatial
predicates like “left”) are described by continuous probability functions.

We believe that Näıve Bayes classification demonstrates nicely how compe-
tition between different vague terms is resolved – when does something that is
“tall” become “short” or “left” become “behind”. In order to do that we need to
change our estimates of probabilities slightly: rather than estimating p(left) and
p(¬left) we need to find p(left), p(right), p(behind). . . for all spatial expressions
in our language. The probability of each of these is estimated by the Bayesian
rule.

p(v|a1 . . . ai) =
p(a1, a2 . . . ai|v)p(v)

p(a1, a2 . . . ai)

= p(v)

n∏

i

p(v|ai)
p(ai)

where v is the value (“left”) and a are classification attributes, for example
distances and angles between the objects obtained from their convex hulls. In
practice, it is assumed (näıvely) that the attributes are independent and hence
the equation may be rewritten as in the second line. Crucially, in common Näıve
Bayes classification we accept the maximum likelihood hypothesis (vmap): the v
with the highest p(v|a1 . . . ai) and ignore the other target classes. However, this

57

8 Dobnik, Cooper, Larsson

does not need to be the case. If the difference between two p(v) is small and falls
within some contextually determined interval, one could exploit the probabilistic
knowledge to generate descriptions such as “the chair is to the left of the table
but it’s also behind it”. In other words, the model can account for situations
where more than one spatial description applies.

4.2 Objects as geometric conceptualisations

In a computational model the effect of different geometric conceptualisations
of objects on the semantics of spatial descriptions becomes blatantly obvious.
They are dependent on the sensors employed and the geometric models that can
be constructed from such sensory information as demonstrated above. Different
conceptualisations of objects are represented as different TTR types from which
it follows that spatial relations also have multiple type representations. This is
not only because different object representations feature as sub-types of spa-
tial relations types but also because their classifier knowledge is different as it
abstracts over different attributes: if objects are points, a classifier cannot take
into account their shape and if they are regions, the classifier model ignores their
height. In sum, a description such as “left” corresponds to different types each
representing a different view or take on a situation.

4.3 World knowledge

The world knowledge about objects is expressed in types as propositional con-
tent. A situation denoted by “the umbrella is over the man” involves three indi-
viduals conceptualised as volumes: the umbrella (x1), the man (x2) and the rain
(x3). Note that the latter is not mentioned in the description. x1 and x2 have
to be in a particular geometric arrangement determined by the classifier. There
is an additional constraint that the individuals x3, x2 and x1 are involved in a
situation of type Protects = protects(x1, x2, x3). Since the geometric meaning
constraint cover is determined by a probabilistic classifier, the acceptable devi-
ations of the umbrella from the prototypical vertical upright position and their
gradience are accounted for. Equally, the model predicts that a situation where a
man holds an umbrella in the upright position and therefore the cover constraint
is defined with high probability but the umbrella does not provide protection
from the rain cannot have the denotation of the type Over since the constraint
cprotects is not satisfied.

λr: 〈Vol1, Vol2, Vol3〉:

x1 : r.Vol1.a
x2 : r.Vol2.a
x3 : r.Vol3.a
c-hullx1 : r.Vol1.c-hull
c-hullx2 : r.Vol2.c-hull
classifier : π

cover : f(π,c-hullx1 ,c-hullx2) =

{
over(x1,x2) ∨
¬ over(x1,x2)

cprotects : protects(x3,x2,x1)

58

Language, action, and perception in TTR 9

We assume that the geometric constraints on the type Protects are defined
conceptually but they could also be defined by a perceptual classifier or a com-
bination of both. x1 protects x2 from x3 if (i) we are able to draw a line through
their centroids; (ii) we are able rotate them so that the line connecting their
centroids becomes their positive vertical axis; and (iii) the 2-dimensional pro-
jections of the rotated objects (their xy dimensions or regions) overlap (⊆) in a
particular way. Therefore, the conceptual world knowledge that we bring into the
meaning representations of spatial descriptions may also depends on perceptual
knowledge. Language is deeply embedded in perception. It is a way of expressing
increasingly more complex types from simple perceptual types.

λr: 〈Vol3, Vol2, Vol1〉:

x3 : r.Vol3.a
x2 : r.Vol2.a
x1 : r.Vol1.a
cprotects : protects(x3,x2,x1)

cex1 : centroid(x1)

cex2 : centroid(x2)

cex3 : centroid(x3)

cline : : line(〈cex1 ,cex2 ,cex3〉)
rotx1 : : rotate(x1,x1.z,cline)

rotx2 : : rotate(x2,x2.z,cline)

rotx3 : : rotate(x3,x3.z,cline)

regx1 : : xy project(rotx1)

regx2 : : xy project(rotx2)

regx3 : : xy project(rotx3)

coverlap : (regx3 ⊆ regx2 ⊆ regx1) ∨
(regx1 ⊆ regx2 ⊆ regx3)

An important question to address is how such world knowledge constraints
are acquired in types such as Over. With humans they may be learned by cor-
rective feedback and explicit definition through dialogue interaction (see [7] for
learning ontological conceptual knowledge this way). This opens a possibility of
dynamic types. In a computational framework one might explore domain theory
learning described in [24]. For the remaining discussion we simply assume that
we have a database of predicate assertions of such knowledge.

We discuss in Section 3 how world knowledge plays a greater role in the
meaning representation of “over” than “above”. This is accounted for in a prob-
abilistic model as follows. In Section 4.1 we show that conceptual record types
such as left(x1,x2) and chair(x) are characterised by probabilistic knowledge.
This is expressing a degree of belief that particular records of perceptual types
are associated with a particular record of a conceptual type: or in other words
that particular sensory observations map to a particular individual of the type
Chair. The probabilistic knowledge is acquired by counting the observations
events of records of appropriate type. The constraints that are a part of pred-
icate types such as cprotects in Over provide support for that type in the same
way as perceptual observations do. The application of constraints c1, c2,. . . cn
may be thought of as classification function that classifies for that type.

59

10 Dobnik, Cooper, Larsson

f(π,c1,c2,. . . cn) =

{
Type ∨
¬ Type

The domain of the function are records of the appropriate type and the target
is a type. If we induce from the records that something is of some type then we
can conclude that we have a record of this type. As a classifier the Bayes’ rule
may be applied.

T = {Type,¬Type}

p(tmap) ≡ arg max
t∈T

p(t)
n∏

i

p(ci|t)
p(ci)

For conceptual p-types p(t) and p(c) can be learned by counting the number
of times a record of that type is encountered in our knowledge database over the
total number of predicate assertions there. The arity of the p-type is important
when examining the database but the nature of its arguments is not. The prob-
ability p(c|t) is the number of times a particular p-type c is encountered as a
defining constraint for its super p-type t in our knowledge base over the number

of times that the p-type c is used as a constraint in any type. The p(ci|t)
p(ci)

defines

the support of c for t. Its value will be maximum (1) if c exclusively constrains
t and none of the other types.

For perceptual p-types c the probability of a record belonging to this type is
determined by the application of a probabilistic classifier as previously described.
The probability p(c|t) is determined by observing the number of times a positive
classification (c rather than ¬c) is used as a constraint for its super p-type t over
the number of times c is used as a constraint in any type. Consider the case of
the spatial descriptions “over” and “above”. In the learning stage of the type
Over one may observe assignments to this type where the geometric constraint
is ignored in favour of the conceptual constraint. Consequently, the support of
the geometric constraint ci for t is lower and that of the conceptual constraint cj
is higher. The reverse is the case for the type Above. Therefore, the probabilistic
model correctly predicts the facts observed experimentally.

The preceding discussion shows that (i) perceptual and conceptual knowl-
edge are learned separately from different sources – perceptual from sensory
observations and conceptual from assertions in a knowledge database; and (ii)
the integration events of perceptual with the conceptual knowledge must also be
considered in the learning model as described in the preceding paragraph.

5 Conclusion and future work

In this paper we present a formal semantic model for natural language spatial de-
scriptions in Type Theory with Records which can incorporate perceptual, con-
ceptual and discourse constraints. In particular we discuss perceptual and con-
ceptual constraints. Discourse may constrain the meaning of spatial descriptions
in at least two ways. Firstly, the perceptual classifiers and conceptual knowl-
edge may be updated dynamically as new language and perceptual knowledge is

60

Language, action, and perception in TTR 11

acquired during a discussion of a scene [7, 17]. Secondly, in generating and inter-
preting projective spatial descriptions the conversation participants align their
perspective or reference frame and keep this information as a discourse com-
mon ground [forthcoming]. Both kinds of discourse constraints can be modelled
within the TTR framework.

We are also intending to implement our model computationally in a robotic
agent. Here we foresee the following challenges: (i) how can we ensure the same
kind of compositionality of perceptual meaning that we get with conceptual
meaning; (ii) how do we learn the right kind of world knowledge relevant for a
particular spatial description; and (iii) how does such world knowledge link to
perception given that it has been learned from assertions and has never been
experienced through sensory observations. To address the second issue we are
exploring two strategies: (a) mining the knowledge about objects that occur
with a particular spatial description from a large text corpora, and (b) using a
variant of explanation based learning in an inquisitive dialogue agent that learns
the conceptual constraints from a conversation with a human dialogue partner.

Acknowledgements This research was supported in part by the Semantic analysis
of interaction and coordination in dialogue (SAICD) project, Vetenskapsr̊adet,
2009-1569, 2010–2012.

References

1. Barwise, J.: The situation in logic. CSLI Publications, Stanford (1989)
2. Blackburn, P., Bos, J.: Representation and inference for natural language. A first

course in computational semantics. CSLI (2005)
3. Clark, A., Lappin, S.: Linguistic nativism and the poverty of the stimulus. Wiley-

Blackwell, Chichester, West Sussex (2011)
4. Cooper, R.: Austinian truth, attitudes and type theory. Research on Language and

Computation 3, 333–362 (2005)
5. Cooper, R.: Records and record types in semantic theory. Journal of Logic and

Computation 15(2), 99–112 (2005)
6. Cooper, R.: Type theory and semantics in flux. In: Kempson, R., Asher, N., Fer-

nando, T. (eds.) Handbook of the Philosophy of Science, General editors: Dov M
Gabbay, Paul Thagard and John Woods, vol. 14. Elsevier BV (2012)

7. Cooper, R., Larsson, S.: Compositional and ontological semantics in learning from
corrective feedback and explicit definition. Proceedings of DiaHolmia 2009 Work-
shop on the Semantics and Pragmatics of Dialogue Stockholm Sweden pp. 59–66
(2009)

8. Coventry, K.R., Prat-Sala, M., Richards, L.: The interplay between geometry and
function in the apprehension of Over, Under, Above and Below. Journal of memory
and language 44(3), 376–398 (2001)

9. Davidson, D.: The logical form of action sentences. In: Rescher, N., Anderson, A.R.
(eds.) The logic of decision and action. University of Pittsburgh Press, Pittsburgh
(1967)

10. Dissanayake, M.W.M.G., Newman, P.M., Durrant-Whyte, H.F., Clark, S., Csorba,
M.: A solution to the simultaneous localization and map building (SLAM) problem.
IEEE Transactions on Robotic and Automation 17(3), 229–241 (2001)

11. Dobnik, S.: Teaching mobile robots to use spatial words. Ph.D. thesis, University of
Oxford: Faculty of Linguistics, Philology and Phonetics and The Queen’s College
(September 2009)

61

12 Dobnik, Cooper, Larsson

12. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their at-
tributes. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition pp. 1778–1785 (2009)

13. Gapp, K.P.: Basic meanings of spatial relations: Computation and evaluation
in 3d space. In: Hayes-Roth, B., Korf, R.E. (eds.) AAAI. pp. 1393–1398. AAAI
Press/The MIT Press (1994)

14. Ginzburg, J.: The interactive stance: meaning for conversation. Oxford University
Press, Oxford (2012)

15. Guerra-Filho, G., Aloimonos, Y.: A language for human action. Computer 40(5),
42 –51 (may 2007)

16. Herskovits, A.: Language and spatial cognition: an interdisciplinary study of the
prepositions in English. Cambridge University Press, Cambridge (1986)

17. Larsson, S.: The TTR perceptron: Dynamic perceptual meanings and semantic
coordination. In: Artstein, R., Core, M., DeVault, D., Georgila, K., Kaiser, E.,
Stent, A. (eds.) SemDial 2011 (Los Angelogue): Proceedings of the 15th Workshop
on the Semantics and Pragmatics of Dialogue. pp. 140–148. Los Angeles, California
(September 21—23 2011)

18. Larsson, S., Cooper, R.: Towards a formal view of corrective feedback. In: Alishahi,
A., Poibeau, T., Villavicencio, A. (eds.) Proceedings of the Workshop on Cognitive
Aspects of Computational Language Acquisition. pp. 1–9. EACL (2009)

19. Lassiter, D.: Vagueness as probabilistic linguistic knowledge. In: Proc. of the
international conference on vagueness in communication (ViC’09). pp. 127–150.
Springer-Verlag, Berlin, Heidelberg (2011)

20. Lauria, S., Bugmann, G., Kyriacou, T., Bos, J., Klein, E.: Training personal robots
using natural language instruction. IEEE Intelligent Systems 16, 38–45 (Septem-
ber/October 2001)

21. Logan, G.D., Sadler, D.D.: A computational analysis of the apprehension of spatial
relations. In: Bloom, P., Peterson, M.A., Nadel, L., Garrett, M.F. (eds.) Language
and Space, pp. 493–530. MIT Press, Cambridge, MA (1996)

22. Matuszek, C., Herbst, E., Zettlemoyer, L., Fox, D.: Learning to parse natural lan-
guage commands to a robot control system. In: Proc. of the 13th International
Symposium on Experimental Robotics (ISER) (June 2012)

23. Miller, G.A., Johnson-Laird, P.N.: Language and perception. Cambridge University
Press, Cambridge (1976)

24. Pulman, S.G., Liakata, M.: Learning domain theories. In: Nicolov, N., Bontcheva,
K., Angelova, G., Mitkov, R. (eds.) RANLP. Current Issues in Linguistic Theory
(CILT), vol. 260, pp. 29–44. John Benjamins, Amsterdam/Philadelphia (2003)

25. Regier, T., Carlson, L.A.: Grounding spatial language in perception: an empirical
and computational investigation. Journal of Experimental Psychology: General
130(2), 273–298 (2001)

26. Roy, D.: Semiotic schemas: a framework for grounding language in action and
perception. Artificial Intelligence 167(1–2), 170–205 (September 2005)

27. Siskind, J.M.: Grounding the lexical semantics of verbs in visual perception using
force dynamics and event logic. Journal of Artificial Intelligence Research 15, 31–90
(2001)

28. Talmy, L.: Toward a cognitive semantics: concept structuring systems, vol. 1 and
2. MIT Press, Cambridge, Massachusetts (2000)

29. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind:
Statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011)

30. Winograd, T.: Understanding Natural Language. Edinburgh University Press
(1976)

31. Witten, I.H., Frank, E., Hall, M.A.: Data mining: practical machine learning tools
and techniques. Morgan Kaufmann, Burlington, MA, 3rd edn. (2011)

62

Ontology driven contextual reference resolution

in Embodied Construction Grammar

Jesús Oliva1, Jerome Feldman2, Luca Gilardi2, and Ellen Dodge2

1 Bioengineering Group. Spanish National Research Council - CSIC. Carretera de
Campo Real, km. 0,200. La Poveda CP: 28500. Madrid, Spain. jesus.oliva@csic.es
2 International Computer Science Institute. 1947 Center Street Suite 600, Berkeley,

CA 94704

Abstract. Constraint satisfaction has been central to the ICSI/UC
Berkeley Neural Theory of Language (NTL) project, but this aspect has
not previously been emphasized. In this paper we focus on a shallow
reference resolution method that extends the Embodied Construction
Grammar formalism (ECG). The approach is based on the combination
of the recency principle with syntactic and semantic compatibility be-
tween the anaphora and the referent. The key to our method is the use of
the ECG formalism: schemas, constructions and ontological knowledge.
Within this framework we propose a method that, like humans, does not
need very complex inferences in order to solve the basic reference reso-
lution task. The method has been implemented and tested as part of a
system capable of understanding Solitaire card-game instructions, with
promising results.

1 Introduction

From a sufficiently general perspective, Constraint Satisfaction (CS) can be seen
as one of the most fundamental processes in nature. A compact version of this
story is depicted in Figure 1. and will be discussed further in the oral pre-
sentation. Most relevant here is the fact that language understanding, like all
perception, involves constrained best-fit of the input to the context and goals of
the perceiver. This has been understood for some time [1] and plays a central
role in the analysis module of the ECG system for semantically driven natural
language understanding, shown in Figure 2. The language input to the system is
analyzed using the best-fit analyzer to produce a semantic representation called
the SemSpec (see details below). Then, the Specializer tries to extract the task-
relevant meaning from that structure and passes this information as N-tuples to
the Application side.

One powerful example of best-fit CS in language understanding arises in
languages, such as Mandarin, where almost any word can be omitted from an
utterance if it is available form context. Partially to handle such situations, [2]
built a Bayesian best-fit Discourse Analyzer (middle left of Figure 2) that can
determine the best semantic analysis, even for quite sparse input, like the Man-
darin equivalent of “give Auntie”. The best-fit process combines three posterior

63

probability scores. The first is close to a conventional stochastic SFG. The second
score is an estimate of the (deep) semantic compatibility of fillers for various con-
structional roles and the third score estimates the goodness of fit for contextual
elements not explicitly mentioned.

Fig. 1. The ubiquity of Constrained Best Fit

More generally, language understanding is highly context dependent. In par-
ticular, anaphors are constantly used in order to avoid unnecessary repetitions
of particular words or structures. The meaning of many elements of each sen-
tence and, by extension, the meaning of each sentence, depends on the meaning
of previous utterances. Examples of this are pronouns (like he) or definite noun
phrases (like the boy). The reference resolution task consists of linking these se-
mantically undefined structures (the anaphor) to an entity previously found in
the discourse (the antecedent) to which they refer. Therefore, reference resolu-
tion methods constitute a very important part of any language understanding
system. That importance has attracted a lot of researchers from the beginnings
of the field of natural language processing to the last years. However, perfect
performance is still out of reach.

Many approaches have been tried for reference resolution3. Knowledge-based
systems (from the first reference resolution methods [4, 5] to some recent ap-
proaches [6]), were the first approach but not the only one since they are very
complex systems, difficult to build, and they lacked robustness. Heuristic sys-
tems [7, 8] tried to solve those problems using well designed heuristics to avoid
the complexity of previous systems. Finally, machine learning systems reformu-

3 See [3] for an introduction

64

lated the reference resolution task as a binary classification problem. An early
approach of this kind was presented by [9] and was followed by many other
researchers introducing variations on that former algorithm [10–12].

Despite this great amount of work, näıve reference resolution methods [5,
8] still have very good performance. These methods are based on selecting the
most recent antecedent that is grammatically compatible with the anaphora.
Our method is also based on combining anaphora referent compatibility with
the recency principle (humans tend to select antecedent candidates attending to
their recency in discourse [7]). However, we use a different kind of compatibility
not restricted to grammatical features. We introduce some semantic features
(such as the functionalities of the concepts referred to by the anaphora and the
antecedent) in order to improve the performance of the method.

All this work is done using the framework of Embodied Construction Gram-
mar (ECG) [1]. ECG is a formalism for representing linguistic knowledge in
the form of construction-based grammars. This formalism allows us to transfer
much of the work load of the reference resolution method to the design of the
grammar and the ontology. The use of those structures extends the probabilistic
best-fit analyzer implemented for ECG [2, 13]. In particular, the reference resolu-
tion method presented in this paper has been developed as a part of an ongoing
project of the Neural Theory of Language (NTL) project with the objective of
implementing a system that can follow instructions and synthesize actions and
procedures in natural language. The two initial task domains are artificial agents
in simulated robotics and card games. Specifically, for the card games domain,
the goal is to develop a system that is able to understand published Solitaire
game descriptions in order to play the game. Within this framework we im-
plemented a resolution method that, like humans, does not need very complex
inferences in order to solve the reference resolution task.

The structure of the paper is the following: section 2 gives a brief introduction
to the Embodied Construction Grammar formalism. Sections 3 and 4 present the
core components of our method: the ontology and the grammar. Finally, section
5 explains the reference resolution method with some explanatory examples and
section 6 points the general conclusions and some future work.

2 Embodied Construction Grammar

Embodied Construction Grammar is a formalism for representing linguistic
knowledge in the form of construction-based grammars that supports models
of language understanding (see [14] or the Neural Theory of Language wiki
(http:\\ecgweb.pbworks.com) for a more extensive review of ECG). ECG is
the result of large efforts of the NTL group to give rise to a formalism based
on many insights from cognitive sciences and construction-based theories of lan-
guage and covers many empirical findings from linguistics, psychology and com-
putational sciences.

There are two main components of construction grammars: schemas and con-
structions. Schemas are the basic unit of meaning while constructions represent

65

Fig. 2. Global system architecture

mappings between form and meaning. Schemas are formed by a list of com-
ponents (roles) and the different constraints and bindings between these roles.
Constructions have different constituents, and represent the form-meaning pair-
ing with the correspondent bindings between the different constituents and the
roles of their meaning schemas. Finally, schemas and constructions are not de-
fined in isolation. They are hierarchically structured by is-a relations, supporting
inheritance semantics along with multiple inheritance.

Figure 3 shows an example of ECG constructions and schemas. The ActiveD-
itransitive construction has three constituents, which are a two NPs and a Verb,
v, (inherited from the ArgumentStructure construction by the subcase relation).
The form block shows the ordering constraints among the constituents of the
construction. In our case, it states that the constituent v must appear in the
sentence before np1, and np1 before np2. The meaning of this construction is an
ObjectTransfer, which is a subcase of ComplexProcess and has the roles shown
on the right in figure 3. Constructions include a constraints block that imposes
some bindings between the different constituents of the construction and the
roles in its meaning schema. In this case, the giver is the profiled participant of
the event and the getter and the theme are identified with the meaning of the
first noun phrase (np1) and the second noun phrase (np2) respectively.

In addition to schemas and constructions, the ECG formalism makes use of an
ontology that comprises general knowledge about the particular entities present
in the discourse. As usual, the ontology is also hierarchically structured allowing
inheritance between its elements. In our approach, we expand the typical entity-
based ontology with a lattice of functional features that are domain dependent.
We discuss the ontology used in the following section.

66

ActiveDitransitive

subcase of ArgumentStructure

constructional

ObjectTransfer

v.f before np1.f

np1.f before np2.f

constituents
np1 : NP
np2 : NP

form
constraints

self.m.giver ed.profiledParticipant

self.m.getter np1.m

self.m.theme np2.m

meaning: ObjectTransfer
constraints

subcase of ComplexProcess

roles
process1: ReleaseHold

protagonist giver

protagonist2 getter

process1.actedUpon theme

process2.actedUpon theme

constraints

process2: EstablishHold

giver

getter

theme

x-net: @objecttransfer

Fig. 3. Example of ECG constructions and schemas.

Using these structures, the Analyzer program [2, 13] produces a deep semantic
representation (SemSpec) of the given sentences. The ECG analyzer uses the
best-fit score, a metric using a combination of syntactic and semantic factors
in order to produce the SemSpecs. Semantic specifications are networks formed
by the bindings and unifications of the ontology items and schemas found in
the meaning poles of the recognized constructions. The SemSpec captures the
semantic and pragmatic information present on the input. SemSpecs are used
in the simulation process in the ECG framework (cf. Figure 2). This simulation
process is modeled by the x-nets (executing networks) which model events and
its aspectual structure [15].

Some previous work has been done on reference resolution within the ECG
formalism. For example, [16, 17] present a structured, dynamic context model
incorporated in an ECG system for modeling child language learning. This con-
text model is represented using ECG schemas in order to exploit the best-fit
mechanisms of the analyzer. Basically, the majority of the workload of the ref-
erence resolution method is done by the analyzer using grammatical features
(such as number, gender or case) and the ontological categories (when known)
of the referent and the anaphora. The resolution process finds the possible an-
tecedents that match the constraints imposed by the referent. This is a very
shallow reference resolution mechanism (see [18] for a more complex best-fit
reference resolution method) with some drawbacks and limitations such as the
number of possible anaphors and antecedents considered by the method and the
limited set of features.

3 Functional and entity ontology lattices

As stated in the introduction, the ontology and the grammar itself are the two
core elements of the reference resolution method presented here. Any ontology
comprises, in a hierarchical structure, general knowledge about entities and con-
cepts present in the discourse. Our approach expands this general knowledge
about entities and concepts by taking into account the functional properties of

67

those concepts. These properties can be domain dependent since the functional-
ities of each entity can differ depending on the domain they are used. For exam-
ple, a column has different functionalities in architecture than in solitaire games.
Therefore, the ontology has two main functions. It captures general knowledge
about entities, concepts, and their functions and also it stores other facts related
to the different senses of each of its elements depending on the particular do-
main, e.g. differentiating between a solitaire game column and an architectural
column. The ontology is used by the grammar in order to constrain the roles in
meaning schemas of the recognized constructions, reducing the possible schemas
and helping the analysis process.

Functional lattice Entity lattice

Function

moveablecontainer

moveable-solcontainer-sol

Entity

card

column-solking-sol tableau-solace-sol

Solitaire domain

Fig. 4. Fragment of the entity and functional ontology lattices

The ontology used by our system is structured by two connected inheritance
lattices (see figure 4):

– Entity lattice: entities are structured hierarchically using the typical is-a
relations in order to specify the categories to which each of its elements
belongs to.

– Functional lattice: this lattice of the ontology is a hierarchical structure of
functions and properties of the elements in the entity lattice.

The two lattices are connected. A link between a concept in the entity lattice
and a function in the functional lattice represent that the entity involved has
the corresponding function. Moreover, all the relations intra- and inter-lattice
support the usual inheritance semantics including multiple inheritance.

The third element of the ontology is the domain-specific information. This
information is needed to distinguish the different senses of each word. For exam-
ple, a column in the solitaire domain has the function of container. However, a
column in an architectural domain does not have that function. And the same
is applicable to the functional lattice: the container or movable functions can
have different interpretations depending on the domain. So the different senses
of each word have to be related to a specific domain (in figure 4, for example,

68

colum-sol inherits from container-sol which in turn, inherits directly from the
solitaire domain).

4 Schemas, constructions and ontological constraints

As stated in the introduction, we avoid a very complex reference resolution
algorithm using a proper design of the grammar constructions and schemas and
constraining some roles to the functional categories described in the previous
section.

Solitaire instructions usually describe card movements. In other words, typ-
ical sentences involve a trajector (a card, or rather, any movable entity) and a
landmark (a position in the tableau, or rather, any container). See, for example,
sentences like: “move aces to foundation spaces”, “put cards on the waste” or
“fill tableau spaces with kings”. Given that all these sentences have the meaning
of moving something movable to a container, we used a schema called Update-
sol to express their meanings. That schema imposes that the landmark should
have the ontological feature of being a container-sol and the trajector should be
movable-sol. It is important to note that the Update-sol schema constrains those
roles to functional categories and not to entity categories. In a simple solitaire
game, we could think that only cards can be moved so we could constrain the
trajector role to the card ontological category. However, in general, we can move
many other things such as groups of cards, columns or piles. Thus, the roles
should not be constrained to concrete entities but to functional categories.

In order to correctly analyze the instruction sentences, different argument
structure constructions were built. All of them have in common that they have
the Update-sol schema as their meaning pole. Each of the constituents of those
argument structure constructions is bound to the corresponding role of the
Update-sol schema. Therefore, the constituents inherit the functional constraints
imposed by the Update-sol schema. This point is of crucial importance in the ref-
erence resolution method proposed here. The problem with many näıve methods
is that they only look for compatibility of grammatical features and of ontolog-
ical categories. However, there exist some undefined anaphors that do not have
an ontological category (see, for example, pronouns like it). The ECG formal-
ism allows us to define the functional categories of all the elements in a given
argument structure. This way, although we can not state the entity-ontological
category of pronouns, we can know their functional categories (i.e. we can know
whether it should be a container or should be movable in this context). As we
will see below, this distinction is of great importance in our reference resolution
method.

Figure 5 shows one of the constructions used in the analysis of the sentence:
“Fill tableau spaces with kings”. The Update-sol schema transmits the func-
tional constraints to the constituents of the argument structure. This way, we
impose that the patient constituent of a Fill-with argument structure has to be
a container and that the adverbial phrase has to be movable.

69

Fig. 5. Fragment of the constructions used to analyze sentences like: “Fill tableau
spaces with kings”.

5 Ontology driven reference resolution

Reference resolution is driven by a variety of constraints. Much work has been
done on how best to combine those constraints in many sophisticated ways.
However, we will focus only in two specific constraints. Syntactic constraints like
agreement compatibility (i.e. number, gender or case compatibility) and semantic
constraints like functional compatibility. Given the constructions and ontological
structures presented in the two previous sections, our reference resolution process
is quite simple. We exploited the probabilistic features of the best-fit analysis
included in the ECG framework to restrict possibilities and based our method
on the search of possible anaphors and antecedents and the comparison of their
syntactic and semantic features.

As stated before, the analyzer builds a semantic specification as the mean-
ing representation of the given sentence. A semantic specification is basically a
network of the constructions that fit the structure of the analyzed sentence and
the schemas and ontology items that fill the meaning poles of those construc-
tions. Given the semantic specifications of the analyzed sentences, the resolution
algorithm is straightforward. Our algorithm is based on syntactic and semantic
compatibility between the anaphora and the antecedent and the recency prin-
ciple. For each anaphor, it selects the most recent antecedent that shares its
syntactic features (basically agreement features such as number, gender or case)
and its semantic features (the functional roles) with the anaphor.

The resolution module goes through the semantic specifications and keeps
track of the possible antecedents it finds. Possible antecedents could be: proper
nouns or noun phrases in general. A list of the possible antecedents and their
syntactic and semantic features is stored in inverse order (so the first element is
the most recent antecedent). Once the module finds a possible anaphor (which
is usually a pronoun or a noun phrase like “those cards”), it tries to resolve it.
Given an anaphor, it goes through the list of possible antecedents and tries to find

70

one with the same syntactic features (number, gender) and the same functional
category. The method returns the first antecedent candidate that matches. In
other words, it chooses the most recent antecedent which shares the grammatical
features and functional categories with the anaphora.

It is important to note that a given noun phrase could be, at the same time
an anaphor and an antecedent. For example, in these sentences:

a) Kings can be moved to an empty space.
b) Those cards can also be moved to a foundation space.
c) Moreover, they can be moved to another column.

The noun phrase “those cards” in sentence b) is an anaphor for “Kings”
and the antecedent of “they” in sentence c). Therefore, when our method find a
noun phrase, it applies the two mechanisms: store the noun phrase as a possible
antecedent and, if it is anaphoric, try to resolve it with the previous possible
antecedents. This way, our method would find that “kings” is the antecedent
of “those cards” and “those cards” is the antecedent of “they”. Therefore, our
method also establishes a link between “they” and “Kings” to capture the rule
that “Kings” can be moved to another column.

In order to gain a better understanding of how our method works, we will
walk through an example. Suppose that the following two sentences are found
in a solitaire game description.

– Move the top card of a column to the top of another column.
– Move it to a foundation pile.

As mentioned in the previous section, move, imposes that its trajector must
have the functional category of being movable. In ’constructional’ terms, the
move construction binds its trajector role with the functional category movable-
sol. When the resolution binding is made, the pronoun it, which has no onto-
logical category by default, takes the movable-sol category through unification.
Then, the system goes through the list of possible antecedents comparing the
morphological and functional features. The first element would be column, whose
morphological features match up with the ones of the pronoun it (in this case,
we just have to compare the grammatical number of the anaphora and the an-
tecedent). However, their functional categories do not match since column has
the container-sol functional category. Thus, the system continues to the next
possible antecedent in the list, which is “the top card of a column”. In this case,
the morphological and functional categories are the same so the system estab-
lish that it refers to “the top card of a column”. It is important to note that
the inclusion of the semantic constraints in the reference resolution algorithm is
crucial. A simple reference resolution method based only on the recency princi-
ple and syntactic compatibility would say that “column” is the antecedent for
“it” in our example. However, the ECG formalism, allows us to require that “it”
should be something movable and therefore, can not be linked to “column”.

As stated before, this simple reference resolution method has been tested on
a small solitaire domain with remarkably good performance. Obviously, it could

71

be improved in many ways but the use of deep semantics and domain-specific
functional categories appears to a generally powerful tool in reference resolution.
Current work is focused on more general semantic constraints such as affordances
and materials.

6 Conclusions and future work

In this paper we present a reference resolution mechanism in the framework of
ECG and its application to the understanding of card games instructions. The
method exploits the features of the ECG formalism and the best-fit analyzer
in order to avoid very complicated reference resolution approaches. Within this
framework we built a method that, like humans, does not need very complex in-
ferences in order to solve the basic reference resolution task. The method is based
on the recency principle and grammatical and conceptual compatibility between
the anaphor and the referent. In order to check the compatibility, we used agree-
ment features (such as number, gender or case) and we also introduced some
semantic features (such as the different functionalities of the concepts referred
by the anaphor and the antecedent) in order to improve the performance of the
method. All this work gave rise to a very efficient and also accurate method that
has been tested as a part of a prototype system that tries to understand any
solitaire game description well enough to play the game.

These results, along with earlier ECG uses of constraint satisfaction meth-
ods, are promising as part of systems for language understanding based on deep,
embodied semantics. Current efforts are focused on natural language instruction
of robots and on general metaphor understanding. Referring back to Figure 2,
the reference resolution techniques described above are part of the Specializer,
shown in lower left of the Figure. For any Application, the role of the Specializer
is to convert the general semantic analysis given as the SemSpec into task specific
N-tuples that convey the information needed by the Application. This obviously
includes determining any references resolvable by discourse and situational con-
text, as discussed in this paper. Unfortunately, the Specializer itself is the one
module of the system that we have not been able to specify non-procedurally and
we view this as a major open problem for the constraint satisfaction approach.

Acknowledgments

This work was partly funded by a JAE Predoctoral Fellowship from CSIC
(Spain). We are thankful to the International Computer Science Institute (Uni-
versity of California at Berkeley) and, in particular, to the people on the Neural
Theory of Language project.

72

7 References

References

1. Feldman, J.: From Molecule to Metaphor: A Neural Theory of Language. MIT
Press (2006)

2. Bryant, J.: Best-Fit constructional analysis. PhD thesis, UC Berkeley, Berkeley,CA
(2008)

3. Kehler, A.: Coherence, reference and the theory of grammar. CSLI Publications,
Stanford, CA (2002)

4. Hobbs, J.: Pronoun resolution. Technical report, CUNY (1976)
5. Hobbs, J.: Resolving pronoun references. Lingua 44 (1978) 311–338
6. Asher, N., Lascarides, A.: Logics of conversation. Cambridge University Press,

Cambridge, UK (2003)
7. Lappin, S., Leass, H.: An algorithm for pronominal anaphora resolution. Compu-

tational Linguistics 4(20) (1994) 535–561
8. Mitkov, R.: Robust pronoun resolution with limited knowledge. In: Proc.

COLIN/ACL’98. (1998) 869–875
9. Soon, W., Ng, H., Lim, D.: A machine learning approach to coreference resolution

of noun phrases. Computational Linguistics 4(45) (2001) 521 – 544
10. Ponzetto, S., Strube, M.: Exploiting semantic role labeling, wordnet and wikipedia

for coreference resolution. In: Proceedings of the HLT 2006, New York City (2006)
192 – 199

11. Ng, V., Cardie, C.: Improving machine learning approaches to coreference resolu-
tion. In: Proceedings of the 40th Annual Meeting of the Association for Compu-
tational Linguistics. (2002) 104 – 111

12. Ng, V.: Semantic class induction and coreference resolution. In: Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics (ACL-07).
(2007)

13. Bryant, J., Gilardi, L.: A cognitive model of sentence interpretation. In HC, B.,
ed.: Computational approaches to embodied construction grammar, San Diego,
John Benjamins (2011)

14. Feldman, J., Dodge, E., Bryant, J.: Embodied construction grammar. In Heine B,
N.H., ed.: The Oxford handbook of linguistic analysis, Oxford, Oxford University
Press (2009) 111 – 138

15. Narayanan, S.: KARMA: Knowledge-based action representations for metaphor
and aspect. PhD thesis, UC Berkeley, Berkeley, CA (1997)

16. Chang, N., Mok, E.: A structured context model for grammar learning. In: Proceed-
ings of the 2006 International Joint Conference on Neural Networks, Vancouver,
BC (2006)

17. Mok, E.: Contextual bootstrapping for grammar learning. PhD thesis, UC Berke-
ley, Berkeley,CA (2009)

18. Poon, H., Domingos, P.: Joint unsupervised coreference resolution with markov
logic. In: Proceedings of the 2008 conference on empirical methods in natural
language processing (EMNLP), Honolulu, Hawaii (2008) 650–659

73

Resolving relative time expressions in
Dutch text with Constraint Handling Rules

Matje van de Camp1 and Henning Christiansen2

1 Tilburg Centre for Cognition and Communication
Tilburg University, The Netherlands

E-mail: M.M.v.d.Camp@uvt.nl
2 Research group PLIS: Programming, Logic and Intelligent Systems

Department of Communication, Business and Information Technologies
Roskilde University, Denmark

E-mail: henning@ruc.dk

Abstract. It is demonstrated how Constraint Handling Rules can be
applied for resolution of indirect and relative time expressions in text
as part of a shallow analysis, following a specialized tagging phase. A
method is currently under development, optimized for a particular cor-
pus of historical biographies related to the development of the Dutch
social movement between 1870 and 1940. It appears that CHR provides
a modular language which is well-suited for tailoring a method optimized
for the different linguistic constructs and the textual conventions applied
in a specific corpus. We explain the principles and illustrate by sample
rules. The project is currently in a phase of development and testing,
and this paper focuses on the methodological issues, while a detailed
evaluation is not relevant at present. Identified problems and possible
extensions are discussed.

1 Introduction

Information regarding the social networks that underlie our society’s history can
provide new insights into known data for social historical research. Automatically
extracting such a network from text involves finding and identifying the real
world entities that are described in the text, such as persons, organizations,
and locations. In order to connect the entity mentions to a timeline so that the
evolution of the network can be examined, time expressions need to be detected,
normalized, and put in their chronological order.

In this research, we study the problem of resolving the chronological ordering
of time expressions found in a collection of biographies. Solving this task will
facilitate the identification of events and relationships that involve two or more
entities, including the time when the events took place and how long they lasted.
Another point of interest is the positioning in time of general events and states
of affairs.

In (historical) biographical texts, time may be indicated explicitly (“June
12, 1876”,“in 1903”) or in a variety of indirect ways (“on that day”,“May of

74

that year”), depending on the writing style of the author and the availability
of specific information. We are especially interested in resolving implicit time
expressions and representing them as (perhaps imprecise) knowledge.

We use constraint solving techniques for this task, but instead of using a
fixed constraint solver (e.g., a traditional finite domain solver) we use the lan-
guage of Constraint Handling Rules (CHR). With this, we can write a constraint
solver that incorporates linguistic knowledge and heuristics, including syntactic,
semantic and pragmatic information extracted from the text.

Section 2 gives a short account on related work. Section 3 provides back-
ground on the chosen corpus and explains the goals for the analysis. Section 4
gives a gentle introduction to CHR and its application to language analysis. The
preprocessing is briefly described in Section 5, and Section 6 explains some of the
CHR rules that we have designed for time expressions. Considerations on tests
and the current state of the implementation are given in Section 7, and finally
we give some conclusions and indicate possible improvements of this technique.

2 Related work

Most standard methods for extraction of temporal information from text rely
on machine learning, as exemplified by [1, 2]; see also [3] for an overview and
more references. In our approach, we use a rule-based and transparent approach
to tailor an extraction method optimized for a particular corpus in order to
complete the suggestions produced by a rule-based tagger as the one explained
in Section 5.

Applications of CHR for language processing have been demonstrated by
different authors for a variety of tasks, such as parsing from Property Gram-
mars [4], building UML diagram from use case text [5, 6], analyzing biological
sequences [7, 8] and Chinese Word Segmentation [9]. The technique of using CHR
for bottom up parsing is investigated in depth in [10] that also suggests a pow-
erful notation of CHR Grammars on top of CHR; this notation was not used
for the present work as CHR Grammars index only by positions in the text,
whereas we apply an indexing that distinguishes between individual documents,
paragraphs and sentences as well.

Temporal logic has been implemented in CHR [11] but we find that this, as
well as other fully fledged calculi or logics concerning time, is far more general
and computationally complex than we need here. A generic language processing
system using typed feature structures implemented in CHR is described by [12]
that demonstrates the use of event calculus for handling time. Instead, we have
developed a constraint solver that reflects the particular linguistic constructions
concerning time within our chosen corpus and their inherent, varying degrees of
imprecision. The problem here does not seem not to be to reason about time, but
to reason about context and discourse in natural language text, and here CHR
provides a relevant tool [13]. We have not seen earlier work on CHR applied for
extracting temporal information from text in a similar way.

75

3 The case study: Historical biographies in Dutch

The data used in this study is a collection of biographies, in Dutch, detailing
the lives of the 575 most notable actors related to the rise of socialism in the
Netherlands (± 1870–1940). The biographies describe a coherent group of people
and organizations, with many connections between them.

The data set is provided to us by the International Institute of Social History
(IISH) in Amsterdam.3 IISH hosts the biographies online.4 The documents are
presented as separate pages, accessible either through an alphabetized index
of person names, or via keyword search using simple Boolean operators. Links
between documents are minimal: only the first mention of a person who also has
a biography in the collection links to that biography, other entities are not linked.
The biographies are accompanied by a database that holds personal information
regarding the 575 main characters. It includes their first names, surname, dates
of birth and death, and a short description. These details are used to generate
the index on the website.

The overall goal is to enhance the biographies in such a way, that new entry
points are created into the data, connecting all relevant pieces, and allowing for
more serendipitous research to be performed on the data set. We believe that
by interpreting the entity mentions as a co-occurrence network, which includes
entities of types organization and location, and attaching it to a timeline, new
perspectives are opened up that are not necessarily person-centric, as is the case
now.

Part of the overall task is to identify how certain phenomena are related to
time, e.g., particular events that are related to a specific date or entity attributes
that hold for some period of time. The data contains time expressions of various
types and formats. We restrict ourselves to resolving dates and intervals span-
ning days, months, or years. Time expressions with a finer granularity are not
considered.

Globally, two types of temporal expressions are found in the biographies:
specific dates, where day, month, and year are all known, and non-specific dates,
where at least one of the attributes is unknown. Besides the distinction between
specific and non-specific, another form of ambiguity exists in the expression of
time in text. Dates can be given explicitly, as for instance “14 November 1879”,
or implicitly, as “14 November of that year” or even “on that day”. In the latter
case, the time expression can only be resolved in reference to one or more (non-)
specific dates mentioned elsewhere in the text. Also, for each instance, we need
to determine if it concerns a reference to a single point in time, or if it denotes
the start or end of (or even some point during) an interval.

Ultimately, we aim to represent all explicit and implicit references to specific
and non-specific dates or pairs thereof as points and intervals anchored to the
timeline underlying all biographies, where we leave room for imprecisely defined
dates.

3 http://www.iisg.nl/
4 http://www.iisg.nl/bwsa/

76

4 Constraint Handling Rules and text analysis

Constraint Handling Rules [14, 11], for short CHR, is an extension to Prolog that
introduces bottom-up, forward chaining computations. Operationally, CHR is
defined as rewriting rules over a constraint store, which can be seen as a global
resource to be used by a Prolog program for storing, manipulating and consulting
different hypotheses.

CHR inherits the basic nomenclature and syntactic conventions of Prolog
such as variables written with capital letters and terms as a generic representa-
tion. The constraints of CHR can be called from Prolog programs and whenever
a constraint is called, it is added to the constraint store, and the CHR rules sup-
plied by the programmer apply as long as possible. CHR provides the following
sorts of rules.

Simplification rules: c1, . . . , cn <=> Guard | cn+1, . . . , cm

Propagation rules: c1, . . . , cn ==> Guard | cn+1, . . . , cm

The c’s are atoms that represent constraints, possibly including variables. What
is to the left of the arrow symbols is called the head, and what is to the right of
the guard the body.

A simplification rule works by replacing in the constraint store, a possible set
of constraints that matches the pattern given by c1, . . . cn, with the constraints
given by cn+1, . . . , cm, however, only if the condition given by Guard holds. A
propagation rule executes in a similar way, but it does not remove the head con-
straints from the store. The declarative semantics is hinted by the applied arrow
symbols (bi-implication, resp., implication formulas, with variables assumed to
be universally quantified) and it can be shown that the indicated procedural
semantics agrees with this.

CHR provides a third kind of rules, called simpagation rules, which can be
thought of as a combination of the two or, alternatively, as an abbreviation for
a specific form of simplification rules.

Simpagation rules: c1, . . . , ci \ ci+1, . . . cn <=> Guard | cn+1, . . . , cm

which can be though of as: c1, . . . , cn <=> Guard | c1, . . . , ci, cn+1, . . . , cm

When this rule is applied, c1, . . . , ci stay in the constraint store and ci+1, . . . , cn
are removed. In practice, the body of a rule can be any executable Prolog code.

It is straightforward to write bottom-up parsers in CHR when the strings to
be analyzed, as well as recognized phrases, are represented as constraints with
their position in the string represented by constraints carrying word boundaries
as attributes. The following sample rule could be part of a simplistic natural
language parser.

nounPhrase(N0,N1), verbPhrase(N1,N2) ==> sentence(N0,N2).

Informally it reads: if a noun phrase has been recognized between positions N0

and N1, and a verb phrase between N1 and N2, then we recognize a sentence

77

between N0 and N2. These Nx variables are assigned natural numbers that rep-
resents a numbering of the spaces between the words. It is possible to extend
this principle to model various context sensitive dependencies, as rules can also
refer to non-consecutive elements and other constraints that represent semantic
and pragmatic information. Rules can describe both shallow and deep analyses
and flexible combinations thereof, and it is also possible to control in detail, the
order in which rules are applied using special constraints that serve as triggers.

5 The starting point: Tagged text

The data is preprocessed in a number of ways. First, the text is lemmatized and
tagged with part-of-speech information using Frog, a morpho-syntactic parser
for Dutch [15]. Next, proper nouns are automatically identified and classified
into types person, organization, and location, using the Stanford Named En-
tity Recognizer [16], which we have retrained for Dutch named entities. The
entity mentions are then clustered to separate the distinct real world entities
that they refer to. Finally, temporal expressions are identified and normalized
using HeidelTime [17], a rule-based temporal tagger. An in depth analysis of the
preprocessing stage will be given in a forthcoming article. For now, we briefly
expand on the detection and normalization of temporal expressions.

5.1 Normalization of temporal expressions

HeidelTime was originally developed for German and English by Strötgen &
Gertz (2012) [17]. Because the system is rule-based, its functionality can easily be
extended by adding new sets of rules. We have demonstrated so by adding a rule
set for the extraction and normalization of Dutch time expressions. HeidelTime
extracts the temporal expressions by matching them and their immediate context
to predefined patterns of regular expressions and converting them to a uniform
format (TimeML5), making it easier to reason over them.

HeidelTime recognizes four types of temporal expressions: date, time, dura-
tion, and set [18]. We consider only types date and duration for this experiment.
Both include normalization rules for expressions with various degrees of speci-
ficity. For example, “halverwege de jaren negentig” (mid 90’s) is initially nor-
malized to ‘XX95-XX-XX’, where day, month, and century are left undefined. A
single mention of “juni” (June) is normalized to ‘XXXX-06-XX’. In a next step,
HeidelTime applies some basic reasoning to these cases, trying to resolve them
by relating them to either the document creation time, or the time expressions
that have occurred previously in the text. If these do not provide sufficient infor-
mation, the system will look at linguistic cues, such as verb tense, to determine
how the expression is related to its context.

However, this is not a guaranteed method, especially not when dealing with
historic documents. The document creation time in this case cannot be trusted,

5 http://www.timeml.org

78

since there is an obvious gap between the creation time and the time when the
described events occurred. ‘XX95-XX-XX’ might mistakenly be normalized to
‘1995-XX-XX’, while in light of the domain under consideration, it is far more
likely to refer to the year 1895.

A downfall of adhering to the TimeML format is that some information is
lost in translation. A specific mention of the year “95” is normalized to the
exact same tag as the example above, losing the distinction between a more or
less exact point in time and a slightly more ambiguous version thereof. As the
ambiguity of the expression increases, so does the severity of the information
loss. Expressions such as “een paar dagen later” (a few days later) or “enkele
jaren daarna” (several years later), are normalized to descriptive, imprecise tags.
In this case both expressions are normalized to ‘FUT REF’, which does not reflect
the most important difference: their unit of calculation. This may not form such
a huge problem in the analysis of, for instance, news articles, where the described
events are likely to span only a short period. For the current task of resolving
and ordering time expressions that span decades, however, this information is
crucial.

5.2 From tags to constraints

After preprocessing, the tagged text is converted into constraints of the following
form, one for each recognized token in a text:

token(Doc,Par,Sent,WordStart,WordEnd,

NamedEntity,TimeML,TimeId,

Token,PosTag,Lemma)

The WordStart and WordEnd attributes are word boundaries, as explained
above, relative to a specific sentence within a specific paragraph of a specific doc-
ument (i.e., a biography) as indicated by the first three attributes. The attributes
Token, PosTag, and Lemma indicate a token, its part-of-speech tag, and its stem.
The actual tense, mood, etc., are ignored since we are only interested in extract-
ing specific pieces of information and not a full syntactic and semantic analysis
of the text. The NamedEntity attribute represents whether the token is part of a
named entity and, if so, which type of entity. The TimeML attribute contains the
output received from HeidelTime, if the token is part of a temporal expression.
The TimeId attribute contains, when relevant, the TimeML representation con-
verted to a Prolog term of the form date(Century,Decade,Year,Month,Day),
using a null value to represent components that are not specified.

Since the biographies have already been processed automatically, we may
expect occasional parsing or tagging errors. In the present experiment, we take
the processed data as they are.

6 Examples of CHR rules for resolving time expressions

We are interested in identifying expressions that refer – either explicitly or in-
directly through ana- or even kataphora of different sorts – to time points and

79

time periods (or intervals), and resolving them as reliably as possible to actual
time. The relationship between these time expressions and particular events or
states of affairs mentioned in the surrounding text is a different issue that we do
not consider in the present paper.

Biographies have some specific features that we can anticipate and rely on.
For time expressions, we may in some cases encounter a degree of uncertainty,
either due to lack of precise information, or because the biographer judges the
exact date to be irrelevant. On the other hand, we can expect that there is real
history underneath, i.e., references to real time points and intervals. This implies
that we can count on some general properties of time, such as temporal linearity,
which might not exist in other genres of text, such as fiction.

All temporal expressions could be translated into constraints that treat time
as points on a numerical axis and apply standard constraint solving techniques
for equations and inequalities. However, this would result in the same loss of in-
formation that we see in the normalization to TimeML provided by HeidelTime.
To bypass this problem, we find it more fitting to use constraints that reflect the
linguistic expressions retaining their uncertainty. For example, to represent the
meaning of “in de late jaren zeventig” (in the late seventies) it seems inappropri-
ate to select an interval with hard, exact boundaries, for instance, from January
1, 1876, until New Year’s eve 1879. A more intuitive solution is to replace the
exact start date with a fuzzy representation. Finding the best way to do this is
an issue for future research. Here we show some rules that are used in ongoing
experiments.

6.1 Explicit dates and intervals

The tagger has already done an effort to recognize exact dates. The following
rule converts an exact date recognized in the text into a single, more manageable
constraint. Notice that the tagger via the NamedEntity attribute also indicates a
relative position of each token in the assumed time expression, so that ’B-TIME’
indicates the beginning of a time expression, and ’I-TIME’ any immediately
following tokens that are part of the same expression.

token(Bio,P,S,N0,N1,’B-TIME’,_,date(C,De,Y,M,Da),_,’TW’,Da),

token(Bio,P,S,N1,N2,’I-TIME’,_,date(C,De,Y,M,Da),_,’SPEC’,MonthName),

token(Bio,P,S,N2,N3,’I-TIME’,_,date(C,De,Y,M,Da),_,’TW’,_)

==> isPossibleDate(C,De,Y,M,Da), isMonthName(MonthName,M)

| exactDate(Bio,P,S,N0,N3,date(C,De,Y,M,Da)).

It matches token constraints originating from a text such as “12 februari 1889”.
In this rule we also perform a check that ensures the output from the tagger
is valid, although this is fairly trivial for exact dates. The isPossibleDate

and isMonthName predicates in the guard are part of a small lexical toolbox
implemented for this application. The ‘TW’ indicates a numeral.

An explicit year which is not part of a date is extracted as follows.

80

token(Bio,P,S,N1,N2,’B-TIME’,_,Y,’TW’,Year)

==> isPossibleExactYear(Year,C,De,Y)

| exactYear(Bio,P,S,N1,N2,date(C,De,Y,null,null)).

The isPossibleExactYear predicate checks that the observed number, for ex-
ample 1889, is a reasonable year and splits it into century, decade and year, for
the example 18, 8, 9. The null values for month and date indicate that it is
not relevant (at this level of analysis) to insert further information, as it is not
recognized whether this mention of a year is intended as some exact, but not
specified, date in that year, or a time interval spanning most of that year.

We have similar rules for identifying exact months in a given year and months
without an explicitly given year. The latter are expected to be resolved using
their context in a later phase of the analysis.

Exact time intervals are indicated in different ways in Dutch, one of the most
common is to use the word tot (until) between two exact dates. This gives rise
to the following CHR rule. In a simpagation rule like the following, the order of
the constituents in the rule do not match the textual order, which is controlled
by the Nx attributes.

token(Bio,P,S,N1,N2,’O’,_,null,tot,’VZ’,tot)

\

exactDate(Bio,P,S,N0,N1,date(C1,D1,Y1,M1,D1)),

exactDate(Bio,P,S,N2,N3,date(C2,D2,Y2,M2,D2))

<=>

timeInterval(Bio,P,S,N0,N3, date(C1,D1,Y1,M1,D1),

date(C2,D2,Y2,M2,D2)).

Notice that the rule removes the exact dates from the constraint store as they
are no longer relevant after this pattern has been applied.

6.2 Indirect time points

We often encounter time expressions where part of it is not expressed directly.
There may be a pronoun as in “september van dat jaar”, or simply “september”.
The following rule attempts to identify a relevant year for such cases.

token(Bio,P,S,N1,N2,’O’,_,null,dat,’VG’,dat),

token(Bio,P,S,N2,N3,’O’,_,null,jaar,’N’,jaar)

\

month(Bio,P,S,N0,N1,date(null,null,null,M,null))

<=> nearestBeforeYear(Bio,P,S,N0, NBY),

isPossibleExactYear(NBY,C,De,Y)

|

month(Bio,P,S,N0,N3,date(C,De,Y,M,null)).

The nearestBeforeYear device is a special constraint that searches backwards
through the text to match the first constraint that contains a reasonable year.

81

This constraint is then supplied to the new month constraint that replaces the
one matched in the head.

When the nearest, previous mention of a year is part of a reference to liter-
ature, the system might make a wrong guess. To correct this, a preprocessing
phase neutralizes such citation years before we apply the normalization rules.
This phase is implemented using CHR rules that match the conventions for
references used in this corpus.

6.3 Time intervals with partly implicit information

Consider the fragment “... mei tot september 1904” (May until September 1904),
for which it seems reasonable to assume that “mei” refers to “mei 1904”. For
this particular pattern, we implement the following rule.

token(Bio,P,S,N1,N2,’O’,_,null,tot,’VZ’,tot)

\

month(Bio,P,S,N0,N1,date(null,null,null,M1,null)),

month(Bio,P,S,N2,N3,date(C2,De2,Y2,M2,null))

<=>

timeInterval(Bio,P,S,N0,N3, date(C2,De2,Y2,M1,null),

date(C2,De2,Y2,M2,null)).

However, this rule will be incorrect if applied to “december tot september 1904”,
where (at least in the lack of other strong indicators) “december” most likely
refers to “december 1903”. There are yet other cases where the year is given for
the first and not the last given month and so on. We could write a set of almost
identical CHR rules for the different cases, but instead it is more convenient to
write one general rule as follows (thus also subsuming the rule above).

token(Bio,P,S,N1,N2,’O’,_,null,tot,’VZ’,tot)

\

month(Bio,P,S,N0,N1,date(C1,De1,Y1,M1,null)),

month(Bio,P,S,N2,N3,date(C2,De2,Y2,M2,null))

<=> canResolveMonthInterval(C1,De1,Y1,M1, C2,De2,Y2,M2,

C1r,De1r,Y1r,M1r, C2r,De2r,Y2r,M2r)

| timeInterval(Bio,P,S,N0,N3, date(C1r,De1r,Y1r,M1r),

date(C2r,De2r,Y2r,M2r)).

The predicate canResolveMonthInterval in the guard is a Prolog predicate that
covers all the different cases of known and unknown values. For the example
“december 1903 tot mei”, the variables C2r, De2r, Y2r would be instantiated
to indicate the year 1904. The guard fails (which prevents the rule from being
applied) when there is no sensible way of filling in the missing information.

6.4 Open intervals

Biographical text often indicates time intervals by giving only a start or an end
time, where the missing point is either obvious according to the timeline or

82

not considered important. Following the recognition of closed intervals, we can
define rules that resolve expressions such as “tot september 1904”, when it is not
immediately preceded by another time expression.

token(Bio,P,S,N1,N2,’O’,_,null,tot,’VZ’,tot)

\

exactDate(Bio,P,S,N2,N3,date(C2,De2,Y2,M2,Da2))

<=>

timeInterval(Bio,P,S,N1,N3, DATE, date(C2,De2,Y2,M2,Da2)),

DATE <=< date(Y2,M2,D2).

The symbol <=< is a constraint that represents time order. Current experiments
investigate how to optimally combine such basic algebraic constraints with the
principle of searching in the surrounding text for a reasonable start or end time.

7 Expected results and considerations about test

The method presented so far allows us to introduce new rules optimized for the
chosen corpus, where, in some cases, the rules are so specific that they are only
applied once. These tailored rules allow us to obtain maximal recall and precision
measures on the given corpus.

However, this conclusion is not very interesting in itself, and we still need
to design tests that provide a fair measurement for comparison with related
methods. This could be based on a traditional splitting between training and
validation, and allowing only rules of a certain generality, measured by the num-
ber of times each rule is applied to the training set. The rule set exemplified
above is still under development and not yet at a stage that justifies a proper
evaluation.

However, some initial tests have shown incorrect results caused by the CHR
rules, for instance, when they fail to recognize a time expression reported by
the temporal tagger. A possible cause of this problem could be the fact that the
tagger was developed independently before the use of CHR was considered. To
get the best out of the combination of a smart tagger and CHR matching, there
needs to be a clearer separation of the tasks performed at each level and, thus,
a more consistent interface between the two levels.

8 Conclusions

An approach to extract and resolve time expressions from natural language text
is proposed. Time in natural language is often expressed in indirect and/or un-
derspecified ways that reflect lack of exact information. We suggest a rule- and
constraint-based approach that can be tailored carefully to the pragmatics of a
particular class of texts, here exemplified by interrelated personal biographies
written in Dutch concerning a given historical period and context. We start from
text that has been processed by a fairly advanced, but not flawless, temporal

83

tagger. Our rules can both rely on and correct for consistent mistakes in the
tagging.

We expect that the principle described here can be developed into a general
method for resolution of time expressions, that can be applied to many specific
cases in a modular way, and provides a flexibility for long distance references in
any direction.

The explicit manipulation of null values for the resolution of implicit in-
formation, as described above, is only an intermediate solution. It seems more
appropriate to represent unspecified time values as constrained logical variables
and develop a full constraint solver to handle the relevant collection of tempo-
ral representations, thus resolving unknown values in an automatic way. This
will reduce the need for explicit search for missing information, as the inference
from context is done via relationships between time expressions, thus providing
a symmetrical flow of information forwards, or backwards, through the text.

References

1. de Medeiros Caseli, H., Villavicencio, A., Teixeira, A.J.S., Perdigão, F., eds.: Com-
putational Processing of the Portuguese Language - 10th International Confer-
ence, PROPOR 2012, Coimbra, Portugal, April 17-20, 2012. Proceedings. In
de Medeiros Caseli, H., Villavicencio, A., Teixeira, A.J.S., Perdigão, F., eds.: PRO-
POR. Volume 7243 of Lecture Notes in Computer Science., Springer (2012)

2. Hovy, D., Fan, J., Gliozzo, A.M., Patwardhan, S., Welty, C.A.: When did that
happen? - linking events and relations to timestamps. In Daelemans, W., Lapata,
M., Màrquez, L., eds.: EACL, The Association for Computer Linguistics (2012)
185–193

3. Verhagen, M., Gaizauskas, R.J., Schilder, F., Hepple, M., Moszkowicz, J., Puste-
jovsky, J.: The tempeval challenge: identifying temporal relations in text. Language
Resources and Evaluation 43(2) (2009) 161–179

4. Dahl, V., Blache, P.: Implantation de grammaires de propriétés en chr. In Mesnard,
F., ed.: JFPLC, Hermes (2004)

5. Christiansen, H., Have, C.T., Tveitane, K.: From use cases to UML class diagrams
using logic grammars and constraints. In: RANLP ’07: Proc. Intl. Conf. Recent
Adv. Nat. Lang. Processing. (2007) 128–132

6. Christiansen, H., Have, C.T., Tveitane, K.: Reasoning about use cases using logic
grammars and constraints. In: CSLP ’07: Proc. 4th Intl. Workshop on Constraints
and Language Processing. Volume 113 of Roskilde University Computer Science
Research Report. (2007) 40–52

7. Bavarian, M., Dahl, V.: Constraint based methods for biological sequence analysis.
J. UCS 12(11) (2006) 1500–1520

8. Dahl, V., Gu, B.: A CHRG analysis of ambiguity in biological texts. In: CSLP ’07:
Proc. 4th Intl. Workshop on Constraints and Language Processing. Volume 113 of
Roskilde University Computer Science Research Report. (2007) 53–64

9. Christiansen, H., Li, B.: Approaching the chinese word segmentation problem with
CHR grammars. In: Proceedings of CSLP 2011, the 6th International Workshop
on Constraints and Language Processing. A workshop at CONTEXT ’11: The
7th International and Interdisciplinary Conference on Modeling and Using Con-
text 2011. Volume 134 of Roskilde University Computer Science Research Report.
(2011) 21–31

84

10. Christiansen, H.: CHR Grammars. Int’l Journal on Theory and Practice of Logic
Programming 5(4-5) (2005) 467–501

11. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)
12. Penn, G., Richter, F.: The other syntax: Approaching natural language semantics

through logical form composition. In Christiansen, H., Skadhauge, P.R., Villadsen,
J., eds.: Constraint Solving and Language Processing. First International Work-
shop, CSLP 2004, Roskilde, Denmark, September 1-3, 2004, Revised Selected and
Invited Papers. Volume 3438 of Lecture Notes in Computer Science., Springer
(2005) 48–73

13. Christiansen, H., Dahl, V.: Meaning in Context. In Dey, A., Kokinov, B., Leake,
D., Turner, R., eds.: Proceedings of Fifth International and Interdisciplinary Con-
ference on Modeling and Using Context (CONTEXT-05). Volume 3554 of Lecture
Notes in Artificial Intelligence. (2005) 97–111

14. Frühwirth, T.W.: Theory and practice of Constraint Handling Rules. Journal of
Logic Programming 37(1-3) (1998) 95–138

15. van den Bosch, A., Busser, B., Daelemans, W., Canisius, S.: An efficient memory-
based morphosyntactic tagger and parser for dutch. In van Eynde, F., Dirix, P.,
Schuurman, I., Vandeghinste, V., eds.: Selected Papers of the 17th Computational
Linguistics in the Netherlands Meeting (CLIN17), Leuven, Belgium (2007) 99–114

16. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL 2005).
(2005) 363–370

17. Strötgen, J., Gertz, M.: Multilingual and cross-domain temporal tagging. Language
Resources and Evaluation (2012)

18. Strötgen, J., Gertz, M.: Heideltime: High quality rule-based extraction and normal-
ization of temporal expressions. In: Proceedings of the 5th International Workshop
on Semantic Evaluation (SemEval-2010). (2010) 321–324

85

Describing Music with MetaGrammars

Simon Petitjean

LIFO, University of Orleans

Abstract. This paper aims to show metagrammars are not only suited
for large grammars development, but can also deal with other types of
descriptions. We give the example of musical chords, that can be quite
naturally described within the modular scope offered by eXtensible Meta-
Grammar.

1 Introduction

Metagrammars, introduced by [1], are known as a way to reduce the amount of
work and time needed for the development and maintenance of large tree gram-
mars for natural languages. The main concept of metagrammars is to factorize
redundant information in order to minimize the description. XMG (eXtensible
MetaGrammar) is a metagrammatical approach that has been used to describe
the syntax and semantics of some languages (French, German, English), and a
preliminary verbal morphology in Ikota [2], using tree formalisms (Tree Adjoin-
ing Grammars and Interaction Grammars). The modularity given by the scope
allows it to be used for other purposes. In order to illustrate the extensibility of
the tool, we chose to explore a quite different language, the one of music. The
goal of this work is to generate, from an abstract description, a lexicon of musi-
cal chords. The choice of this grammar can be explained in different ways: the
first is that we aim to prove XMG can process really different types of lexicons.
Another interesting aspect about this work is that the rules involved in musical
theory (rhythm, harmony,. . .) are really different from the ones we dealt with
until now. Musical theory can be found in [3] for example. Nevertheless, if large
scale grammars can cover a significant part of the language, it is hard to imagine
that a grammar of musical sentences could do the same with a significant part
of melodies. In a first part, we will present the metagrammatical tool used, then
we will give the metagrammar of musical chords. Finally, we will conclude and
give some perspectives.

2 The scope: eXtensible MetaGrammar

XMG [4] stands both for a metagrammatical language and the compiler for this
language. The input of the tool is the metagrammar, that is to say the abstract
description of the grammar, written by the linguist. The description is then
compiled and executed by XMG to produce the lexicon.The metagrammatical
language mainly relies on the notion of abstraction and the concepts of logical

86

programming. The core of the language is called the control language, and is
defined as follows:

Class := Name[p1 , . . . , pn]→ Content

Content := 〈Dim〉{Desc} | var = Name[. . .] | Content ∨ Content

| Content ;Content

Abstraction is made possible by classes, which associate a content to a name.
Contents can be conjunctions (;) and disjunctions (|) of descriptions or calls to
other classes. Descriptions are accumulated within a dimension, which allows to
separate the different types of information (syntactic, semantic, morphological. . .).
Every dimension comes with its dedicated description language, the next step is
to create a new one, adapted to music.

2.1 A music dimension

To describe trees, we use the following language:

Desc := x→ y | x→+ y | x→∗ y | x ≺ y | x ≺+ y | x ≺∗ y

| x [f :E] | x (p:E) | Desc ; Desc | SynExpr = SynExpr

SynExpr := var | const | var.const

The elementary unit we manipulate is the node. Nodes can be declared with
feature structures for linguistic information (syntactic category, . . .), and some
properties. We also need to accumulate relations between the nodes, in order to
describe the structure of the tree. → and ≺ are respectively the operators for
dominance and precedence, + and ∗ representing the transitive closure and the
transitive reflexive closure. Unification of expression (=) can also be written.
The ’.’ operator allows to access a variable when applied to a class and the value
corresponding to a key when applied to a feature structure.

After being accumulated, the description has to be solved. The result is the
set of all the minimal models of the description. For example, here is a XMG
description and a tree fragment it models :

CanSubj ->

<syn>{ S [cat=s]; N [cat=n]; V [cat=v]; S->N; S->V; N<<V }

S

N V

In this work, we will accumulate notes. The tree structures we already can
describe seem to be adapted to order the notes. A note variable is declared as a
node, with a feature structure which contains the information that characterizes
it. Here, we will use the same language and just add an arithmetic operator

87

so that we can compare the values associated to notes. The music description
language is consequently the same, except for the ’+’ in the expressions:

MDesc := x→ y | x→+ y | x→∗ y | x ≺ y | x ≺+ y | x ≺∗ y

| x [f :E] | x (p:E) | MDesc ; MDesc | MExpr = MExpr

MExpr := var | const | var.const | MExpr + MExpr

2.2 Principles

To ensure the well-formedness of the generated models, XMG comes with a
library of principles that the user can activate. They consist in a set of linguis-
tic constraints over the accumulated description. In the description of music, a
principle could ensure that every measure is coherent with the time signature.
Another principle could apply rewrite rules to chord sequences (as done in [5])
to generate a set of variations for those sequences.

2.3 Sharing data with other dimensions?

As it was the case for syntax and semantics, the accumulation produced by the
execution of the metagrammar could take place in various dimensions, allowing
to share data between them. One of the options would be to create a dimension
for another clef: if we assume the grammar we produce is written in G-clef,
another dimension could contain the transposition of the accumulation in F-
clef. This can also be used for transposition to gather instruments tuned in
different tones (for example B[clarinet and alto saxophone in E[). Another
dimension could also encode the fingerings to realize the notes (or chords) on
some instrument. The accumulation of predicates in the semantic dimension
is also an interesting perspective to experiment some theories on semantics of
music.

3 A metagrammar for musical chords

3.1 Describing notes

The first abstraction we create is the elementary unit of music: the note. From
a unique class, we want to generate any note, with the information needed to
characterize it. The feature structure of the note contains typed data, types being
checked during the compilation. The essential features we will use are the name
of the note, its accidental (here we will only consider notes with at most one
accidental), and its global height (in term of semi tones). As we will not describe
rhythm in this preliminary work, we chose not to represent the duration of the
note.

In the metagrammar, ’name’ is the human readable name of the note. Its type
is enumerated, with possible values {A,B,C,D,E,F,G}, ’acc’ is the accidental of

88

the note (sharp, flat, or none), ’namerank’ is an integer associated to the name
of the note, beginning with A=1, ’height’ is the number of semi tones from A
to the note. ’namerank’ and ’height’ depend on the two previous features and
are only used in the metagrammar to compare notes. For example, the feature
structure for a D] will be [name=D, acc=sharp, namerank=4, height=5]. Scales
are not taken into account, which means that the unique G we consider is both
7 semi tones above C and 5 semi tones below it.

Two things have to be constrained:
- the value and the value integer have to match
- the global height depends on the note value and its accidental

note ->

<music>{

N [name=V, namerank=NR, acc=ACC, height=H];

{

{ V=A ; NR=1 ; HT=1 } |

{ V=B ; NR=2 ; HT=3 } |

{ V=C ; NR=3 ; HT=4 } |

{ V=D ; NR=4 ; HT=6 } |

{ V=E ; NR=5 ; HT=8 } |

{ V=F ; NR=6 ; HT=9 } |

{ V=G ; NR=7 ; HT=11 }

};

{

{ ACC=sharp; H = HT + 1 } |

{ ACC=flat; H = HT - 1 } |

{ ACC=none; H = HT }

}

}

XMG builds a description for each case it tries (if all unifications succeed).
As expected, the execution of the class Note (with 7 notes and 3 accidentals)
leads to 21 descriptions.

� �� � � ��� �� ����� � ���� ��� � ��� � �� � ��� � �
Fig. 1. The 21 generated notes

3.2 Describing intervals

An interval features two notes, and is defined by its number and its quality. The
number is the difference between the staff positions of the notes, and the quality

89

is relative to the number of semi tones between the nodes. Thus the number is
given by the difference between the name ranks of the notes, and the quality
by the difference between the heights. To represent a major third, we have to
accumulate two notes separated by exactly two tones. The class for this interval
has to feature two notes, and two constraints : the name ranks of the notes have
to be separated by two unities, and the global height by four semi tones. We
add another node to the description, dominating the two notes, and holding the
information about the interval into its feature structure.

Mthird ->

First=note[]; Third=note[];

FirstF=First.Feats; ThirdF=Third.Feats;

TRank=FirstF.namerank; ThRank=ThirdF.namerank;

THeight=FirstF.height; ThHeight=ThirdF.height;

FirstN=First.N; ThirdN=Third.N;

{ ThRank=TRank + 2 | ThRank=TRank - 5 };

{ ThHeight=THeight + 4 | ThHeight=THeight - 8 };

<music>{

Root [third=major];

Root ->+ FirstN; Root ->+ ThirdN;

FirstN >> ThirdN

}

���� ��� � ��� � �� ����� �� ��� � � ������ � � ��� �� ��� �� ��� � ���� ���
Fig. 2. The 17 generated major thirds

Intuitively, each one of the 21 notes should be the tonic for a major third, but
only 17 major thirds are generated. The reason is the four remaining intervals
involve double accidentals. We do the same for minor third, with an interval of
three semi tones.

� �� ����� � �����
� ���� ����� �� ���� �� �� ������ �� ��� � � �� ���� ��� ��

Fig. 3. The 18 generated minor thirds

90

3.3 Describing chords

Now, let us consider three notes chords, called triads, in their major and minor
modes. A triad is composed of a note, called tonic, a third and a perfect fifth.
The major chord features a major third, and the minor chord a minor one. We
thus need to accumulate two intervals, and constraint their lowest notes to unify,
the result being the tonic of the chord.

Major ->

Third=Mthird[];

Fifth=fifth[];

Tonic=Third.First;

Tonic=Fifth.First;

Third.Root=Fifth.Root;

ThirdN=Third.N;

FifthN=Fifth.N;

Root=Third.Root

�� ���
� ���� � ����� ��� � �� � ����� � ������ � �� � ����� ����� ������� � ��� ��� ��� ��� ����� ���� � ���

�� � �� ����� ������� � � � ����� ���� �� ����� � ���� � ���� ������ ��� ��� � ��� �� � ��� ����� ��� ��� ���
Fig. 4. The 17 generated major and minor triads

The same method can be applied to produce seventh chords: a seventh chord
would then be defined as the conjunction of a triad and a seventh interval (the
tonic of the triad unifying with the lowest note of the interval).

4 Conclusion and future work

We proposed a metagrammar for a part of musical theory: from a short abstract
description, we generated lexicons of major and minor triads. The initial aim of
this work was to prove XMG can quickly be extended in order to deal with re-
ally different theories (not necessarily linguistic theories). The metagrammatical
approach appeared to be useful in the context of music description. The redun-
dancy we factorized was not essentially structural, as in most of the cases studied
previously, but also at the level of the algebraic constraints. This very prelimi-
nary work however needs to be extended to more complex musical phenomena.
Describing melodies could obviously not be done in a similar way, generating
every solution, but sequences of chords seem to be an interesting next step.
Adapted principles could be designed and used to limit the number of models.

91

References

1. Candito, M.: A Principle-Based Hierarchical Representation of LTAGs. In: Pro-
ceedings of the 16th International Conference on Computational Linguistics (COL-
ING’96). Volume 1., Copenhagen, Denmark (1996) 194–199

2. Duchier, D., Magnana Ekoukou, B., Parmentier, Y., Petitjean, S., Schang, E.: De-
scribing Morphologically-rich Languages using Metagrammars: a Look at Verbs in
Ikota. In: Workshop on ”Language technology for normalisation of less-resourced
languages”, 8th SALTMIL Workshop on Minority Languages and the 4th workshop
on African Language Technology, Istanbul, Turkey (May 2012)

3. Grove, G., Sadie, S.: The New Grove dictionary of music and musicians. Number
vol. 13 in The New Grove Dictionary of Music and Musicians. Macmillan Publishers
(1980)

4. Crabbé, B., Duchier, D.: Metagrammar redux. In Christiansen, H., Skadhauge,
P.R., Villadsen, J., eds.: Constraint Solving and Language Processing, First Inter-
national Workshop (CSLP 2004), Revised Selected and Invited Papers. Volume 3438
of Lecture Notes in Computer Science., Roskilde, Denmark, Springer (2004) 32–47

5. Chemillier, M.: Toward a formal study of jazz chord sequences generated by steed-
man’s grammar. Soft Comput. 8(9) (2004) 617–622

92

Estimating Constraint Weights from Treebanks

Philippe Blache

Laboratoire Parole et Langage
CNRS & Aix-Marseille Université

blache@lpl-aix.fr

Abstract. We present in this paper a technique aiming at estimating constraint weights
from treebanks. After a presentation of constraint-based treebank acquisition, a method
assigning weights to individual constraint is proposed. An experiment by means of human
acceptability judgments gives a first validation of the approach.

Keywords: Constraint weights, parsing, Property Grammars, treebank

1 Introduction

Constraint-based parsing can be computationally expensive because of overgeneration. This draw-
back becomes even severe when using constraint relaxation as in several linguistic theories such as
Optimality Theory (see [1]) or Property Grammars [2]. The problem is that constraint relaxation
is not a syntactic sugar, but the core of these formalisms for different reasons. Typically, OT is an
optimization problem: given a set of syntactic structures, the parser identifies the optimal (the one
that violates less constraints). In model-theoretic approaches such as PG, the question is different,
but the consequence the same: building a model consists in evaluating a constraint system for a
given input. In this case, a model can be sub-optimal (in other words, some constraints can be
violated).

Constraint relaxation is then an important mechanism, especially when trying to deal with
non canonical linguistic material such as spoken language (which is one of the main challenges for
natural language processing). As a consequence, it becomes necessary to develop techniques for
controlling the parsing process. One of those consists in weighting constraints. Such mechanism
has been integrated in the theoretical framework of Harmonic Grammar (see [3]), from which OT
has been proposed. On the applicative side, constraints weights have been implemented in the
development of Weighted Constraint Dependency Grammars (see [4]). This formalism allows for
a distinction between hard and soft constraints through the use of weights set by the grammar
developer. This task is manual and depends on the developer knowledge of the linguistic features
and the consequence of ranking on the parsing process1. The validation of the resulting set of
weights can be done automatically by evaluating the weight model against a reference corpus.

From the cognitive side, different works tried to distinguish between hard and soft constraint
in the human parsing process. In this vein, [6] proposes a description of gradience phenomena
based on constraint violation: violating hard constraints leads to strong unacceptability by human
subjects where soft constraints violation entails mild unacceptability. In the PG framework, several
works have been done proposing grammaticality models that associate weights to constraint types
(see [7], [8]).

These approaches illustrate the importance of weighting constraint, both for computational,
theoretical and cognitive reasons. However, constraint weighting mainly remains a manual and
empirical task. We propose in this paper a technique making it possible to acquire automati-
cally constraint weights from treebanks. This technique is presented in the framework of Property
Grammars, even though it is theory-neutral: the principle relying on constraint quantification can
be applied whatever the formalism, provided that the number of violated and satisfied constraints
can be evaluated.
1 An experiment trying to automatically acquire constraint weights by means of genetic algorithm is
reported in [5], but not applied to further WCDG grammar development.

93

2 Philippe Blache

In the remainder of the paper, we will briefly present the formalism before describing its
application in the development of a constraint-based treebank. We present then the elaboration
of the weighting model before proposing an experimental validation.

2 Property Grammars: main features

Property Grammars [2] (noted hereafter PG) is a fully constraint-based theory in the sense that
all information is represented by means of constraints. The idea consists in (1) representing ex-
plicitly all kinds of syntactic information (such as linearity, cooccurrence, exclusion, etc.) and (2)
to implement this information only by means of constraints; not using any generate-and-test ar-
chitecture such as in OT or WCDG. The consequence is twofold: (1) the parsing mechanism is
purely constraint satisfaction and (2) a syntactic description (which is in classical approaches a
tree) is the state of the constraint system after evaluation (which can be represented as a graph).

A PG formal presentation can be found in [9], which proposes the following notations for the
different constraint types:

Obligation A : ∆B at least one B
Uniqueness A : B! at most one B
Linearity A : B ≺ C B precedes C
Requirement A : B ⇒ C if ∃B, then ∃C
Exclusion A : B 6⇔ C not both B and C
Constituency A : S? all children ∈ S
Dependency A : B ; C dependency constraints

A PG grammar describes non-terminals with sets of constraints. The following example illus-
trates the grammar of the AP in French:

Const AP: {AdP, A, VPinf, PP, Ssub, AP, NP}?

lin
A ≺ {VPinf, Ssub, PP, NP, AP}
AdP ≺ {A, Ssub, PP}
AP ≺ {A, AdP}
PP ≺ {Ssub}

Dep AP: {AdP, VPinf, PP, Ssub, NP} ; A
Uniq AP: {A, VPinf, Ssub}!
Oblig AP: ∆ A
Excl AP: VPinf 6⇔ {PP, Ssub}

In this approach, all constraints can be relaxed, which makes it possible to describe any kind of
input, including ill-formed ones. The following figure illustrates the situation when a constraint is
violated: in this example, the determiner is not realized, which violates the requirement constraint
between Det and N. On the basis of such description, it becomes possible to know precisely for each
category the constraints that are satisfied or violated, opening the way to a quantified modeling
of grammaticality.

In the remaining of this paper, we will show how to identify the relative importance of con-
straints (in other words calculate their weights) thanks to the possibilities of the approach applied
to a corpus. We present in the next section the PG treebank from which data are extracted and
the weighting model has been built.

94

Estimating constraint weights from treebanks 3

AdP AP NP PP SENT Sint Srel Ssub VN VNinf VNpart VP VPinf VPpart Total
Const 10 7 13 7 8 8 7 10 6 7 7 10 9 8 115
Dep 5 6 18 5 3 5 5 6 8 59
Exc 1 2 44 2 6 3 3 61
Req 6 4 4 14
Lin 18 10 36 6 5 4 7 14 11 6 7 24 13 7 165
Oblig 1 1 4 1 1 1 1 1 1 3 2 1 1 1 20
Uniq 4 3 10 3 3 4 4 1 2 4 5 3 7 6 59

39 22 131 22 22 23 22 29 25 29 31 46 30 22 493

Fig. 1. Distribution of the constraints in the FTB-acquired grammar

3 Source corpus: the PG-enriched French Treebank

Our experiment relies on a PG treebank , built by enriching the French Treebank (hereafter FTB,
see [10]) with PG descriptions. The original treebank consists of articles from the newspaper “Le
Monde”. It contains 20,648 sentences and 580,945 words.

The first step for building the PG treebank consisted in acquiring a PG grammar from the
original FTB. This has been done semi-automatically thanks to a technique described in [11].
Figure 1 gives the number of acquired constraints, for each non-terminal. We can note that the PG
grammar is rather compact (only 493 constraints for the entire grammar) and that the constraint
distribution is not balanced (NP and VP represent 35% of the total amount of constraints).
Moreover, some categories (such as VP or VPinf) do not make use of all the constraint types
in their description. This kind of information is important in the identification of the constraint
weights: a given constraint can be more or less important depending on the total number of
constraints of the same type used for the category. For example, if a category only has one linearity
constraint, the probability for this constraint to be strong is high.

Once the PG grammar built, enriching the treebank consists in applying a grammatical con-
straint solver to each constraint system describing a category. The data used in the remaining of
the paper rely on an experiment done on a subset of 470 sentences (14,695 words) taken from the
PG-enriched FTB. The figure 2 presents some results for the NP (4,199 different realizations in
this subcorpus).

As already shown in the previous section, each category is described by different constraints for
each constraint type. For example, the NP has 36 different linearity constraints. In the following
table, rows represent the index of the constraint in the grammar. This example presents the first
12 constraints for each constraint type in the grammar of NP :

lin dep exc req oblig uniq
0 Det ≺ N Det ,N Pro,Det Det ,N N Det
1 Det ≺ Np AP,N Pro,N PP,N Pro N
2 Det ≺ AdP AdP,N Pro,AdP AP,N Np Srel
3 Det ≺ AP NP,N Pro,AP VPpart,N Clit VPpart
4 Det ≺ VPpart VPpart,N Pro,NP VPinf,N VPinf
5 Det ≺ VPinf VPinf,N Pro,VPpart Ssub,N Ssub
6 Det ≺ Ssub PP,N Pro,VPinf AdP
7 Det ≺ Srel Srel,N Pro,Ssub Pro
8 Det ≺ PP Ssub,N AdP,VPpart NP
9 Det ≺ NP AP,Np AdP,VPinf Clit
10 N ≺ AdP NP,Np AdP,Srel
11 N ≺ NP PP,Np Ssub,AdP

Each line in the figure 2 indicates the type of the constraint, its polarity (for example linp
stands for satisfied linearity constraints where linm represents unsatisfied ones) and the number of
times this constraint is evaluated. For example, the column 0 indicates that the linearity constraint
number 0 (i.e. Det ≺ N) is satisfied 1,933 times and never violated, or that the linearity constraint
3 (Det ≺ AP) is satisfied 455 times and violated 13 times. The second column of the table indicates
the total amount of evaluated constraints used in the description of the NP for this corpus.

95

4 Philippe Blache

Const. gram. Total 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
linp 35 5451 1933 114 24 455 73 23 7 92 754 140 27 220 89 25 996 119
linm 16 101 0 0 4 13 0 1 0 0 1 0 6 2 0 1 2 0
oblp 4 3989 3187 90 563 149 0 0 0 0 0 0 0 0 0 0 0 0
oblm 1 210 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
depp 16 4368 1933 662 32 222 89 26 997 119 7 13 164 27 7 18 22 30
depm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
excp 44 32917 2172 3277 150 818 860 193 117 98 169 89 219 68 740 778 115 39
excm 26 163 12 0 2 6 2 4 2 2 0 2 6 4 4 4 2 0
reqp 6 3714 1933 997 662 89 26 7 0 0 0 0 0 0 0 0 0 0
reqm 6 274 161 71 21 15 3 3 0 0 0 0 0 0 0 0 0 0
uniqp 10 6258 2094 3187 161 101 29 10 58 90 379 149 0 0 0 0 0 0
uniqm 4 179 0 0 1 3 0 0 2 0 173 0 0 0 0 0 0 0

Fig. 2. Constraint distribution for the NP in the PG-enriched FTB

These results call for several remarks. First, distribution is not balanced from one category to
another: some constraints are frequently evaluated, some other not. For example, the first linearity
constraint (noted lin[0]) is satisfied 1,933 times, which represents 34.8% of the total number of
linearity constraints evaluated in the description of the different NP realizations in this subcorpus.

Moreover, the number of constraints per type can vary a lot. The first column indicates the
number of NP constraints in the grammar that are actually used. In the case of our corpus,
35 different linearity constraints are used among the 36 possible in the grammar. This gives an
indication of the relative importance of each constraint in terms of distribution: a constraint
frequently used is supposed to be more important when the total number of constraints evaluated
in the type is high. This is the case for the linearity constraint lin[0] which is both frequent and
belongs to a set of 35 evaluated constraints.

4 The weighting model

Several parameters can be calculated from these figures, that can be used in the elaboration of
the weighting model. We note in the following, for a given category:

– E+
t the total number of times constraints are satisfied for the type t. In the example figure 2,

the total number of satisfied linearity constraints is E+
lin = 5, 451. The corresponding figure

for violated constraints is noted E−t
– Et is the total number of evaluated constraints: Et = E+

t + E−t
– C+

t,i the number of times the constraint indexed i in the type t is satisfied. In our example, the
linearity constraint indexed 0 is satisfied 1,933 times, noted C+

lin,0 = 1, 933. The corresponding
figure for violated constraints is noted C−t,i

– Ct,i is the number of times the constraint t[i] is satisfied or violated: Ct,i = C+
t,i + C−t,i

– Gt the number of constraints of type t in the grammar that are used in the evaluation. In our
example, 35 different linearity constraints types are used in this corpus (noted Glin = 35)

Besides this figures, we define the following functions:

Raw coverage : calculated as the total number of times the constraint is evaluated (satisfied or
not) divided by the total number of evaluated constraints in the type: RCt,i = Ct,i/Et

Balanced coverage : the raw coverage balanced by the number of different constraints used in the
evaluation of the category in the corpus: BCt,i = RCt,i/Gt

Satisfiability ratio : rate of satisfied vs. unsatisfied constraints. SRt,i = (C+
t,i − C−t,i)/Ct,i

This different figures make it possible to propose an automatic constraint weight estimation.
We propose for this to take into account the constraint coverage (balanced by the number of
different types of constraints) and the satisfaction ratio, giving an estimation on the frequency of
the violation. The weights are calculated as follows:

96

Estimating constraint weights from treebanks 5

W[t,i] = SR[t,i] ∗BC[t,i]

The following table presents these different parameters values for the two first constraints
(indexed 0 and 1) of the NP, on the basis of the figures extracted from the corpus:

Index 0 Index 1
RC BC SR Weight RC BC SR Weight

lin 0.35 12.19 1.00 12.19 0.02 0.72 1.00 0.72
obl 0.76 3.04 0.88 2.66 0.02 0.09 1.00 0.09
dep 0.44 7.08 1.00 7.08 0.15 2.42 1.00 2.42
exc 0.07 2.89 0.99 2.86 0.10 4.36 1.00 4.36
req 0.48 2.91 0.85 2.46 0.25 1.50 0.87 1.30
uni 0.33 3.25 1.00 3.25 0.50 4.95 1.00 4.95

These partial results show important differences between the weights, illustrating different
situations. Some constraints (only few of them when taking into account the total results for all
the categories) have both high coverage and good satisfaction ratio. This is the case for the first
linearity constraint of the NP (Det ≺ N) that gets the higher weight. It is interesting to note the
importance of balancing the coverage: some constraints, such as obligation, are very frequent but
can also be often violated, which is correctly taken into account by the model.

The following table presents the constraint ranking for the first NP constraints. We can note
that usually, the highest ranked constraint has a weight significantly higher than others. This
effect confirms the fact that when parsing real-life corpora, there is no great syntactic (as well as
lexical) variability. In the case of a weighting repartition between hard and soft constraints, this
characteristics would militate in favor of having only one or two hard constraint per type.
rank 1 2 3 4 5 6 7 8 9 10
lin Det ≺ N Det ≺ Np N ≺ PP Det ≺ PP Det ≺ AP N ≺ NP Det ≺ NP N ≺ Srel Det ≺ Srel N ≺ VPpart

12.19 0.72 0.18 0.14 0.08 0.04 0.03 0.02 0.02 0.02
obl N Np Pro Clit

2.66 0.13 0.09 0.04
dep Det ; N AP ;N PP ;N NP ;N NP ;Np Srel ;N VPpart ;N AdP ; N PP ; Pro PP ; Np

7.08 2.42 0.23 0.05 0.04 0.03 0.02 0.01 0.01 0.01
exc Pro,N Pro,Det Np,N Clit,N Clit,Det Ssub,PP Clit,NP Clit,AP Pro,NP NP,Pro

4.36 2.86 0.12 0.10 0.07 0.03 0.03 0.03 0.03 0.03
req Det ⇒ N PP ⇒ N AP ⇒ N VPpart ⇒ N VPinf ⇒ N Ssub ⇒ N

2.46 1.30 0.16 0.02 0.01 0.00
uni Det N Srel VPpart VPinf Ssub AdP Pro NP Clit

3.25 4.95 0.02 0.01 0.00 0.00 0.01 0.01 0.02 0.02

5 Result validation

As a first validation of the result, we have compared the constraint ranking with acceptability
judgments acquired in the framework of another study (see [7]). This experiment consisted in asking
subjects to rank following a scale (using the method of magnitude estimation) the grammaticality
of different sentences. Each sentence violates one constraint. The data set was built using the
following matrix sentences (we indicate in the second column the violated constraint). In this
table, sentences are presented by increasing unacceptability judgment. The rightmost column
shows the corresponding constraint weight.

Sentence Constraint Weights
Marie a emprunté très long chemin pour le retour NP: N ⇒ Det 2,46
Marie a emprunté un très long chemin pour pour le retour PP: uniq(Prep) 2,99
Marie a emprunté un très long chemin chemin pour le retour NP: uniq(N) 1,30
Marie a emprunté emprunté un très long chemin pour le retour VP: uniq(VN) 2,84
Marie a emprunté un très long chemin le retour PP: oblig(Prep) 0,92
Marie a emprunté un très long long chemin pour le retour AP: uniq(Adj) 2,94
Marie a emprunté un très long chemin pour PP: Prep ; NP 3,92
Marie a emprunté un long très chemin pour le retour AP : Adv ≺ Adj 3,48
Marie un très long chemin a emprunté pour le retour VP : VN ≺ NP 4,86
Marie a emprunté un très long chemin le retour pour PP : Prep ≺ NP 5,77
Marie a emprunté très long chemin un pour le retour NP : Det ≺ N 12,19

97

6 Philippe Blache

One can note a tendency for linearity constraint violation to be less acceptable than uniqueness
one, which is globally confirmed by the total figures we obtained on the corpus. When comparing
more precisely the judgment ranking with constraint weights, we observe a very good correlation
(correlation coefficient: 0,77) as illustrated with the tendency figure (ranks in X axis and weights
in Y axis):

This first result, if not a true evaluation, gives an indication of the validity of the method. The
method has now to be applied to the entire corpus, acquiring a more complete weighting model.
An actual evaluation would then consist in evaluating how weights improve the control of the
process and reduce the search space of the parser.

6 Conclusion

We have presented in this paper a method making it possible to acquire automatically constraint
starting from treebanks. The method is generic and language-independent. A first validation have
shown that automatic weightings have a good correlation with human judgments. This method
constitutes a preliminary answer to the difficult question of automatic constraint weighting in the
context of constraint-based parsing.

References

1. Prince, A., Smolensky, P.: Optimality Theory: Constraint Interaction in Generatire Grammar. Tech-
nical report, TR-2, Rutgers University Cognitive Science Center, New Brunswick, NJ. (1993)

2. Blache, P.: Les Grammaires de Propriétés : Des contraintes pour le traitement automatique des langues
naturelles. Hermès (2001)

3. Smolensky, P., Legendre, G.: The Harmonic Mind From Neural Computation to Optimality-Theoretic
Grammar. MIT Press (2006)

4. Foth, K., Menzel, W., Schröder, I.: Robust Parsing with Weighted Constraints. Natural Language
Engineering 11(1) (2005) 1–25

5. Schröder, I., Pop, H.F., Menzel, W., Foth, K.A.: Learning weights for a natural language grammar
using genetic algorithms. In Giannakoglou, K., Tsahalis, D., Periaux, J., Papailiou, K., Fogarty, T.,
eds.: Evolutionary Methods for Design, Optimisation and Control. (2002)

6. Sorace, A., Keller, F.: Gradience in linguistic data. Lingua 115(11) (2005) 1497–1524
7. Blache, P., Hemforth, B., Rauzy, S.: Acceptability prediction by means of grammaticality quantifica-

tion. In: ACL-44: Proceedings of the 21st International Conference on Computational Linguistics and
the 44th annual meeting of the Association for Computational Linguistics, Association for Computa-
tional Linguistics (July 2006)

8. Blache, P.: Evaluating language complexity in context: New parameters for a constraint-based model.
In: CSLP-11, Workshop on Constraint Solving and Language Processing. (2011)

9. Duchier, D., Prost, J.P., Dao, T.B.H.: A model-theoretic framework for grammaticality judgements.
In: Conference on Formal Grammar (FG’09). (2009)

10. Abeillé, A., Clément, L., Toussenel, F.: Building a treebank for french. In Abeillé, A., ed.: Treebanks,
Kluwer, Dordrecht (2003)

11. Blache, P., Rauzy, S.: Hybridization and treebank enrichment with constraint-based representations.
In: Workshop on Advanced Treebanking. (2012)

98

On Language Acquisition Through Womb
Grammars

Veronica Dahl1, J. Emilio Miralles1, and Leonor Becerra2

1 Simon Fraser University, Burnaby, BC, V5A-1S6, Canada,
veronica@cs.sfu.ca, emiralle@sfu.ca

2 Laboratoire Hubert Curien, Jean Monnet University, 18 rue Benoit Lauras, 42100
Saint-Etienne, France

leonor.becerra@univ-st-etienne.fr

Abstract. We propose to automate the field of language acquisition
evaluation through Constraint Solving; in particular through the use of
Womb Grammars. Womb Grammar Parsing is a novel constraint based
paradigm that was devised mainly to induce grammatical structure from
the description of its syntactic constraints in a related language. In this
paper we argue that it is also ideal for automating the evaluation of
language acquisition, and present as proof of concept a CHRG system
for detecting which of fourteen levels of morphological proficiency a child
is at, from a representative sample of the child’s expressions. Our results
also uncover ways in which the linguistic constraints that characterize
a grammar need to be tailored to language acquisition applications. We
also put forward a proposal for discovering in what order such levels are
typically acquired in other languages than English. Our findings have
great potential practical value, in that they can help educators tailor
the games, stories, songs, etc. that can aid a child (or a second language
learner) to progress in timely fashion into the next level of proficiency,
and can as well help shed light on the processes by which languages less
studied than English are acquired.

Keywords: Womb Grammar Parsing, Language Acquisition, Constraint
Order Acquisition, Constraint Based Grammars, Property Grammars,
CHRG

1 Introduction

Constraint-based linguistic models, such as HPSG [17] or Property Grammars
[1], view linguistic constraints in terms of property satisfaction between cate-
gories, rather than in the more traditional terms of properties on hierarchical
representations of completely parsed sentences. This view has several advan-
tages, including allowing for mistakes to be detected and pointed out rather than
blocking the analysis altogether, and has yielded good results for language anal-
ysis and grammar development. Language acquisition is a research area where
constraint-based approaches can potentially make important contributions. Ap-
plications of constraint-based approaches to processing learner language have

99

been surveyed in [13], mostly around error detection, as in [3], which represents
parsing as a constraint satisfaction problem and uses constraint relaxation with
a general-purpose conflict detection algorithm. A recent and original develop-
ment of constraint-based parsing is the Womb Grammar Parsing paradigm [9],
which was designed to induce a target language’s constraints on given simple
phrases (e.g., noun phrases) from the corresponding constraints of another lan-
guage called the source, given a corpus of correct phrases in the target language.
Womb grammars have proved valuable not only for traditional applications such
as analysis, but also for grammar sanctioning and to induce a correct grammar
from that of another, related language.

In this article we propose a tailoring of Womb Grammars for another unusual
application: that of computer-supported language acquisition, and we exemplify
our ideas in terms of a novel application of constraint-based parsing: that of
inducing the (incorrect) grammar in use by a person learning a language and
detecting the level of proficiency of such a learner.

After presenting our methodological background in the next section, section
3 describes how to use Womb Grammars to detect a child’s level of grammatical
proficiency and how to induce the linguistic constraints that describe his or her
grammar fragment. Section 4 briefly discusses how to adapt our research to
discover the learning stages that are followed by languages other than English.
Section 5 presents our concluding remarks.

2 Background

Womb Grammar Parsing was designed to induce, from known linguistic con-
straints that describe phrases in a language called the source, the linguistic con-
straints that describe phrases in another language, called the target. Grammar
induction has met with reasonable success using different views of grammar: a)
as a parametrized, generative process explaining the data [16, 14], b) as a prob-
ability model, so that learning a grammar amounts to selecting a model from
a pre-specified model family [6, 19, 8], and c) as a Bayesian model of machine
learning [12].

Most of these approaches have in common the target of inferring syntac-
tic trees. As noted, for example, in [2], constraint-based formalisms that make
it possible to evaluate each constraint separately are advantageous in compar-
ison with classical, tree-based derivation methods. For instance the Property
Grammar framework [1] defines phrase acceptability in terms of the properties
or constraints that must be satisfied by groups of categories (e.g. English noun
phrases can be described through a few constraints such as precedence (a deter-
miner must precede a noun), uniqueness (there must be only one determiner),
exclusion (an adjective phrase must not coexist with a superlative), and so on).
Rather than resulting in either a parse tree or failure, such frameworks charac-
terize a sentence through the list of the constraints a phrase satisfies and the
list of constraints it violates, so that even incorrect or incomplete phrases will
be parsed.

100

Womb Grammar Parsing follows these general frameworks, but focuses on
generating the constraints that would sanction the input as correct, rather than
on characterizing sentence acceptability in terms of (known) linguistic constraints.
This is because it was conceived for grammar induction rather than only for
parsing sentences, so it can operate on a corpus of sentences deemed correct
to generate the set of grammatical constraints (i.e., the grammar description)
that would result in all constraints being satisfied—i.e., the grammar for the
language subset covered by the corpus. Thus, it is ideal for grammar correction
and grammar induction, not just for flexible parsing.

More concretely: let LS (the source language) be a human language that has
been studied by linguists and for which we have a reliable parser that accepts
correct sentences while pointing out, in the case of incorrect ones, what gram-
matical constraints are being violated. Its syntactic component will be noted
LS
syntax, and its lexical component, LS

lex.
Now imagine we come across a dialect or language called the target language,

or LT , which is close to LS but has not yet been studied, so that we can only have
access to its lexicon (LT

lex) but we know its syntax rules overlap significantly with
those of LS . If we can get hold of a sufficiently representative corpus of sentences
in LT that are known to be correct, we can feed these to a hybrid parser consisting
of LS

syntax and LT
lex. This will result in some of the sentences being marked as

incorrect by the parser. An analysis of the constraints these “incorrect” sentences
violate can subsequently reveal how to transform LS

syntax so it accepts as correct

the sentences in the corpus of LT —i.e., how to transform it into LT
syntax. If we

can automate this process, we can greatly aid the work of our world’s linguists,
the number of which is insufficient to allow the characterization of the myriads
of languages and dialects in existence.

An Example. Let LS = English and LT = Spanish, and let us assume that
English adjectives always precede the noun they modify, while in Spanish they
always post-cede it (an oversimplification, just for illustration purposes). Thus
“a hot burner” is correct English, whereas in Spanish we would more readily say
“una hornalla caliente”.

If we plug the Spanish lexicon into the English parser, and run a represen-
tative corpus of (correct) Spanish noun phrases by the resulting hybrid parser,
the said precedence property will be declared unsatisfied when hitting phrases
such as “una hornalla caliente”. The grammar repairing module can then look
at the entire list of unsatisfied constraints, and produce the missing syntactic
component of LT ’s parser by modifying the constraints in LS

syntax so that none
are violated by the corpus sentences.

Some of the necessary modifications are easy to identify and to perform, e.g.
for accepting “una hornalla caliente” we only need to delete the (English) prece-
dence requirement of adjective over noun (noted adj < n). However, subtler
modifications may be in order, requiring some statistical analysis, perhaps in a
second round of parsing: if in our LT corpus, which we have assumed representa-
tive, all adjectives appear after the noun they modify, Spanish is sure to include

101

the reverse precedence property as in English: n < adj. So in this case, not only
do we need to delete adj < n, but we also need to add n < adj.

3 Detecting and Characterizing Grammatical Proficiency

The generative power of Womb Grammars can be used to find out the set of
linguistic constraints (i.e. the grammar) in use by a person learning a language.
For this end, rather than using the grammar of a known related language as
in our example above, we propose that of a Universal Womb Grammar which
for each type or phrase lists all possible properties or constraints. For instance,
for every pair of allowable constituents in a phrase (say noun and adjective in
a noun phrase), it would list both possible orderings: noun < adjective and
adjective < noun. By running a student’s input through this universal grammar
and deleting any constraints not manifest in the input, we are left with a char-
acterization of the student’s proficiency. This grammar represents an individual
interlanguage system, which is in line with the general perspective in Second
Language Acquisition which brands as a mistake the study of the systematic
character of one language by comparing it to another[15].

For instance, the order in which children acquire basic grammatical English
constructions is fairly predictable. Table 1 shows a widely accepted morpheme
acquisition ordering initially postulated by Brown[4] and corroborated, for in-
stance, by de Villiers and de Villiers[18]. According to these results children
acquire a series of 14 morphemes in essentially the same order, but not at the
same speed.

Order Morpheme

1 Present progressive (-ing)
2-3 Prepositions (in, on)
4 Plural (-s)
5 Irregular past tense
6 Possessive (-’s)
7 Uncontractible copula (is, am are)
8 Articles (the, a)
9 Regular past tense (-ed)
10 Third person present tense, regular (-s)
11 Third person present tense, irregular
12 Uncontractible auxilliary (is, am are)
13 Contractible copula
14 Contractible auxilliary

Table 1. Order of acquisition of morphemes [5]

To use Womb Grammars for this task, we must find an appropriate set of
initial constraints (just as in the example in section 2, the constraints of English

102

are used as the initial set) from which we can weed out those not satisfied at the
child’s proficiency level. For the present task, we assume a lexicon that includes
all features necessary to morphological analysis as per table 1. Morpheme iden-
tification is well studied in the literature for uses such as automatic translation,
grammar checking, and spelling correction.

Some of the needed initial constraints we are already familiar with. For in-
stance, if we include the constraint that a noun requires a determiner, any input
corpus that violates this constraint will prompt its deletion. The resulting out-
put grammar will be incorrect with respect to adult speech, but will adequately
characterize the linguistic competence of the child. We can also output the level
of proficiency by noting, for instance, that if the output grammar does contain
the said requirement constraint, the child is at least at level 8 of the table. In
addition, novel uses of the familiar constraints need to come into play. For in-
stance, precedence is typically tested by itself, but when using it to evaluate
language proficiency, it needs to be tested as a condition to other constraints,
e.g. to check that the copula is not contracted when it is the first word in a
question (as in “Is he sick?”), we need to check if it precedes all other elements
in a question, rather than stipulate that it must precede them.

Other necessary constraints need to be tailored to our task. For instance,
several of the constraints in the table boil down to whether some particular
feature appears in appropriate contexts within the corpus, so all we have to do
is check that this is the case. A case in point: the mastery of irregular verbs, as
evidenced by their correct inclusion in the corpus, would indicate acquisition at
level 5.

Our prototype implementation of incorrect grammar acquisition incorporates
both kinds of constraints. This implementation uses CHRG[7], the grammatical
counterpart of CHR[11]. The mastery criteria can be set as 90% accuracy, which
was the cutoff proposed by Brown[4]. De Villiers and de Villiers[18] introduced
a new “ranking method” based on the relative accuracy with which the mor-
phemes were used in obligatory contexts. Many subsequent studies have used
some variant of these approaches, and our system can be readily adapted to
different methods of rank ordering.

In order for our results to be precise we need that the input corpus be as rep-
resentative as possible. For instance, if we are targeting 90% success rate as mas-
tery, we need a sufficient number of relevant utterances such that we can reliably
translate the number of occurrences into a percentage. Existing child language
acquisition corpora, such as the CHILDES database (http://childes.psy.cmu.edu/),
could be used for this purpose.

4 Inducing Learning Stages for Languages Other than
English

English language acquisition has been very well studied, but there is a dire need
for studying the vast majority of languages in existence. An interesting appli-
cation of Womb Grammars would therefore be to test how much of the English

103

ordering of morpheme acquisition still holds in any other given language. This
could proceed by running our English level proficiency detection system (de-
scribed in section 3) with the (adequately annotated) morphological lexicon of
the language studied. If the results are consistent with those of English, this
would indicate a similar learning order. Any differences could be further ana-
lyzed in order to find out what the actual acquisition order is in this language.
Admittedly this is a rough first approximation, and further work is needed to
perfect the approach. There are some constructions that will be learned in wildly
different order than in English, for example the plural in Egyptian Arabic is very
complex, so children generally do not master it until reaching adolescence.

5 Concluding Remarks

We have argued that Womb Grammar Parsing, whose CHRG implementation is
described in [9], is an ideal aid to guide a student through language acquisition
by using our proposed Universal Womb Grammar. We have also complimented
this prototype with a component that can detect a child’s morphological level
of proficiency in English.

Our work is most probably also applicable for learning English as a second
language, as suggested by studies that show that such learners also progress
orderly along the same stages[10]. Unlike previous work, which focuses on ma-
chine learning techniques (e.g. [20]), our contribution to quality assessment of
utterances in a language being learned proceeds through pointing out which lin-
guistic constraints are being violated. From these, an accurate (while probably
incorrect by academic standards) grammar of the users language proficiency can
be produced, as well as a set of exercises targeting his or her progress.

Admittedly, much more work is needed for a completely encompassing rendi-
tion of this first proposal. For instance, we will need to include phonological and
semantic considerations in future work. This process will surely further uncover
new constraints that need to be added to the familiar ones for the purposes of
our research. Reliable evaluation schemes also need to be devised.

To the best of our knowledge, this is the first time the idea of detecting gram-
matical performance levels for language acquisition materializes through weed-
ing out constraints from a kind of universal constraint-based grammar fragment.
With this initial work we hope to stimulate further research along these lines.

References

1. Blache, P.: Property grammars: A fully constraint-based theory. In: Christiansen,
H., Skadhauge, P.R., Villadsen, J. (eds.) CSLP. Lecture Notes in Computer Science,
vol. 3438, pp. 1–16. Springer (2004)

2. Blache, P., Guenot, M.L., van Rullen, T.: A corpus-based technique for grammar
development. In: Archer, D., Rayson, P., Wilson, A., McEnery, T. (eds.) Proceed-
ings of Corpus Linguistics 2003, University of Lancaster. pp. 123–131 (2003)

104

3. Boyd, A.A.: Detecting and Diagnosing Grammatical Errors for Beginning Learners
of German: From Learner Corpus Annotation to Constraint Satisfaction Problems.
Ph.D. thesis, Ohio State University (2012)

4. Brown, R.: A first language: The early stages. George Allen and Unwin (1973)
5. Carroll, D.: Psychology of Language. Thomson/Wadsworth (2008)
6. Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and maxent discrimina-

tive reranking. In: Knight, K., Ng, H.T., Oflazer, K. (eds.) ACL. The Association
for Computer Linguistics (2005)

7. Christiansen, H.: Chr grammars. TPLP 5(4-5), 467–501 (2005)
8. Cohen, S.B., Smith, N.A.: Covariance in unsupervised learning of probabilistic

grammars. Journal of Machine Learning Research 11, 3017–3051 (2010)
9. Dahl, V., Miralles, J.E.: Womb parsing. In: 9th International Workshop on Con-

straint Handling Rules (CHR 2012), Budapest, Hungary, September 2012. KU
Leuven, Department of Computer Science. pp. 32–40 (2012), Tech. Report CW
624

10. Dulay, H., Burt, M.: Should we teach chidren syntax? In: Language Learning.
vol. 23, pp. 245–258 (1973)

11. Frühwirth, T., Raiser, F. (eds.): Constraint Handling Rules: Compilation, Execu-
tion, and Analysis (March 2011)

12. Headden, W.P., Johnson, M., McClosky, D.: Improving unsupervised dependency
parsing with richer contexts and smoothing. In: HLT-NAACL. pp. 101–109. The
Association for Computational Linguistics (2009)

13. Heift, T., Schulze, M.: Errors and Intelligence in Computer-Assisted Language
Learning. Parsers and Pedagogues. Routledge, New York, USA (2007)

14. Klein, D., Manning, C.D.: Corpus-based induction of syntactic structure: Models
of dependency and constituency. In: Scott, D., Daelemans, W., Walker, M.A. (eds.)
ACL. pp. 478–485. ACL (2004)

15. Lakshmanan, U., Selinker, L.: Analysing interlanguage: how do we know what
learners know? Second Language Research 14(4), 393–420 (2001)

16. Pereira, F.C.N., Schabes, Y.: Inside-outside reestimation from partially bracketed
corpora. In: Thompson, H.S. (ed.) ACL. pp. 128–135. ACL (1992)

17. Pollard, C., Sag, I.A.: Head-driven Phrase Structure Grammars. CSLI, Chicago
University Press (1994)

18. de Villiers, J., de Villiers, P.: A cross-sectional study of the acquisition of grammat-
ical morphemes in child speech. In: Journal of Psycholinguistic Research. vol. 2,
pp. 267–278 (1973)

19. Wang, M., Smith, N.A., Mitamura, T.: What is the jeopardy model? a quasi-
synchronous grammar for qa. In: EMNLP-CoNLL. pp. 22–32. ACL (2007)

20. Yannakoudakis, H., Briscoe, T., Medlock, B.: A new dataset and method for auto-
matically grading esol texts. In: Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language Technologies - Volume
1. pp. 180–189. HLT ’11, Association for Computational Linguistics, Stroudsburg,
PA, USA (2011), http://dl.acm.org/citation.cfm?id=2002472.2002496

105

What constraints for representing multilinearity
in Sign language?

Michael Filhol, Annelies Braffort

LIMSI-CNRS, B.P. 133, F-91403 Orsay cx, France
{michael.filhol,annelies.braffort}@limsi.fr

Abstract. In this paper, we present our current investigations on one
of the main challenges in Sign Language modelling: multilinearity. We
explain the way in which we extract grammatical rules from Sign Lan-
guage corpus, and how we represent them with constraints. Two kinds
are needed: time synchronisation and geometric constraints.

1 Introduction on Sign languages

Sign languages (SLs) are visual-gestural natural languages used by the deaf com-
munities. SLs are less-resourced languages and have no writing system. In other
words, there are very few reference books describing these languages (grammar
rules, etc.), a limited number of dictionaries, and mainly small-sized corpora.
Moreover, SL linguistics and processing research is quite recent, and a proper
formal description system of the rules governing SL is still to be proposed.

In view of building SL processing systems (recognition, generation, transla-
tion...), we need a database of representations for SL elements such as lexical
units or grammatical rules. Formal knowledge on these still being in its infancy,
this requires thorough investigation beforehand, based on annotation and anal-
ysis of SL corpora.

The main challenges in SL modelling are: the relevant use of space in SL
discourse, the iconicity that is present at various levels (iconic morphemes, spa-
tial agreement...), and the multilinearity of the language. This paper gives an
overview of our current investigations on this last property, started during the
European project Dicta-Sign1. Section 2 explains how we analyse corpora to
build our rules, and section 3 presents our use of constraints to represent them.

2 Building rules by linking form to function

The first important fact about SL is that all body articulators from the
waist up, whether manual, non-manual, skaletal or muscular, can be relevant
as they may all—though they do not always—carry meaning. Therefore, all
visible activity in a Sign production must be included in the study.

1 http://www.dictasign.eu

106

We have observed and partially annotated the French part of the DictaSign
corpus [10] and the older LS-Colin corpus [2]. With as few articulators as eye-
brows, eye-gaze and both left and right hand activity (and yet the signing body
involving many more), it is already clear that articulators do not align in
any trivial way. That is the second important specificity of SL to deal with.

With these two SL characteristics in mind, we proceed with the corpus study
to find systematic links between:

– surface form features, i.e. observable/annotated movements or positions of
body articulators like a cheek puff, directed eyegaze, hand location change
or shoulder line rotation;

– and linguistic function, i.e. the possibly language-dependant interpretation
of the form, taken to be part of the signer’s discourse intent.

Funtions can be identified on all layers of the language; none is linked to a spe-
cific one. Any linguistic operation purposely produced may be called a function,
whether it inclines to a morphemic, lexical, syntactic or even discourse level.
For example, turning a clause into an interrogative, using a known lexical sign,
adding modality to a verb or outlining a full speech with intermediate titles are
all possible functions. The point for our study is now to find features of the
production form that are consistantly used over many occurrences of a linguistic
function. Factoring out those form invariants raises a candidate set of necessary
features for a given function. Describing this set of features under a label for the
function raises what we call a production rule for the function.

For example, it is already well-documented that in LSF, space locations can
be activated by pointing at the target in the signing space with the strong hand,
immediately after directing the gaze towards the same target. Other elements are
sometimes held on facial articulators or performed by the weak hand, but they
do not occur consistantly while the eyegaze-then-point structure is invariant.

Formally describing the invariant above will create a production rule which
can be labelled “point and activate locus”. We explain how we handle those
descriptions in the next section.

3 Constraints to represent production rules

There are two problems here to address. One is time synchronisation of parallel
activity on a multi-linear signing score, in our example the simultaneity of gaze
and index. The second is articulation of body articulators in space, e.g. the hand
shape for the pointing gesture and the common direction for both eyegaze and
index.

The next section explains the limits in existing models; the following two
present the approach we use at LIMSI.

3.1 Traditional models

Most models in traditional Sign linguistics do not account for articulator syn-
chronisation issues as fundamental elements of the SL discourse. They rather

107

define elementary movements and/or sign units that can be concatenated [12,
11]. Some models [8] do promote time to a more essential place in their descrip-
tions. Liddell and Johnson have shown that signs reveal (rather short) periods
when all “features” of the hands align to form intentional postures, between
which transitions take place to change from one established posture to the next
(see fig. 1a further down). However, all of these models have only really been
used (and even designed in the first place) for lexical units of SL, primarily even
for “fully lexical signs” (i.e. non depicting). Though, SLs generally enrol more
body articulators and even provide with productive ways of creating unlisted
iconic units on the fly [3, 7].

Unfortunately, not much exists on SL formal modelling on the clause/sentence
level. The most relevant progress is the ViSiCAST2 and eSign projects and their
generative HPSG framework [9]. The basic timing unit in all generative ap-
proaches is the lexical item at the bottom of the syntax tree. Thus, any phonetic
feature of the body must be borne by a lexical unit composing the clause and the
productions burn down to a single tier carrying a lexical sequence. Articulator
synchronisation is then only possible using the lexical boundaries.

A first account for multi-track description was given by the “P/C” formalism
[6]. It defines two ways of conjoining parts of a signing activity: partitioning for
parallel specification and constituting for sequence. But we argue [5] that it
does not allow for abstract description of parts that overlap in time. Section 3.2
presents our approach to tackle this problem with free sets of constraints.

In addition to the timing issues, another question raised is how to specify
the signing activity happening at a given time. The problem with L&J’s repre-
sentation is that every moment in time requires the same fixed set of parametric
values, numbered a, b, c... in fig. 1a. But similarly to time constraints, we want
this new specification to be flexible hence allow for under-specification if it is
needed. Section 3.3 below deals with this issue.

3.2 Time synchronising constraints

While L&J produce good evidence that much of the signing activity does syn-
chronise with postures, observation reveals that many constructs fall out of the
scheme and require a more complex synchronisation technique. Many produc-
tions break the set of body articulators into subsets that act more or less indepen-
dently, each in its own active period (a time interval, TI henceforth). Sometimes
the full face acts as a group while the hands are moving; other times a few
facial parts take on a different linguistic role and de-synchronise from rest of
the face and hands; hands do not always work together; etc. Our proposition is
to combine those two sync schemes into a same language for a better coverage
of SL linguistic structures. We propose the AZee language, combination of the
following two.

Zebedee is a language designed to specify the posture–transition patterns
[4]. A description in Zebedee (or zebedescription) specifies:

2 http://www.visicast.cmp.uea.ac.uk

108

1. an alternation of “key posture” (KP) and transition units (the horizontal
axis in figure 1b below;

2. the articulation that takes place in each of those units (this is further ex-
plained in the next section).

Fig. 1. (a) Liddell and Johnson’s phonetic sequence with a fixed number of parameters;
(b) Timing units in Zebedee: each unit is described with a variable number of elements

Azalee is a language designed to specify the free-hand (i.e. not necessarily
aligned) synchronisation patterns for sets of separate time intervals (the TIs) on
a timeline. Each Azalee specification (or azalisting) is a container for the two
following parts, together specifying the intended rule fully:

1. all (usually overlapping) TIs are arranged on the timeline following temporal
precedence constraints;

2. each TI specifies the signing activity taking place within.

In part (1), TIs are time-arranged with a minimal yet sufficient set of constraints
in order not to over-specify the surface production and allow for any needed
flexibility. The reason for preferring minimality for these sets is that we observe
a lot of nested structures, all acting on the body articulators simultanously. Any
superfluous constraint on an articulator in a rule will prevent other rules to use
it freely, which may result in unsatisfactory productions.

The temporal precedence constraints can be of any form, whether strict or
flexible, of precedence or duration, over full TIs using Allen logic operators [1] or
over single boundaries. In part (2), a TI can either make use of a nested Azalee
description, or use Zebedee for a simpler sync pattern.

Figure 2 illustrates our example rule. Its Azalee pattern (outer box) is com-
posed of 2 TIs, ‘eye gaze’ and ‘pointing sign’, which are zebedescriptions (KP–T
alternation patterns). This flexible combination of two nestable timing patterns
allows to account for complex synchronisation between body articulators.

3.3 Articulatory constraints

Fixed sets of parameters or features are not satisfactory to describe articulatory
postures. As we have explained:

109

Fig. 2. AZee: an example of Azalee and Zebedee combination

– on the one hand, articulators are not all linguistically relevant all the time,
thus including all of them in a fixed-set model would lead to a lot of over-
specification;

– on the other hand however, any articulator of the upper-part of the body
can carry meaning at some point, thus any exclusion from the fixed set leads
to possible under-specification.

To avoid both problems, we choose sets of necessary and sufficient constraints
to specify both as much and as little as needed at any moment in time. In
other words recalling the minimality of the sets of time constraints, we aim at
minimal sets for the articulatory constraints. The constraints are mainly of two
types: orientation (to align bones along vectors) and placement (to bring a body
location to a point in space or in contact with another).

For example, throughout the pointing gesture, we need to extend the index,
which takes at least the following constraint, literally aligning the proximal index
bone of the strong hand (side S below) in the same direction as the second:

Orient DIR!index(S,1) along DIR!index(S,2)

Placing the hand—the palm site (@PA) of the strong hand—in front of the body
(forward fron the sternum site @ST) for the initial key posture will be written:

Place @WR(S) at @ST + <FWD | medium>

Each timing unit holds a conjunction of such constraints, and the resulting set is
as large as necessary and as small as sufficient. Figure 1b illustrates this approach
and contrasts with previous figure 1a. The vertical depth needed to specify body
articulation in a zebedescription may vary in time, according to the number of
articulatory constraints. Note that they are fundamentally geometric; all typical
geometric transformations (translations, symmetries, etc.) are supported.

Also, expressions can contain context references enclosed in square brack-
ets to account for significant (often iconic) context variations. For our example
above, the distal bone of the pointing finger !index(S,3) must be oriented to
point at the target, which is a context dependency. The constraint will be some-
thing like3:

Orient DIR!index(S,3) along <ORIGIN!index(S,3), [target]>

3 Operator <..., ...> creates a vector from two geometric points.

110

4 Prospects

We have presented the issues in formalising systematic links between form and
function. Our methodology, based on SL corpus analysis, is applied regardless
of the level, from the sub-lexical level to discourse structure. The formalisation
of the production rules uses the AZee model, which allows to express Sign artic-
ulator synchronisation with time constraints, and body postures and movement
with geometric constraints.

While the Zebedee part of this model is already well assessed (2,000+ LSF
signs described), we have so far only really explored a dozen Azalee structures.
We intend to continue this work to increase this number. A thorough evaluation
will then be a starting point for implementation of AZee rules in Sign synthesis
software applications, a longer-term prospect being text-to-SL translation.

In parallel and in order to collect 3d/spatial data, we will have to collect a
new kind of SL corpus, built using a motion capture system. This will allow us
to conduct similar studies on the spatial organisation of SL and then provide
with a finer representation of the signing space and its use in SL discourse.

References

1. Allen, J. F.: Maintaining Knowledge about Temporal Intervals. ACM 26:11, pp. 832–
843 (1983)

2. Braffort, A., Chtelat-Pel, .: Analysis and Description of Blinking in French Sign Lan-
guage for Automatic Generation, in Gesture and Sign Language in Human-Computer
Interaction and Embodied Communication, LNCS/LNAI vol. 7206, Springer (2012,
tbp)

3. Cuxac, C.: Langue des signes franaise, les voies de l’iconicit. Ophrys, Paris (2000)
4. Filhol, M.: Zebedee: a lexical description model for Sign Language synthesis. LIMSI-

CNRS, Orsay (2009)
5. Filhol, M.: Combining two synchronisation methods in a linguistic model to describe

Sign Language, in Gesture and Sign Language in Human-Computer Interaction and
Embodied Communication, LNCS/LNAI vol. 7206, Springer (2012, tbp)

6. Huenerfauth, M.: Generating American Sign Language classifier predicates for
English-to-ASL machine translation. PhD thesis, University of Pennsylvania (2006)

7. Johnston, T., Schembri, A.: Australian Sign Language (Auslan): An Introduction
to Sign Language Linguistics. Cambridge University Press (2007)

8. Liddell, S. K., Johnson, R. E.: American Sign Language, the phonological base. Sign
Language studies 64, pp. 195–278, Cambridge University press (1989)

9. Marshall, I., Sfr, .: Sign Language generation in an ALE HPSG, in Proceedings of
the HPSG04 conference, Leuven, Belgium (2004)

10. Matthes, S., Hanke, T., Storz, J., Efthimiou, E., Dimiou,, N., Karioris, P., Braffort,
A., Choisier, A., Pelhate, J., Safar, E.: Elicitation tasks and materials designed for
DictaSign’s multi-lingual corpus. LREC, Corpora and Sign Language technologies,
pp. 158–163 (2010)

11. Prillwitz, S., Leven, R., Zienert, H., Hanke, T., Henning, J.: HamNoSys version
2.0, an introductory guide. International studies on Sign Language communication
of the Deaf, Signum press, Hamburg, vol. 5 (1989)

12. Stokoe, W.: Sign Language structure: an outline of the visual communication sys-
tem of the American Deaf Studies. Linguistics, occasional papers, vol. 8 (1960)

111

Author Index

B
Becerra-Bonache, Leonor 99
Blache, Philippe93
Braffort, Annelies 106

C
Chatzikyriakidis, Stergios1
Christiansen, Henning 74
Cooper, Robin 51
Cummins, Chris 30

D
Dahl, Veronica 99
Dodge, Ellen 63
Dobnik, Simon 51

E
Eshghi, Arash 39

F
Feldman, Jerome 63
Filhol, Michael 106

G
Giraldi, Luca 63

H
Hough, Julian 39

L
Larsson, Staffan 51
Loukanova, Roussanka 18
Luo, Zhaohui 1

M
Miralles, Emilio 99

O
Oliva, Jesús 63

P
Petitjean, Simon 86
Purver, Matthew 39

S
Sato, Yo . 39

V
van de Camp, Matje74

