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Preface

These are the proceedings of the International Workshop on High-level Method-
ologies for Grammar Engineering (HMGE), held at ESSLLI 2013 in Düsseldorf,
Germany . This workshop follows a series of workshops dedicated to Grammar
Engineering Across Frameworks (GEAF), which took place in 2007 (Stanford),
2008 (Manchester) and 2009 (Singapore). These workshops offer a place to report
on research about the design and use of deep grammars for the representation
and processing of language.

HMGE was open to submissions on topics including, but not limited to:

– development, maintenance and enhancement of grammars
– semi-automatic acquisition of grammars
– debugging environments for grammar design
– dedicated description languages for grammar engineering
– applications of large-scale grammars

10 papers have been selected via the rigorous efforts of a Program Commit-
tee composed of renowned researchers. Each paper has been reviewed by three
independent committee members.

HMGE would not have been possible without the precious help of the pro-
gram committee, the organizing committee, the ESSLLI local organizing com-
mittee and their sponsors. Thanks to them all.

Wishing you a fruitful reading,
yours faithfully

June 2013 Denys Duchier & Yannick Parmentier
Local Chairs
HMGE 2013
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A Type-Logical Treebank for French

Richard Moot

LaBRI (CNRS), Bordeaux University
Richard.Moot@labri.fr

1 Introduction

Categorial grammars have interesting theoretical advantages, most notably their
very clean syntax-semantics interface. In the last decade, research in Combina-
tory Categorial Grammar has shown that this is not merely a theoretical ad-
vantage, but that, with the appropriate resources and tools — an annotated
treebank, the CCGbank [13], a very efficient parser [10] and a semantic lexicon
[4]) — we can use categorial grammars for wide-coverage, deep semantic analysis.
Applications of the resulting wide-coverage semantics include natural-language
question-answering [5] and computing textual entailments [6].

A key element has been the development of the CCGbank, which has al-
lowed both parameter-optimization for the wide-coverage parser and provided a
framework (in types and in derivations) for the semantic applications.

Categorial grammars in the logical tradition [15, 18, 17] have stayed somewhat
behind in terms of their application to large-scale linguistic data. The goal of
the current paper is to describe the TLGbank, a semi-automatically extracted
treebank containing type-logical proofs, created with the explicit goal of making
similar wide-coverage parsing and semantics possible in the type-logical context.

2 The French Treebank

The French Treebank (FTB, [1]) is a set of syntactically annotated news articles
from the newspaper Le Monde. The FTB consists of 12,891 annotated sentences
with a total of 383,227 words. The FTB has previously been used to extract
lexical-functional grammars [20] and tree adjoining grammars [11].

For the annotation, the FTB uses simple, rather flat trees with some func-
tional syntactic annotation (subject, object, infinitival argument, etc.). Con-
secutive multiword-expression have been merged in the annotation and neither
traces nor discontinuous dependencies have been annotated. Figure 1 in Sec-
tion 4.1 shows a fragment of a sentence from the FTB. Verb clusters are treated
as a constituents (labeled VN ) and the arguments of the verb occur as sisters
of the verbal cluster (eg. the infinitival argument with functional role OBJ in
Figure 1).



3 Type-Logical Grammars

This section is a very short introduction to (multimodal) type-logical grammars.
More detailed introductions can be found in Section 2.4 of [15] and in Chapter 5
of [17].

The atomic formulas are n (for nouns), np (for noun phrases), ppx (for prepo-
sitional phrases, with x the preposition heading the phrase) and sx for sentences
(distinguishing between several types smain for main, tensed sentence, swhq for
a wh-question, sq for a sentence introduced by (that) and further types for pas-
sives spass, infinitives sinf, and past sppart and present sppres participles; this is
inspired by the FTB annotation, though passives are not annotated as such, and
the categorial treatments of [9, 13] implemented using first-order logic [16]).

An intransitive verb is assigned np\smain, indicating that it requires a noun
phrase to its left in order to form an inflected sentence. Similarly, transitive verbs
are assigned the formula (np\smain)/np, requiring a noun phrase to their right
in order to form an intransitive verb.

Table 1 lists (a slightly simplified version) of the most common rules used in
the extracted treebank. Section 3.1 sketches some linguistic phenomena requiring
additional rules and gives some references as to where to find these rules.

w ` A
Lex

x ` A
Hyp

X ` A/B Y ` B

X ◦ Y ` A
/E

X ` B Y ` B\A
X ◦ Y ` A

\E

x ` B....
X ◦ x ` A
X ` A/B

/I

x ` B....
x ◦X ` A
X ` B\A \I

X[Y ] ` B Z ` B\1A
X[Y ◦ Z] ` A

\1E

x ` B....
X[Y ◦ x] ` A

X[Y ] ` A/3121B
/3121I

Table 1. Logical rules for multimodal categorial grammars

We will abbreviate the lexicon rule as w
A . The rule for /E simply states that

whenever we have shown an expression X to be of type A/B and we have shown
an expression Y to be of type B, then the tree with X as its immediate subtree
on the left and Y as its immediate subtree of the right is of type A.

An easy instantiation of this rule (with X := the, Y := student, A := np,
B := n) would be the following (the \E rule is symmetric).
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the ` np/n student ` n

the ◦ student ` np
/E

The two rules on the bottom of the figure require some special attention.
The \1E rule is an infixation rule. This rule is used for adverbs (and other VP
modifiers) occurring after the verb. Like the \E rule, it takes a B formula as its
argument, but infixes itself to the right of any subtree Y of X (X[Y ] denotes a
tree X with a designated subtree Y 1). An example is shown below for the VP
“impoverishes the CGT dangerously”. The interest of this rule is that it allows a
uniform type assignment for adverbs occurring post-verbally, regardless of other
verb arguments.

appauvrit ` (np\s)/np la ◦ CGT ` np

appauvrit ◦ ◦(la ◦ CGT) ` np\s /E
dangereusement ` (np\s)\1(np\s)

(appauvrit ◦ dangereusement) ◦ (la ◦ CGT)
/E

Finally, the /3121 rule is an extraction rule, extracting a B constituent from
any right branch inside an X constituent. Section 4.3 shows an example.2

3.1 Additional Linguistic Phenomena

The rules listed in Table 1 correspond to the most frequently used rules for the
type-logical treebank. The additional rules are a) for the product (primarily used
for coordination of multiple arguments (as shown in sentence (1) below, where
the two verb arguments np and pp are conjoined, see Section 2.4 of [18]), b) for
gapping (as shown in sentence (2) below, where the transitive verb “atteindre”
is absent from the second clause; a multimodal solution is proposed in [12]), and
c) for some special rules to treat past-perfect quoted speech, as shown in sen-
tence (3) below. The parenthesized sentence is argument of the past participle
“ajouté” and, in addition, this argument is discontinuous. The solution is essen-
tially to analyse the entire verb group missing the s argument “a ajouté ...” as
smain\1smain.

(1) ...
...

augmenter
increase

[np
[np

ses
its

fonds
equity

propres ]
]

[pp
[pp

de
by

90
90

millions
million

de francs
francs

]
]

et
and

[np
[np

les
its

quasi-fonds
quasi-equity

propres ]
]

[pp
[pp

de
by

30
30

millions
million

]
]

...

...

(2) Le
The

salaire
wages

horaire
per hour

atteint
reach

dorénavant
from now on

34,06
34,06

francs
francs

et
and

le
the

SMIC mensual brut
gross minimum monthly wage

[tv
[tv

]
]

5756,14
5756,14

francs.
francs.

1 For adverbs, as here, Y is typically the verb, but in principle infixation is possible
anywhere (an admitted simplification)

2 For readers familiar with the displacement calculus [19], the infixation construction
A\1B corresponds to B̌ ↓ A and the extraction construction A/3121B to (̂A ↑ B)
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(3) [sl
[sl

Les
The

conservateurs],
Conservatives],

a
has

ajouté
added

le
the

premier
Prime

ministre
Minister

...,

...,
[sr
[sr

“ne
“

sont
are

pas
not

des opportunistes
opportunists

qui
who

virevoltent
flip-flop

d’une
from one

politique
policy

à
to

l’autre
another

]
]

4 Grammar Extraction

Grammar extraction algorithms for categorial grammars follow a general method-
ology (see, for example, [7, 13], shown as item 2 below) with some additional rules
to deal with the quirks of the format of the input treebank. A high-level descrip-
tion of the grammar extraction algorithm used for the FTB is given below.

1. split multiword expressions,
2. binarize the tree, keeping track of the distinction between modifiers and

arguments, arguments are assigned formulas based on their syntactic label
(eg. np for a noun phrase argument, np\sinf for an infinitival argument, etc.)

3. reattach verb cluster arguments,
4. rearrange coordinations,
5. insert traces in the appropriate places and assign the appropriate formulas

to relative pronouns and clitics

Unfortunately, nearly all of these steps require at least some human inter-
vention: the FTB annotation makes the distinction between modifiers and argu-
ments only for certain categories (sentences, infinitive phrases, present participle
phrases, but not past participle phrases or noun phrases), meaning that for many
major categories this information is not explicitly annotated and needs to be ver-
ified manually.

4.1 Verb Clusters

As discussed in Section 2, verb clusters (which include clitics and adverbs) and
their arguments are sisters in the FTB annotation trees. Figure 1 shows an
example corresponding to sentence (4).

(4) Ils
They

ont
have

déjà
already

pu
been able to

constater
note

que
that

(...)
(...)

In a categorial setting, we obtain a much simpler analysis if these VN arguments
are arguments of the embedded verbs instead (in the current case, we’d like
the infinitival group to be the argument of the past participle “pu” (of the
verb “pouvoir”, can). At the bottom of Figure 1 we see the rightward branching
structure which results from the corpus transformation. Note also how the adverb
“déjà” (already) is assigned the VP-modifier formula (np\sx)/(np\sx) which
is parametric for the type of sentence (in essence, this is a formula with an
implicit first-order quantifier ranging over the different sentence types, see [16]
or Section 2.7 of [15]; in the figure, x is instantiated to ppart).
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SENT

VPinf-OBJ

Ssub-OBJ

que ...

VN

VINF

constater

VN

VPP

pu

ADV

déjà

V

ont

CLS-SUJ

Ils

s

np\smain

np\sppart

np\sppart

np\sinf

sq

que ...

(np\sinf)/sq

constater

(np\sppart)/(np\sinf)

pu

(np\sx)/(np\sx)

déjà

(np\smain)/(np\sppart)

ont

np

Ils

Fig. 1. Rebracketing a verbal group and its arguments

4.2 Coordination and Interpunction Symbols

The sentences below illustrate some of the problems with coordinations which
we will discuss in this section.

(5) Elles
They

reprennent
resume

et
and

amplifient
amplify

des programmes
programs

existants
existing

ou
or

en cours d’
currently being

adaptation
adapted

(6) Les
The

lieux
places

où
where

les
the

deux
two

derniers
last

morts
deaths

ont
have

été
been

recensés,
reported,

lundi
Monday

30
30

décembre,
December,

La Yougoslavie
Yugoslavia

et
and

La Colombie,
Colombia,

(...)

Figure 2 shows the FTB syntactic structure of sentence (5). In categorial gram-
mars, conjunctions like “ou” (or) are generally assigned instances of the formula
(X\X)/X (for a contextually appropriate choice of the formula X). The first
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conjunction is of the two transitive verbs (instantiating X with the formula
(np\smain)/np) who share both the subject and the object. For the second co-
ordination it is the adjective and the prepositional phrase which are conjoined
(though this is not so clear from the annotation only, where it seems an unlike
coordination between an np and a pp). As is standard in categorial grammars, we
assign both the adjective and the PP the formula n\n (this is the standard as-
signment for a PP modifying a noun), turning this seemingly unlike coordination
into a trivial instance of the general coordination scheme.

SENT

NP-OBJ

COORD

PP

en cours d’adaptation

ou

AP

ADJ

existants

NC

programmes

DET

des

VN

COORD

VN

V

amplifient

CC

et

V

reprennent

CLS-SUJ

Elles

Fig. 2. Coordination

The (somewhat simplified) FTB annotation of sentence (6) of Figure 3 on the
next page, shows another problem: appositives, which are treated by assigning a
coordination-like formula to the interpunction symbol preceding them (a similar
solution is used for parentheticals and for most extrapositions3) Additionally,
we have to distinguish between the NP-MOD temporal adverb (which modifies
the verb “recensés” and the NP-MOD for the appositive (which conjoins to “Les
lieux”, the places)

As the example shows, these cases are difficult to infer from the information
provided by the FTB annotation alone, and therefore must be verified manu-
ally; in total a bit over 20% of the interpunction symbols — over ten thousand
interpunction symbols — are assigned coordination-like categories.

3 Not all extrapositions can be analysed as coordinations this way. In the example
below

(i) A
To

celà
that

s’ajoute
adds-itself

une
a

considération générale
general consideration

: (...)

“A cela” is assigned s/(s/3121ppa) allowing it to function as a long-distance pp
argument to “s’ajoute”.
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NP-SUJ

Srel

NP-MOD

la Yougoslavie ...

NP-MOD

lundi 30 décembre ,où ... recensés ,

NC

lieux

DET

Les

Fig. 3. Appositives

4.3 Traces and Long-Distance Dependencies

As an example of a simple long-distance dependency in the corpus, consider the
example below.

(7) Premier
First

handicap
handicap

auquel
to which

il
it

convenait
was agreed

de
to

s’attaquer
attack

:
:

l’inflation
the inflation

Figure 4 on the next page shows how the insertion of traces works. In the input
structure on the top of the figure, “auquel” (to which) is assigned a prepo-
sition+pronoun POS-tag and assigned the role of a prepositional object with
the preposition “à” (to). However, this preposition is an argument of the verb
“s’attaquer à” (to attack), which occurs much lower in the annotation tree. Since
none of these dependencies are annotated in the French Treebank, all relative
pronouns, wh-pronouns and clitics — a total of over 3,000 occurrences in the cor-
pus — have been manually annotated with the correct long-distance dependen-
cies. At the bottom of Figure 4, the manually added long-distance dependency
is shown.

4.4 Analysis

Categorial grammars, much like lexicalized tree adjoining grammars and other
strongly lexicalized formalisms, use very construction-specific lexical entries.
This means, for example, that when a verb can be used both as a transitive
verb and as an intransitive verb, it will have (at least) two distinct lexical en-
tries. For extracted grammars, this generally means a very high level of lexical
ambiguity.

Using the most detailed extraction parameters, the final lexicon uses 1101
distinct formulas (though only 800 of these occur more than once and, 684 more
than twice and 570 at least five times).

Using a slightly less detailed extraction (which, for example, distinguishes
only ppde, ppa and pppar and uses simply pp for prepositional phrases headed
by other prepositions) there are 761 different formulas used in the lexicon (of
which only 684 occur more than once, 546 occur more than twice and 471 occur
at least five times)

A Type-Logical Treebank for French 7



NP

Srel

VN

VPinf-DE OBJ

VN

VINF

attaquer

CLR

s’

P

de

V

convenait

CLS-SUJ

il

PP-A OBJ

NP

P+PRO

auquel

NC

handicap

ADJ

Premier

auquel

(n\n)/(sm/312
↓
1ppà)

[Lex]

il

np
[Lex]

convenait

(np\sm)/(np\sdi)
[Lex]

de

(np\sdi)/(np\si)
[Lex]

s’

clr
[Lex]

attaquer

(clr\(np\si))/ppà

[Lex]
p0 ` ppà

[Hyp]1

a ◦ p0 ` clr\(np\si)
[/E]

s’ ◦ (a ◦ p0) ` np\si

[\E]

de ◦ (s’ ◦ (a ◦ p0)) ` np\si

[/E]

c ◦ (de ◦ (s’ ◦ (a ◦ p0))) ` np\sm

[/E]

il ◦ (c ◦ (de ◦ (s’ ◦ (a ◦ p0)))) ` sm

[\E]

il ◦ (c ◦ (de ◦ (s’ ◦ a))) ` sm/312
↓
1ppà

[/I]1

auquel ◦ (il ◦ (c ◦ (de ◦ (s’ ◦ a)))) ` n\n
[/E]

Fig. 4. Adding traces to the output

Even in this second lexicon, many frequent words have a great number of
lexical assignments. The conjunction “et” (and) has 86 different lexical formulas,
the comma “,” (which, as we have seen, often functions much like a conjunction)
is assigned 72 distinct formulas, the adverb “plus” (more) 44 formulas (in part
because of possible combinations with “que”, than), the prepositions “pour”,
“en” and “de” 43, 42 and 40 formulas respectively, and the verb “est” (is) 39
formulas.

Though this kind of lexical ambiguity may seem like a problem when using
the lexicon for parsing, well-known techniques such as supertagging [2], which
assign the contextually most probable set of formulas (supertags) to each word,
can be used to reduce the lexical ambiguity to an acceptable level. To give an idea
as to how effective this strategy is in the current context and with the reduced
lexicon of 761 formulas, when assigning only the most likely formula to each word,
90.6% of the words are assigned the correct formula, when assigning each word
all formulas with probability greater than 1% of the most likely supertag (for
an average of 2.3 formulas per word), the supertagger assigns 98.4% (complete
treebank, using ten-fold cross-validation).
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4.5 Comparison With the CCGbank

Apart from the obvious theoretical differences between CCG and type-logical
grammars and the different treatment of certain linguistic phenomena — such
as extraction — that this implies, it is worth spending some time on some of the
less obvious differences between the two treebanks.

Whereas the CCGbank uses a certain number of non-combinatory rules (no-
tably for extraposition and coordination, but also to transform passives np\spass

into adjectives n\n and (bare) nouns n into noun phrases np, the current tree-
bank uses no non-logical rules. As a result, the lexicon of the type-logical tree-
bank does more of the work (and consequently, the taks of the supertagger is
more difficult).

If we want to reduce the size of the lexicon in a way similar to the CCGbank,
there are two basic options:

– the first option is to allow non-logical rules in the same spirit as the CCG-
bank,

– the second option, more in line with the general spirit of type-logical gram-
mars, is to exploit the derivability relation and to replace the analysis of
passives by a formula F such that F ` n\n (see Section 4.4.2 of [18] for a
particularly nice solution).

However, we leave the transformation of the proofs in the corpus in these
two ways to future research.

5 Tools

To facilite annotation, correction and parsing, several tools have been developed,
using a combination of Prolog and TclTk. In addition, several well-known tools
have been used for the exploitation of the corpus: the Stanford Tregex tool
[14] for browsing and querying the French Treebank (as well as some of its
transformations) and the C&C tools [10] for training POS-tag and supertag
models using the annotated corpus.

Figure 5 on the next page shows a screenshot of the interface to the supertag-
ger and parser. This “horizontal” interface allows the user to type in sentences
and see the resulting semantic output from the parser. The darker-shader per-
centage of the block to the left of the formula gives a visual indication of the
probability assign to the formula (the exact numbers can be seen by moving the
mouse over the corresponding area). Apart from some configuration options, this
interface is not interactive.

Figure 6 shows a screenshot of the “vertical” interface to the parser and su-
pertagger. This is an interactive interface, allowing the user to select (or type in)
the desired formula — to help prevent errors, the current frequency of the chosen
formula for the current word is displayed after a manual choice of formula— as
well as allowing the user the select the parser rule applications by clicking on
one of the premisses for a rule (an additional dialog pops up in case the rule
choice is ambiguous). The weight column shows the log-probability of the item.

A Type-Logical Treebank for French 9



Fig. 5. Screenshot of the supertagger interface

Fig. 6. Screenshot of the interactive parser

6 Bootstrapping

Given that the French Treebank is somewhat small compared to other treebanks
and given that the conversion of the FTB to the type-logical treebank was rather
labour-intensive, it makes sense to look at more effective and efficient ways of
increasing the size of the treebank. The tools described in the previous section,

10 Richard Moot



interfacing with the supertagger and the parser for the core corpus are useful in
this respect.

Currently, slightly over 1,600 additional sentences have been annotated (for
a total annotated corpus of 14,539 sentences and 421,348 words). Most of these
sentences come from the Sequoia treebank [8] and the French Timebank [3].
The observed accuracy of the supertagger for these sentences from the L’Est
Républicain newspaper is slightly lower than the results reported in Section 4.4:
in 88.1% of cases, the best supertag is correct, and 97.6% of cases the correct
supertag has probability greater than 1% of the best supertag (compared to 90.6
and 98.4% respectively for the cross-validated results). Part of this difference
might be attributed to stylistic differences between the two newspapers (initial
experiments with annotating unseen sentences from Le Monde seem to confirm
this) but it may also be the case that cross-validation gives a somewhat optimistic
picture of actual performance on unseen data from other sources (the different
training and test sets not being completely independent).

7 Obtaining the Tools and Resources

All tools, as well as the POS-tagger and supertagger models and a semantic
lexicon in the style of [4], are available from the author’s website under the
LGPL licence. The TLGbank, being a derived work, is available under the same
licensing conditions as the French Treebank. The Sequoia/L’Est Républicain
part of the treebank is available under the LGPL-LR licence.

8 Conclusions

We have shown how the French Treebank has been semi-automatically trans-
formed into a set of derivations in multimodal type-logical grammars. This is an
important first step in training an evaluating wide-coverage type-logical parsers
and we hope to see several competitive type-logical parsers in the future.
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Abstract. In this article, we describe the way we use hierarchical clus-
tering to learn an AB grammar from partial derivation trees. We describe
AB grammars and the derivation trees we use as input for the clustering,
then the way we extract information from Treebanks for the clustering.
The unification algorithm, based on the information extracted from our
clusters, will be explained and the results discussed.

1 Introduction

The aim of this article is to present a new grammatical inference method.
The input of our inference procedure is partially specified derivation trees,

which are then guided by a hierarchical clustering to know which variables must
be unified. The basic idea is that words in similar context get similar formulas.
The numerous information from the treebanks are used in the clustering step
and we not use a supertagger to tame the lexical ambiguity, given we already
did it in [Sa2] and we wanted to stay close to a Buszkowski and Penn inference.

The categorial grammars we use are the AB grammars, defined by Ajdukiewicz
[Aj1] and Bar-Hillel [Ba1] from the core of categorial grammars and are a sub-
system of both the Lambek calculus [La1] and Combinatory Categorial Gram-
mar1 [Ho1]. They have only two elimination rules (see table 1).

Table 1. The elimination rules for AB grammar

A/B B

A
[/E]

B B\A
A

[\E]

They are used since Lambek’s work to represent formally naturals language,
and if some constructions are complex to treat, some solutions are summed up
in the article of Moot [Mo2].

Grammatical inference for categorial grammars is performed in three ways,
depending on the method and the input structures.

1 Though note that we follow Lambek’s convention of always having the result category
above the slash.



The method of Adrians [Ad1, TA1] starts from sentences with no structure.
Though this works well in many cases, it is hard for such grammars to correctly
infer PP attachments and since there are treebanks where this information has
been correctly annotated, it makes sense to exploit this information.

Methods using partial structures are described by Buzkowski and Penn [Bu1,
BP1] or Kanazawa [Ka1], which are clearly in a Gold paradigm learning [Go1].
The input structures are described later (section 3), but the output is a rigid
grammar in the case of Buszkowski and Penn or a k-valued grammar in the case
of Kanazawa’s algorithm. A rigid grammar is not representative of a natural
langage, and when k ≥ 2, it has been proved that the problem of grammatical
inference is NP-hard [CF1]. However, even a 2-valued grammar cannot represent
natural languages: experience with extracted grammars shows that the maximum
number of types per word is typically large, with many frequent words having
over forty types [Ho1,SM1].

Finally, we have the methods using fully specified structure like the one of
Hockenmaier [Ho2], which computes a Combinatory Categorial Grammar, or
Sandillon-Rezer and Moot [SM1], which uses a generalized tree transducer to
transform syntactic trees into derivation trees of an AB grammar [La1]. It is the
output of the last method that serves both as a gold standard for evaluation
and, after erasing the manually annotated formulas while keeping only the rule
names, as input to our inference algorithm, and we focus on the way we get trees
in section 2.

In this article we combine the second method which uses partial structures,
complemented with some information from the treebanks, with clustering. We
evaluate both the complexity of the task and the quality of the obtained lexicon.
Clustering is done using a similarity measure based on the local context of the
words, directly extracted from a treebank.

The derivation trees are extracted from annotated treebanks. We use two dif-
ferent treebanks for this purpose: the French Treebank [AC1] and Sequoia [CS1].
The two corpora are syntactically annotated using similar annotation proto-
cols [AC2]. The main differences between the two are the number of sentences
and the origin of these sentences. The French Treebank is composed by 12.351
sentences which come from a selection of articles from the newspaper Le Monde,
and Sequoia is composed by 3.204 sentences coming from various sources, like
Wikipedia, the newspaper L’Est Républicain, or medical references. Figure 1
shows an example of a syntactic tree. The pre-terminal nodes contain the POS-
tag of the word, the other internal nodes contain the phrasal type of their subtree
and the leaves represent the words of the sentence.

Since the annotation format does not correspond to AB derivation trees, we
use a generalized tree transducer to transform the trees from both treebanks
into AB derivation trees.

We will start by describing the AB grammar generated by the tree transducer,
then we will briefly recall the general unification algorithm for AB grammars and
describe the one we use. In the fourth section, we will describe the format of the
vectors we use as input for the clustering step. The evaluation of our method
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will be shown just after, and a discussion about possible extensions of this work
will precede the conclusion.

SENT

NP-SUJ

DET

Le

NPP

CBV

VN

V

autorise

NP-OBJ

NPP

Indosuez

VPinf-A OBJ

P

à

VN

ADV

ne pas

VINF

déposer

NP-OBJ

DET

d’

NC

OPA

PP-MOD

P

sur

NP

DET

la

NPP

CPR

PONCT

.

Fig. 1. Example of syntactic tree from the French Treebank: “The CBV allows Indosuez
not to make a tender offer on the CPR.”

2 Getting AB derivations

The derivation trees of an AB grammar represent the successive applications of
elimination rules. To get them, we use a generalized top-down tree transducer,
which transforms the trees from the two treebanks into AB derivation trees. Ba-
sics of transducers can be found in [Co1], and specifications of the G-transducer
that we use is explained in [SM1,Sa1]. Figure 2 shows an example of the output
of the transducer when given the tree of figure 1. Less than 1.650 transduction
rules are needed to convert 92% of the French Treebank (93% for Sequoia), what
we created by ourselves.

TEXT txt

SENT s

NP-SUJ np

DET np/n

Le

NPP n

CBV

np\s

(np\s)/(np\si)

VN ((np\s)/(np\si))/np

V ((np\s)/(np\si))/np

autorise

NP-OBJ np

NP np

Indosuez

VPinf-A OBJ np\si

P (np\si)/(np\si)

à

np\si

np\si

(np\si)/np

ADV ((np\si)/np)/((np\si)/np)

ne pas

VINF (np\si)/np

déposer

NP-OBJ np

DET np/n

d’

NC n

OPA

PP-MOD (np\si)\(np\si)

P ((np\si)\(np\si))/np

sur

NP np

DET np/n

la

NPP n

CPR

PONCT s\txt

.

Fig. 2. Output of the transducer. The information from the syntactic tree remains.
Regarding the real output, we suppress the type on the leaves, which is inherited from
the pre-terminal nodes.

Noémie-Fleur Sandillon-Rezer 15



The transducer uses a small number of atomic types for the transduction:
np, n, s, txt, pp, cs, clr, which correspond respectively to: noun phrase, noun,
sentence, text (a sentence with an ending punctuation), a prepositional phrase, a
subordinate clause and a reflexive clitic. In addition, the types np\sp and np\si
are given for past participle and the infinitival groups. However, the transducer
is quite modular: one can create a new set of rules with new atomic types and
the transducer will apply them so long as the rules create binary trees and the
types stay coherent according to the elimination rules of Lambek calculus.

We will use these types to initialize our trees before the unification step;
however, the input format will be described in section 3.

3 Grammar induction

A well known grammatical induction algorithm for rigid AB grammars is de-
scribed by Buszkowski and Penn [BP1,Bu1]. When it comes to learning a rigid
grammar, it is quite simple: either the types can be unified to get one type by
word, or the algorithm fails. The algorithm created by Kanazawa [Ka1], learns
a k-valued grammar. The two algorithms, however, need the same input format.
Figure 3 shows an example. For a k-valued grammar, deciding which of the types
to unify is more complicated and the best solution for a grammar can generally
only be decided globally. As a consequence, grammar inference is know to be
NP-Hard [CF1] when k ≥ 2. Plus, k is generally unknown in advance.

To illustrate the unification problem, we will take two sentences from the
French Treebank: Le gouvernement n’avait ni écrit ni choisi cet accord dont
nous avons hérité (The government did not write nor choose this agreement we
inherited) and Nous avons de plus en plus de monde dans les DOM-TOM (We
have more and more people in the DOM-TOM). By applying the Buszkowski
and Penn algorithm, the verb avons will get two types which look alike: (a\b)/c
and (d\e)/f , because in each case it takes two arguments, the first one on its left
and the second one on its right. However, we cannot unify avons, because the
right argument is a noun (de plus en plus de monde) or a past participle(hérité),
and the two must not have the same type to avoid non grammatical sentences.
We need for these two sentences at least a 2-valued grammar, and avons needs
to get the two types: (np\s)/np and (np\s)/(np\sp).

Between these standard inference algorithms and ours, there are two main
differences.

The first one is that we use some of the types from the treebank annotations,
as summarized in table 2. The types assigned to nodes have been chosen ac-
cording to their frequency in the lexicon extracted from transduced trees, with a
cutoff corresponding to 75%: indeed, over 75 percent we assume that the type is
clearly predominant and can be given when the POS-tag and the word is used as
an argument. If a label is not in this table, its type will be set to a variable (if it
is an argument). If the node is a functor, its type is instantiated simultaneously
with the one of its argument. The input trees are then specified derivation trees
where some sub-formulas contain free variables. Grammatical inference consists
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\ s

\ a

/ b

Le b/c CBV c

/ b\a

/ (b\a)/d

autorise ((b\a)/d)/e Indosuez e

/ d

à d/f \ f

/ g

/ g/h

ne pas (g/h)/i déposer i

/ h

d’ h/j OPA j

/ g\f

sur (g\f)/k / k

la k/l CPR l

. a\s

Fig. 3. Example input for the Buszkowski and Penn algorithm

of transforming these partially specified derivation trees into complete derivation
trees. An example of our input trees is shown in figure 4. We can note that some
words, even if their POS-tags are not in table 2, already have a complex type
without variable.

Table 2. List of types assigned to the nodes that have the right label, if and only if
they are arguments.

label type label type

TEXT txt SENT s
NP np NP-ARG np
PP pp AP-ARG n\n
CLS np CLS-SUJ np
NC n NPP np
VPP np\ sp VINF np \ si

The other difference is the use of clusters to guide the unification step, as
discussed below. A cluster groups words by similarity between their vectors.
At each cluster level, we apply a unification step. We choose a priority order2

according to the clusters, level by level, which can be summed up by :

1. unify the smallest clusters,
2. unify the clusters where there is only one choice per variable,
3. unify with the simplest candidate (the complexity of a candidate is computed

with the number of slashes \ and / it has),

2 The steps are sorted by accuracy for the effectiveness of the unification.
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\ txt

\ s

/ np

Le np/nCBV n

/ np\s

/ (np\s)/(np\si)

autorise ((np\s)/(np\si))/np Indosuez np

/ np\si

à (np\si)/a1 \ a1

/ b1

/ ab1/np

ne pas (b1/np)/c1 déposer c1

/ np

d’ np/n OPA n

/ b1\a1

sur (b1\a1)/np / np

la np/nCPR n

. s\txt

Fig. 4. Input tree of our inference algorithm. Some types remain from the previous
tree, others are replaced by variables.

4. select the first found for other variables, but with the possibility to randomize
the unification. Unfortunately, after the third step, a variable may have more
than one possible unification and we cannot yet define which one is the
best one. In this case, we use an arbitrary unification. Two methods can
be applied, the ”first-found” one, in the list of all possible unification (so
it always gives the same result) or we can randomly pick up one possible
unification (the results are never the same, but sometime they are better).

If variables remain in the types, because all the words may not be represented
at a level, we proceed to a new cluster level. This way of processing first unifies
the variables which are the most similar.

Even with variables, the derivation tree remains a valid AB derivation: the
two elimination rules are the only ones used to create the trees.

4 Clustering

4.1 Vector extraction

We have decided to assign vectors to words, extracting informations from the
treebanks before transduction.

The vectors have six dimensions :

1 POS-tag of the word (mother)

2 Syntactic node (grand mother)

3-4 POS-tag of the left node and the right one.

5-6 distance from the nearest common ancestor with the left neighbor node and
the right one.
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le1 < DET, NP-SUJ, NILL,NC,−5, 2 >

le2 < DET, NP-MOD, VPP, ADJ, 3, 2 >

Fig. 5. Two vectors corresponding to the determiner le (the).

If there is no left or right neighbor (first or last word of a sentence), the value
of corresponding coordinate of the vector is set to NILL or −5, depending on
whether it is a label or a number. Two examples of vectors are shown figure 5.

To compare the vectors, we need to transform them into vectors in Zn, n ∈ N.
We choose to transform each label in a vector, where one or two dimensions have
the value 1, and the others are equal to 0. The POS-tags and the syntactic data
are transformed this way, and the distance from the nearest common ancestor
stays, like shown in figure 5. The transformation is illustrated in table 3 with only
a part of all the data. Of course, there is a “dimension” for almost all POS-tags
(some exceptions are the ones we want to see unified together, like ET for the
foreign words and NPP for the proper nouns); for the syntactic information, we
only make a distinction between an argument (represented by the -SUJ, -OBJ,
-ATS... at the end of the label) and a modifier -MOD . The P+D POS-tag
correspond to a preposition which gathers a preposition and a determiner (”du”
or ”au” instead of ”de le” or ”à le”). That’s why the coordinates corresponding
to determiner and preposition are set to 1.

Table 3. Example of vector transformations.

POS-tag NC DET P ...

NC 1 0 0 0...0
DET 0 1 0 0...0
P+D 0 1 1 0...0

Other NP ... -ARG -MOD

NP 1 0...0
NP-SUJ 1 0...0 1 0
NP-MOD 1 0...0 0 1

The transformed vectors can be used with R [IG1] without further transfor-
mations.

4.2 Creation of clusters

To compute the hierarchical cluster, we use the software R [IG1], the Manhattan
distance metric and for the clustering itself Ward’s minimum variance method
[Wa1]. For a better overview on the whole cluster, we use Tulip [AM1], which
gives some graphs like the figure 6. The details of the cluster graph will be shown
in the next section.
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Fig. 6. Cluster corresponding to our test-set sentences. The part of the cluster circled
by dots is where most of the verbs are; the one dashed corresponds to the determin-
ers and the simply circled to the adjectives. We notice that the adjectives and the
determiners are close to each other.

5 Evaluation

Before evaluating our method, we want to give some baselines for it :

– If we unify the types only when there is one solution, it leaves a lot of pairs
word-type with variables: around 80%. However, there is a lower number of
variables, due to the unification (a ratio of 47 %).

– If we only use the first found method or the all random method to unify
clusters, no variable remains, but the comparison with the gold-standard
lexicon is really bad (less than 50% of identical types).

– If we try to unify without the clustering step, the method does not take into
account the context of words, and becomes equivalent to trying to reduce
the lexicon of each word, which is not the point of our work: we would rather
have the same type for different words which occur in same context.

We ran our method over 754 sentences of Sequoia, and a set of 553 sentences
from the French Treebank. We use a random method to chose de sentences. The
table 4 shows the effectiveness of the method, computed on the percentage of
variables remaining after unification.
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Table 4. Remaining variables after the various unifications. The two first baselines
have been tested with the 553 sentences of the French Treebank.

Treebank 754 Sequoia 553 FTB One-solution unification First-found method

not unified 3 0 364 0
number of var. 1.429 686 686 686
rate 99,8% 100% 46,9% 100%

Nevertheless, we cannot judge the effectiveness of our method only over the
remaining variables. Indeed, if the variables are unified but the result types are
overly complex, we cannot say that our method performs well, even though all
sentences are derivable. On the lexicons extracted from the transduced trees and
the unified words over the 754 sentences of Sequoia, we can note that the lexicon
similarity is 82,7%: this means that only 2.967 word-type pairs are different over
the 17.110 pairs of the lexicons. It corresponds to 1.012 words forms.

We focused our study on the 553 sentences of the French Treebank. We
compare the lexicon extracted from the unified trees and from the transducer,
which corresponds to a lexicon of 2.076 different words, with 4.808 associated
types for 5.731 total occurrences.

The differences between the two lexicons are about 329 words, and it corre-
sponds to only 859 word-type pairs, that is 14,9% of the lexicon. It means that
85,1% of the lexicons are identical. We count as identical the modifications like
np which become a n or the inversion between a pp and ppde or ppa (the three
correspond to prepositional phrases, but the last two add the information that
the preposition is a or de), but these cases are really rare (less than 2% of the
lexicon).

Table 5 sorts the differences in three categories: the errors, the similar pairs
and the identical pairs.

We can give two examples of these categories :

The past participle accumulé (accumulated) gets the type np\sp from uni-
fication and n\n from the transducer. The type given by the unification cor-
responds to a VPP used as a past participle and not as an adjective, but
in the CCG Bank [Ho1] a special rule permits the translation of np\sp into
n\n, so treating the two as similar for the purpose of this evaluation seems
justified.

The type of change (change) gets the type np\s instead of (np\s)/np. It
is a real error: instead of being treated as a transitive verb (which takes two
arguments), it is treated as an intransitive verb. The error comes from the
clustering step, where change is near an intransitive verb.

However, it is important to remember that even with the inconsistencies, the
sentences can still be parsed with the types given by unification.

Figure 7 shows two level 0 clusters. The left one is a cluster of adverbs. The
variable ab331 will be unified with np. The right cluster only has variables that
will be unified together. This cluster gathers adjectives and participles used as
an adjective.
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Table 5. Ratio between the differences, count in words. Even for the baselines, the
ratio is computed over the whole lexicon.

Unification +
clustering

identical 4 832 85,1%
similar 5 168 91,3%

One-solution
unification

identical 728 12,7%
similar 1 164 20,3%

First-found method
identical 2 745 47,9%
similar 3 576 62,4%

Fig. 7. Focus on two clusters of level 0.

6 Discussion

The method we use is designed to run with derivation trees: we use unsupervised
learning, but with very informative input structures including some syntactic
information. However, it could be extended to all sentences of the french language
with some modifications, using together the raw sentences and the derivation
trees.

The problem is to get vectors from sentences that do not have a syntactic tree.
We could use vectors in a subspace, because some informations, like the POS-
tags of words, can easily be retrieved, from a tagger like the one of Moot [Mo1].
Another solution is to retrieve the structures using the Stanford Parser [GM1]
and then apply our algorithm without modifying anything.

Then, we can cluster these vectors with other ones, making a projection to
lower the number of dimensions. This way, the words can have the most used
type of a level 0 cluster. It enables us to have a better overview on the words
than if we just gave them the most used type in the lexicon, corresponding to
their POS-tag. Given that our vectors are high-dimensional and sparse, we could
also apply the method described by Kailing et al. [KK1] to manage them.

6.1 Scaling up to Larger Treebanks

We plan to apply the current method to larger datasets, but we will have to deal
with much larger clusters for Sequoia (more than 63.000 words) or the French
Treebank (around 300.000 words). Though the complexity remains polynomial,
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O(n3) would still be problematic for these larger datasets. Note, however that
there is a significant improvement over other learning algorithms since k-valued
grammars have an exponential complexity.

6.2 Optimized type unification

For the moment, we use the “first found” criterion to unify variables when there
is no other choice criterion. A better solution would be to look at all the variables,
to assign them a list of possible unifications and to use the Hungarian Algorithm
[Ku1, Mu1] to choose the unification which produces the set of formulas which
is the smallest in terms of the total sum of the connectives after unification.

7 Conclusion

In this article, we have shown a new method to extract an AB grammar by
unification, using clusters to guide us. Some proposition of improvement for this
work, focused on the treatment of coordinations and modifiers are discussed in
the article [Sa3]. As explained in section 6, it opens up many work directions.

We decided to use hierarchical clustering which enabled us to unify the lexi-
con step by step, either until convergence or, very exceptionally, until a conflict
blocks further unification. However, it would be interesting to test our method
with other types of clustering and distance metrics, like the k-means method
or the one called “Clustering By Committee”, described in [Pa1]. This method
searches for the best centroids of clusters, which are supposed to be representa-
tive of their clusters; but it cannot be applied here in its present state, because
we want to make a unification after the clustering, and the types of the centroids
are not defined.

The results we have are promising, since in spite of the fact that the input
is less detailed (and therefore requires less annotator hours) they are near our
gold standard: we have 91,3% of the lexicon similar, and 85,1% identical.
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Abstract. Precision grammars and their accompanying treebanks are
valuable linguistic resources, but due to their inherent complexity as well
as differences in underlying theoretical approaches and differing styles of
implementation between grammar engineers, the discoverability of lin-
guistic phenomena is poor. In this paper, we describe the methodology
used for the manual annotation of a small syntactic phenomenon corpus
of English. When scaled up to a larger corpus, this resource will be used
to link structures in parser output — and thus grammar internal com-
ponents — to the linguistic phenomena whose analysis they pertain to.
This resource will also provide an opportunity for phenomenon-specific
parser evaluation.
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1 Introduction

Precision grammars are machine readable grammars of natural language which
aim to accurately model the linguistic constraints of specific languages. The
linguistic fidelity of precision grammars, combined with their ability to process
large amounts of naturally occurring language, means that these grammars and
their respective treebanks constitute a significant opportunity for the exploration
of linguistic phenomena (Bender, 2008). However, identifying components of
grammars responsible for implementing specific phenomena can be problematic
due to the interaction between linguistic phenomena and difficulties in their
documentation. The problem this paper is concerned with is the discoverability
of linguistic phenomena within precision grammars. By linguistic phenomena, we
mean the components of language that linguists concern themselves with when
describing language and that are amenable to structural analysis by a formal
grammar.

In this paper, we argue that precision grammars would be more valuable lin-
guistic resources if the linguistic phenomena they cover were more discoverable,
and additionally, that it would be desirable to have automated approaches for



achieving this. We present a proof-of-concept linguistic phenomenon corpus of
English, annotated independently of existing grammar formalisms, and outline
the methodology used in its construction. By comparing parser output of items
from this corpus with phenomenon annotations, this corpus will provide a means
by which grammar internal components can be linked with the phenomena they
are associated with. Additionally, this resource will also facilitate fine-grained
phenomenon-specific parser evaluation.

2 Background

Since precision grammars are both machine readable and designed with the
express purpose of modelling the linguistic constraints of language, prima facie
it might seem that the identification of linguistic phenomena within precision
grammars would be straightforward. The reality is far from this. In the rest of
this section, we outline the difficulties involved in pinpointing components of
precision grammars which pertain to specific phenomena and the factors which
contribute towards this.

2.1 One Does Not Simply grep for Linguistic Phenomena

In the context of someone wishing to determine whether a precision grammar
covers a particular linguistic phenomenon, and if it does so, which components
of the grammar constrain the analysis of the phenomenon, a number of potential
strategies can be employed.

One approach is to use a string-based search tool such as grep to search gram-
mar source files and derivation trees produced by the grammar. This strategy is
premised upon the assumption that names assigned to components of the gram-
mar and node labels in derivation trees are likely to correspond to the phenomena
whose analyses they constrain. While this assumption may be reasonable, there
are a number of reasons why this approach will fail. This first is due to pragmatic
constraints — it is often simply not possible to encode the complete names of
phenomena as this would result in unwieldy source code and derivation trees.
For instance, the LinGO English Resource Grammar (Flickinger, 2002) uses the
name v cp le as the lexical type which is a verb that takes a complementizer
phrase as an argument. Without knowing this abbreviation in advance however,
the type would not be readily retrievable. This clearly motivates the maintaining
of rigorous documentation, however, even in the presence of this, there are still
significant barriers to phenomenon discovery.

Another problem with string-based searches is that it is not always clear
what to search for. In descriptive linguistics, there are many different terms that
have come to be used to describe different linguistic phenomena, many of which
have near or sometimes exact synonyms. For instance, the terms subordinate
clause, dependent clause and embedded clause are used throughout the litera-
ture. Adopting a standard for linguistic description — such as GOLD (Farrar
and Lewis, 2005) — would likely ameliorate this difficulty. A limitation of GOLD,
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however, is that in aiming to be applicable across different languages and differ-
ent formalisms, it focuses on capturing high-level phenomena such as sentential
force and main versus subordinate clauses, whereas more nuanced phenomena
such as raising and control constructions and ellipsis are not handled.

Phenomena may also not be identifiable via keyword search due to the anal-
ysis found in the grammar differing from the expected one. A cursory glance
through the linguistic typology literature will reveal that linguistic phenomena
are often subject to multiple competing analyses. When implementing an anal-
ysis of a phenomenon in a given language, a grammar engineer might need to
select between a number of such analyses. For example, the passive voice can
be analyzed in a number of different ways, including as a lexical rule, a raising-
type construction or a gapping-type construction. Once a particular analysis has
been selected, documentation and grammar components will refer to terminol-
ogy pertaining to this analysis, and thus plausible queries for the phenomenon
could fail. These two intertwined issues of competing nomenclature and analyses
are further exacerbated when dealing with cross-formalism investigation. Preci-
sion grammar implementations exist for multiple grammar frameworks, such as
lfg (Maxwell and Kaplan, 1996), hpsg (Copestake and Flickinger, 2000), and
ccg (Baldridge and Kruijff, 2003). Each of these bring their own theoretical
presuppositions to the table, increasing the potential for failed queries.

Even in cases where string-based search approaches do succeed in identifying
relevant grammar components, there is a good chance that the results will not be
exhaustive. This arises in part from the inherent complexity of precision gram-
mars, with the analysis of many phenomena involving constraints across various
grammar subsystems. Additionally, linguistic phenomena and their respective
analyses within grammars interact with each other (Bender, 2008; Fokkens,
2011). When extending a grammar, it is possible that the analysis of a new
phenomenon will interact poorly with analyses of existing phenomena, requir-
ing additional constraints on superficially unrelated components. Tracking which
phenomena these constraints were intended to pertain to becomes difficult. An
example of this situation is discussed in Bender (2008), where a V2 analysis of
word order in Wambaya interacts with the analysis of secondary predicates.

An alternative to string-based search approaches is to use a treebank search
tool such as TGrep2 (Rohde, 2005) or Fangorn (Ghodke and Bird, 2010). The
problem with this approach is that it assumes some knowledge of how the phe-
nomenon is likely to be represented in a treebank — and thus also of how it is
analyzed within the grammar — which introduces a circularity into the discovery
process.

2.2 Other Pitfalls when Searching for Linguistic Phenomena

An additional problem with the use of precision grammar derived-treebanks
is not knowing in advance whether the treebank contains items that exhibit
the phenomenon. Another possibility, then, is to manually parse items known
to exhibit the phenomenon and inspect the contents of the derivation trees.
Aside from being laborious, this approach runs into some significant problems.
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Firstly, there may be other phenomena in the sentence that are unhandled by the
grammar, thus blocking a successful parse and resulting in a false negative. The
grammar might also overgenerate for this sentence, resulting in a false positive for
the phenomenon. The grammar could also have an analysis of the phenomenon,
but fail to parse the sentence due to the analysis not being general enough. There
is also the problem of identifying the correct parse from the parse forest, given
that the nature of the analysis in the grammar (if there is one) is unknown.

In addition to all of the aforementioned issues, there is also significant het-
erogeneity to be found within the architecture of precision grammars. Even
within two grammars built using the same formalism and grammar engineering
toolchain, it is possible to see dramatic differences in implementation arising from
differing theoretical assumptions, engineering decisions or just general differences
in grammar engineering styles, potentially making the navigation of previously
unseen grammar source code difficult, even for grammar engineers experienced
in the formalism. This can be seen in the Norsyg Norwegian Grammar,1 which
uses the same formalism and grammar development environment used within the
DELPH-IN consortium, but differs markedly from other DELPH-IN grammars
in that the argument structure of predicates is determined through syntax rules,
rather than being specified in the lexicon (Haugereid, 2004).

The result of all this is that for most precision grammars, without prior
experience with their internal components, it is usually not possible to quickly
ascertain whether a precision grammar covers a particular phenomenon, nor to
determine which components are involved in its handling.

3 A Phenomenal Vision

There has been significant work in the development of phenomenon-centric gram-
mar engineering practices, such as the LinGO Grammar Matrix (Bender et al.,
2010), CLIMB (Fokkens et al., 2012), and the ParGram project (King et al.,
2005). These different approaches all try to build into the grammar engineering
process strategies for identifying linguistic phenomena.

The ParGram project is distinct from the other cited projects, in that its
focus on linguistic phenomena occurs towards the end of the grammar engineer-
ing pipeline, by harmonizing parse results from grammars of different languages
so that phenomena are represented similarly. The LinGO Grammar Matrix in-
volves the creation of a core module containing analyses of linguistic phenomena
purported to be universal to all languages, and the curation of a set of libraries
of linguistic phenomena that languages may or may not make use of. The Cus-
tomization System provided by the Grammar Matrix enables users to select
from these libraries with appropriate parameters to generate fully-functioning
starter grammars, removing much of the initial overhead involved in grammar
creation. CLIMB extends the Grammar Matrix’s Customization System to pro-
vide a metagrammar engineering methodology for the ongoing development of

1 http://moin.delph-in.net/NorsygTop
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grammars which is analysis-centric, allowing constraints not normally contiguous
in the grammar to be grouped together.

Rather than altering the process by which grammars are developed, our pro-
posed approach treats existing grammars as fixed resources from which we try
to automate the detection and location of constraints that correspond to specific
phenomena. We propose to use parser output known to exhibit specific linguistic
phenomena to link those phenomena with the corresponding grammar internal
components which constrain them. We plan to do this by learning correspond-
ing “signatures” from within data structures produced by the parser that are
characteristic of specific phenomena. These signatures could take the form of
flat clusters of node labels or commonly-occurring subtrees from the derivation
trees produced by the parser, as well as patterns within other data structures
produced by the parser. In order for this to work, however, what is first required
is a corpus annotated with linguistic phenomena.

Bender et al. (2011) describe a method for semi-automated detection of phe-
nomena within a treebank. This was performed by manually identifying lexical
types and construction rules found in derivation trees considered characteristic
of the phenomena under investigation. These were used to generate candidate
items which were then vetted to verify the occurrence of the phenomenon. This
approach has the advantage of being able to rapidly identify many candidates,
but is limited by the fact that it can only be used to locate phenomena covered
by the grammar, and biases results towards the analysis found in the grammar.
Our approach differs in that we perform manual annotation of phenomena in-
dependently of any grammar, ensuring that we do not bias phenomena towards
analyses found in specific grammars, nor exclude instances of phenomena not
yet implemented.

As far as we are aware, there are no large-scale treebanks specifically an-
notated with linguistic phenomena. In the remainder of this section we outline
some specific motivations for developing such a resource.

3.1 Incentives for Building a Phenomenon Corpus

Enhancing Descriptive Grammars Bender et al. (2012) argue that elec-
tronic descriptive grammars can be enhanced through augmentation with tree-
banks produced by precision grammars. These treebanks provide a ready source
of exemplar items exhibiting the phenomena described in the reference grammar,
which can be recalled via the use of a treebank search tool. Reference grammars
then become more dynamic, with the number of potential exemplars increas-
ing as the treebank grows in size. This approach requires authors to provide
canned queries to retrieve appropriate exemplars. Automated phenomena detec-
tion could potentially relieve this burden; furthermore, as suggested by Bender
et al., this could also allow users to navigate from arbitrary structures within
exemplar items back to the relevant parts of the descriptive grammar.

Grammar Re-use The grammar engineering process involves a considerable
amount of time. When making a contribution to a precision grammar, not only
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is confirmation required that changes have had the intended effect, but also that
changes did not introduce regressions such a drop in coverage, loss of accuracy
of existing analyses, or the introduction of spurious ambiguity. In the context
of implementing a new phenomenon in a grammar, it would be desirable for
a grammar engineer to be able use existing grammars which contain tried-and-
tested implementations of the relevant construction as inspiration. With a means
to detect the handling of a phenomenon by a grammar, and identifying the
components involved in its implementation, it would be possible to develop a
search tool that would allow grammar engineers to much better exploit the
knowledge contained within precision grammars.

Phenomenon-based Parser Evaluation In addition to the long-term goals of
phenomenon detection, this corpus would also have more immediate applications.
One in particular is that of phenomenon-based parser evaluation, in the style
of Bender et al. (2011). This more nuanced form of parser evaluation is able
to pinpoint specific gaps in parser coverage that would otherwise be hidden
by coarser, more commonly-used parser evaluation approaches. Bender et al.
found that all the parsers they examined struggled to correctly identify many
frequently-occurring non-local dependencies. One notable difference between the
approach proposed in this paper and that of Bender et al. is that we identify
occurrences of different phenomena via lexical spans in a corpus, where Bender
et al. represent constructions via their component “dependencies”. While there
are certainly merits to a dependency-based representation, they tend to require
noisy mappings from the native outputs of individual parsers (Clark and Curran,
2007); lexical spans, on the other hand, are a natural representation for all
grammar formalisms.

Bootstrapping the Phenomenon Corpus Another application of the pro-
posed signature extraction approach is the automatic annotation of linguistic
phenomena, inspired by the approach of Bender et al. (2011). We plan to inves-
tigate this as a means of rapidly scaling up the size of the phenomenon corpus.
We suspect that this approach has the potential to yield accurate phenomenon
annotation, but will be limited in that it will likely result in non-exhaustive an-
notation of phenomena, as particular manifestations of phenomena not captured
by the signatures will not be identified.

4 Methodology

In this section we describe the methodology used for the construction of a proof-
of-concept phenomenon corpus. The initial stage involved identifying the desider-
ata for the properties of such a resource. This is outlined below.

1. Grammar engineering framework independent: Annotations need to
be represented independently of specific grammars and frameworks. This
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ensures we do not bias phenomena toward analyses found within existing
grammars and that the corpus can be applied to grammars from different
frameworks.

2. Exhaustively annotated: Each item in the corpus needs to be exhaus-
tively annotated so that the non-occurrence of a phenomenon can be used
as negative data. An item not containing a phenomenon under investigation
is a useful data point insofar as it suggests that structures involved in the
parse are less likely to be associated with the phenomenon.

3. Token-level: Each phenomenon occurrence in a sentence should be anno-
tated at the word token level to yield tighter associations between phenomena
and substructures produced by the parser.

4. Disambiguated: By basing the corpus on a manually disambiguated tree-
bank produced by a precision grammar, the parse for each item will reflect
the best parse the grammar can yield, increasing the likelihood of phenom-
ena being associated with relevant components of the grammar. To be in
keeping with the first desideratum, there would ideally be treebanks of the
same corpus produced in multiple grammar engineering frameworks.

4.1 Phenomena

The notion of linguistic phenomena is hard to pin down. Rather than attempt
to rigorously define it, we have opted for an operational characterization that
is compatible with the use of the term in the motivating contexts described in
Section 3.1. Since we want to leave the door open for cross-linguistic comparison,
we looked for phenomena that are found across many of the world’s languages.
Instead of looking for simple morphosyntactic phenomena such as case, tense
and gender, we chose more complex phenomena that would likely involve the
interaction of various simple phenomena, and thus be more likely for their im-
plementation to involve constraints across different parts of the grammar.

As a part of the process of selecting the five different phenomena, we con-
sulted the typological literature to determine the range of languages the phe-
nomena are known to be found in, as well as to develop a set of criteria for
annotators to use to identify instances of the phenomenon. Rather than trying
to account for the full variability of each phenomenon across all the languages of
the world, we attempted to find a simple set of criteria that is sufficiently broad
to capture a range of different manifestations of the phenomenon, while also
providing a simple-to-use and clear guide to prevent annotators from becom-
ing quagmired in analysis. For this preliminary version of the corpus, we chose
phenomena that take the form of simple constructions spanning either matrix or
subordinate clauses. The five phenomena selected were: (1) the passive voice, (2)
interrogative clauses, (3) imperative clauses, (4) relative clauses, and (5) com-
plement clauses. For further details regarding the chosen phenomena along with
the criteria developed for their identification, please see the annotator guidelines
document.2

2 http://repository.unimelb.edu.au/10187/17611
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These phenomena are also relatively broad, encompassing other finer-grained
categories of phenomena such as subject raising relative clauses and impersonal
passives. It is likely that users of precision grammars will be more interested in
these more fine-grained categories. The problem is knowing how fine-grained to
go — how narrowly to delineate each phenomenon and carve-up the linguistic
phenomenon space? A particular concern here is that, as outlined in Section 2,
different grammars will divide the space in different ways due to typological
variation and differing theoretical approaches. It is for this reason we believe it
makes more sense to prioritize cross-grammar applicability in the corpus con-
struction stage. This does not necessarily preclude the identification of finer-
grained phenomena however, as it is foreseeable that this could be achieved in
the phenomenon detection stage through the use of clustering techniques. Fur-
thermore, finer-grained distinctions will likely involve increased annotation time
costs and, if successful, this approach has the advantage that it automates this
more costly analysis.

4.2 Constructing the Corpus

The purpose of this preliminary proof-of-concept corpus was to test out and fine-
tune the criteria for phenomenon identification in the annotation guidelines and
produce an exportable format for distribution. The corpus was composed of 200
lines of The Speckled Band, a Sherlock Holmes novel by Arthur Conan Doyle.
This text was chosen for a number of reasons: (1) it is out of copyright, and can
thus be shared freely; and (2) it is syntactically highly rich and varied, and more
likely to shed light on potential problems with the annotation guidelines. As
discussed in Section 5, we plan to use existing treebanks produced by precision
grammars developed within the DELPH-IN consortium3 as a basis for the large-
scale phenomenon corpus; thus, our methodology targets the format used for
storing treebanks in the DELPH-IN grammar engineering toolchain.

For the annotation process, we used brat,4 a browser-based rapid annota-
tion tool (Stenetorp et al., 2012). Annotators were instructed to exhaustively
annotate each sentence with occurrences of the five phenomena by labelling
character spans they deemed to display the phenomena. The annotations were
then converted into the format used by [incr tsdb()], the grammar profiling
and treebanking tool used in the DELPH-IN consortium (Oepen and Flickinger,
1998). As a part of its relational database used to store test suite profiles, [incr
tsdb()] conveniently supports the recording of multiple phenomenon occur-
rences for a given item and it is trivial to augment existing [incr tsdb()]

profiles with phenomenon records.
After an initial round of annotation of 50 sentences by two different anno-

tators with training in syntactic theory, the results were used to fine-tune the
annotator guidelines by making the instructions clearer and eliminating identi-
fied ambiguities. A second round of 50 lines was completed by both annotators

3 http://www.delph-in.net
4 http://brat.nlplab.org
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Phenomenon Frequency Agreement

Passive voice 25 0.85
Interrogative clause 16 0.94
Imperative clause 5 0.78
Relative clause 62 0.91
Complement clause 54 0.71

Table 1. Attested phenomenon occurrences within the 200 lines of Sherlock Holmes
text and inter-annotator agreement for the 50 line subset.

using the updated guidelines and inter-annotator agreement was calculated us-
ing Fleiss’ coefficient of agreement (Artstein and Poesio, 2008). Agreement was
calculated on a binary basis for each phenomenon using word tokens, such that
tokens occurring within an annotation span received a 1 if the annotation was
of the type of phenomenon being calculated, and 0 otherwise. After the results
were analyzed, the final 100 lines of the text were then completed by a single
annotator.

4.3 Results

Table 1 shows the results of the annotation of the Sherlock Holmes text. The
relatively low frequency of imperative clauses in the corpus highlights the sensi-
tivity of some linguistic phenomena to specific domains. We would, for example,
expect there to be few imperatives in a corpus of newswire text, but likely many
in a corpus comprised of spoken language. While it will be important to select
phenomena that are well represented in the final corpus, it will still be advan-
tageous to include infrequently occurring phenomena, as this will provide an
opportunity to determine how well our phenomenon detection techniques per-
form in the presence of data scarcity.

The inter-annotator agreement results show good reliability5 for all phenom-
ena with the exception of complement clauses. Investigation of disagreements for
this category showed that there were a number of cases where one of the anno-
tators had simply missed a complement clause, suggesting that this frequently
occurring phenomenon is easier to overlook — a problem which should improve
with increased vigilance and further practice.

5 Next Steps

This initial prototype corpus was developed as a proof-of-concept, to help re-
fine the methodology of its construction. Now that it has been developed, we

5 There is a general consensus in the computational linguistics community (Artstein
and Poesio, 2008) that values of coefficients in the family of Fleiss’ coefficient greater
than 0.8 are said to show “good reliability” while greater than 0.67 allows for “highly
tentative and cautious conclusions.”
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can look ahead to the next steps. Firstly, we will turn our attention to building
a large-scale phenomenon corpus based on the DeepBank resource (Flickinger
et al., 2012a). DeepBank is a dynamically annotated large-scale treebank of text
from The Wall Street Journal sections of the Penn Treebank (Marcus et al.,
1994). The annotations are produced by The LingGO English Resource Gram-
mar (ERG), a broad-coverage precision grammar of English (Flickinger, 2002)
developed within the DELPH-IN consortium. The treebank contains manually
disambiguated parse results and is available in a number of representation for-
mats. The existence of parallel treebanks developed with the same methodology
for both Portuguese and Bulgarian via the ParDeepBank project (Flickinger
et al., 2012b) leaves open the possibility for cross-linguistic phenomena explo-
ration.

The linguistic phenomena selected for annotation in this corpus were inten-
tionally chosen so as to be well known and frequently occurring constructions
that are relatively uncontroversial in their characterization. In the large-scale
phenomenon corpus, we will introduce additional phenomena with more sub-
tle characteristics whose identification will likely involve more difficulties. Each
phenomenon added will be subject to the same methodology as outlined in this
paper to ensure reliability in the identification of phenomena.

After the creation of a larger phenomenon corpus, we will then be in a posi-
tion to develop a phenomenon signature extraction technique which uses parser
output from the ERG to link linguistic phenomena found in DeepBank to cor-
responding components of the ERG. While we initially plan to focus on the
derivation trees produced by the parser, this approach could also be extended
to use semantic output, as well as the contents of the parse chart — the data
structure built up by the parser at parse time. This last source of data is sig-
nificant in that it is available even for sentences that do not receive a spanning
parse, potentially providing a means of detecting the presence of unimplemented
phenomena. We also foresee the possibility of using the signatures to perform
automatic phenomenon annotation — potentially providing a means of rapidly
scaling-up the phenomenon corpus, albeit with “silver” rather than gold stan-
dard annotations. These automatically extracted annotations would be biased
towards instances of phenomena handled by the ERG, however the spans them-
selves remain formalism independent, as they would be just flat character spans.

6 Conclusion

In this paper we have identified various incentives for developing techniques for
detecting linguistic phenomena within precision grammars. We have argued that
a necessary — but so far non-existent — resource for this goal is corpora anno-
tated with linguistic phenomena independently of existing precision grammars.
We also presented a proof-of-concept English phenomenon corpus — along with
a methodology for its development — that aims to fill this gap. While currently
only a small offering, we plan to produce a much larger version of the corpus
with additional phenomena based on the DeepBank treebank. This resource will
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then be used to explore techniques for automatically extracting characteristic
signatures of linguistic phenomena within parser output, providing a means of
associating specific linguistic phenomena with relevant grammar components.
In addition, this resource will also have more immediate applications, such as
enabling fine-grained phenomenon-based parser evaluation.

We hope this work will ultimately lead towards improving the discoverability
of linguistic phenomena within precision grammars by helping them wear their
linguistic phenomena on their respective sleeves, thus increasing their utility as
linguistic resources.
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Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., and Tsujii, J.
(2012). brat: a web-based tool for NLP-assisted text annotation. In Proceed-
ings of the Demonstrations Session at EACL 2012, Avignon, France.

36 Ned Letcher and Timothy Baldwin



Coupling Trees, Words and Frames

through XMG?

Timm Lichte1, Alexander Diez1, and Simon Petitjean2

1 University of Düsseldorf, Germany
2 University of Orléans, France

Abstract. This work presents �rst results on the integration of frame-
based representations into the lexical framework of eXtensible Meta-
Grammar (XMG). Originally XMG supported tree-based syntactic struc-
tures and underspeci�ed representations of predicate-logical formulae,
but the representation of frames as a sort of typed feature structures
failed due to reasons of usability and completeness. Therefore, after hav-
ing explored strategies to simulate frames within the original XMG, we
introduce an extension that is capable of handling frames directly by
means of a novel <frame>-dimension. The <frame>-dimension can be also
applied to recent accounts of morphological decomposition, as we show
using a re�ned version of the <morph>-dimension from [4]. The presented
extensions to XMG are fully operational in a new prototype.

1 Introduction

Recent work [9, 10, 16] has shown increasing interest in coupling a frame-based
semantics with a tree-based syntax such as Tree Adjoining Grammar (TAG,
[7]). While having lead to promising results on the theoretic side, it is unclear
how to implement these ideas with existing grammar engineering tools, let alone
how to bring them alive in natural language parsing. In this paper, we present
�rst results on the integration of frame-based representations into the lexical
framework of eXtensible MetaGrammar (XMG, [3]). XMG originally supported
tree-based syntactic structures and underspeci�ed representations of predicate-
logical formulae, but the representation of frames as a sort of typed feature
structures failed due to reasons of usability and completeness. Therefore we
extend XMG by a novel <frame>-dimension that makes it capable of handling
frames directly. This feature also paves the way for implementing recent accounts
to morphological decomposition, such as in [16], where morphemes are linked to
a frame-semantic representation.

The paper proceeds as follows. The next section brie�y illustrates the lexical
objects that we are concerned with, and Section 3 then shows the proposed

? This paper has greatly bene�ted from discussions with Laura Kallmeyer, Rainer
Osswald and Yulia Zinova. We also thank the reviewers of HMGE 2013 for valu-
able comments. The work presented in this paper was �nanced by the Deutsche
Forschungsgemeinschaft (DFG) within the CRC 991.
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Fig. 1. A tree template, its frame-semantic counterpart and the associated type hier-
archy.

factorization which crucially guides the implementation with XMG. After having
explained the basics of XMG in Section 4, and after having explored strategies
to simulate frames within the <sem>-dimension in Section 5, we present the
<frame>-dimension in Section 6. Finally, Section 7 covers the application to a
frame-based analysis of morphological decomposition.

2 A frame-based semantics for LTAG

We are concerned with lexical objects such as in Fig. 1, namely a (partial) phrase
structure tree, a typed feature structure, and the associated type hierarchy, all
of which are taken from [10, 11].

Phrase structure trees such as (a) make up the lexicon of a TAG, which is
why they are also called elementary trees. TAG is a grammar formalism based
on tree-rewriting, meaning that elementary trees can be combined (by means of
two basic operations, substitution and adjunction) to generate larger trees.3 A
lexicalized TAG (LTAG) adds the constraint that every elementary tree includes
at least one nonterminal leaf, the lexical anchor. Note however that throughout
this paper we are rather concerned with so-called tree templates, which lack a

3 Since in the present paper we are mainly concerned with the organization of the lex-
icon and thus focus on single elementary trees, we skip most details of the formalism
here. See [7] or [1] for comprehensive presentations.
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lexical anchor and from which elementary trees are lexically derived. The site of
lexical insertion, here of throws, is marked by means of the �-symbol. Finally the
nodes of both elementary trees and tree templates carry (non-recursive) feature
structures, as shown at least in some nodes of (b) in Fig. 1. This is relevant for
the interface between tree and frame, since following [9, 10, 16] the interface is
indicated by means of co-occurring boxed numbers. For example, this way the
subject NP-leaf is linked with the actor role(s) of the frame, eventually causing
the uni�cation of the actor role and the frame of the incoming NP.

Typed feature structures such as (b), on the other side, are a common rep-
resentation of so-called frames (see [14]), which, according to Frame Theory [5],
are considered a proper representation of mental concepts. As can be seen from
the example in Fig. 1, features describe semantic participants and components,
while feature structures correspond to conceptual objects, restricted by the type
(causation, activity, . . . ) that they are associated with. Moreover types are part
of a type hierarchy, which determines the set of appropriate semantic features
and moreover the uni�ability of feature structures. Finally, boxed numbers in-
dicate reentrancies, i. e. structure identity, which may cause a features structure
to correspond to a graph rather than to a tree. This also holds for the feature
structure in Fig. 1.

3 Factorization of tree templates and frames

Richly structured lexical objects like those in Fig. 1 make necessary some kind
of metagrammatical factorization, once a large coverage grammar gets compiled
and maintained [15]. Metagrammatical factorization roughly means to de�ne re-
curring subcomponents of lexical objects, which can then be combined in several
ways, for example in a purely constraint-based fashion as is the case in XMG. In
addition to the bene�t in terms of grammar engineering, however, [9�11] claim
that metagrammar factorization can be also used to re�ect constructional anal-
yses in the spirit of Construction Grammar [12, 6]. Under this perspective the
lexical material as well as the used �constructions� contribute meaning.

Taking these two aspects into account, [11] propose to factorize the tree
template and the frame in Fig. 1 along the lines of Fig. 2, where boxes stand for
the resulting factors or classes (i. e. classes in the sense of XMG), consisting of
a tree and a frame fragment.4 It illustrates that the tree-frame couple in Fig. 1
results from instantiating the class POConstr, which combines the classes n0Vn1
and DirPrepObj-to. Note that Fig. 2 shows a part of the proposed factorization
only, as for example the class n0Vn1 would result from combining three other
classes (Subj, VSpine, DirObj). Combining two classes essentially means that
all associated information is uni�ed, from which a minimal model is computed
(see next section). Finally, one constructional facet can be found in the class
POConstr in that it only contributes a frame fragment, but no tree fragment.

4 Furthermore double edges indicate identity constraints, while within trees dashed
edges represent non-strict dominance and ≺* non-strict precedence.
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Fig. 2. Metagrammatical factorization of the tree template and the frame in Fig. 1.

The graphic representation of the metagrammatical factorization in Fig. 2
remains at a rather informal level and the question arises, how this could be
translated into XMG code. We will see in Section 5 that the original XMG did
not give a straightforward answer due to reasons of usability and completeness
� other than the new <frame>-dimension, which is presented in Section 6.

4 A brief introduction to XMG

XMG (eXtensible MetaGrammar, [3]) stands both for a metagrammatical de-
scription language and the compiler for this language. Descriptions are organized
into classes, that can be reused (i. e. �imported� or instantiated) by other classes.
Borrowing from object oriented programming, classes are encapsulated, which
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class n0Vn1

...

<syn>{

node ?S [cat=s]; node ?VP1 [cat=vp]; node ?VP2 [cat=vp];

node ?SUBJ [cat=np]; node ?OBJ [cat=np]; node ?V [cat=v];

?S->?SUBJ; ?S->?VP1; ?VP1->*?VP2; ?VP2->?OBJ; ?VP2->?V;

?V>>*?OBJ

}

...

Fig. 3. The <syn>-dimension of class n0Vn1.

means that each class can handle the scopes of their variables explicitly, by
declaring variables and choosing which ones to make accessible for other instan-
tiating classes (i. e. to �export�). The namespace of a class is then composed of
the declared variables and all the variables exported by the imported classes.

Crucial elements of a class are the so-called dimensions. Dimensions can be
equipped with speci�c description languages and are compiled independently,
therefore enabling the grammar writer to treat the levels of linguistic informa-
tion separately. The <syn>-dimension, for example, allows to describe TAG tree
templates (or fragments thereof). To give a concrete example, Fig. 3 shows the
<syn>-dimension of class n0Vn1 from Fig. 2. It shows two sorts of statements,
namely those like `node ?S [cat=s];' that instantiate nodes of the trees, and
those like `?S->?SUBJ;' which determine the relative position of two nodes in
the trees by referring to dominance and linear precedence.5 In contrast, the
<sem>-dimension includes descriptions of a di�erent language as we will see in
the following section.

When the metagrammar is compiled, �rst a set of descriptions for each class
under evaluation is accumulated, and then the accumulated descriptions are
resolved to yield minimal models. In the case of <syn>, the solver computes tree
templates as minimal models, which is to say that only those nodes are included
that are mentioned in the description. The �nal result can be explored with a
viewer, or exported as XML �le to feed a parser (e. g. the TuLiPA parser [8]).

5 Implementation within the <sem>-dimension

As mentioned before, the <sem>-dimension is designed to contain underspeci�ed,
�at formulae of predicate logic (borrowing from [2]). It is possible, however, to
simulate frames by using binary predicates, such that they represent single se-
mantic features. For example, a frame such as 0 [actor 1 ] is translated into
the binary predicate actor(?X0,?X1). A more detailed example for the class
POConstr is shown in Fig. 4. The implementation of the syntax-semantics inter-
face is straightforward, since the same variables can be used in both dimensions

5 In XMG, variable names are pre�xed with a question mark (`?').
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(b)
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(c)

class POConstr

...

<sem>{

actor(?X0,?X1);

theme(?X0,?X2);

goal(?X0,?X3);

cause(?X0,?X5);

effect(?X0,?X4);

actor(?X5,?X1);

theme(?X4,?X2);

% causation type

event(?X0,+);

activity(?X0,-);

motion(?X0,-);

causation(?X0,+);

% activity type

event(?X5,+);

activity(?X5,+);

directed-motion(?X5,-);

causation(?X5,-)

}

...

Fig. 4. The feature structure of POConstr (repeated from Fig. 2), the corresponding
type hierarchy (repeated from Fig. 1), and its simulation inside the <sem>-dimension.

<syn> and <sem>. Taking the class n0Vn1 from Fig, 2 as an example, the variable
?X1 would also appear in the XMG description of the subject-NP leaf, and the
variable ?X2 in the description of the object-NP leaf (later identi�ed with ?X3

in the class POConstr). We skip a code example due to lack of space.

While the simulation of the frame via binary predicates is straightforward,
it is far less obvious how to simulate types and the type hierarchy. However,
as can be seen again from Fig. 4, types can be also simulated by sets of binary
predicates with a boolean second argument, or type simulating sets (TSS) as we
call them, in the following way:6 given a type hierarchy T such as the one in
Fig. 4, we say that t in T is simulated by the minimal set of predicates Pt(?X)
for some variable ?X, if Pt(?X) is assembled in the following way: for every t′ in
T , if t′ re�exively and transitively dominates t in T , then t′(?X,+) is in Pt(?X);
else if t and t′ have no common subtype, then t′(?X,−) is in Pt(?X). To give
an example, Pdirected-motion(?X) for the type directed-motion in the type hierar-
chy of Fig. 4 would be the set {activity(?X,−),motion(?X,+), causation(?X,−),

6 Thanks to Laura Kallmeyer and Yulia Zinova for pointing this out.
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motion-activity(?X,−), directed-motion(?X,+)}.7 It is easily seen that the size
of some Pt(?X) crucially depends on the position of t in T , and on the size of T .

One basic problem of this approach is that so far XMG does not interpret
the predicates of the <sem>-dimension, but merely accumulates them for later
use. Hence XMG allows for the coexistence of predicates activity(?X,-) and
activity(?X,+), which should be ruled out when simulating types as constraints
on uni�cation. But even if XMG was enhanced to verify the functionality of pred-
icates, at least three disadvantages would remain: (i) TSS have to be provided
by the grammar writer, (ii) they have to be included in the XMG descriptions as
a whole, and (iii) unifying sister types with a common subtype will yield a TSS
that does not immediately reveal the type of the common subtype. The latter
disadvantage might be more of an aesthetic kind, but the �rst and the second one
clearly have an impact on usability. Modifying the type hierarchy in the context
of a large grammar would make necessary a meta-Metagrammar, that would
automatically recompute the TSS and adapt the parts of the XMG descriptions,
where TSS were used. Therefore we present a novel <frame>-dimension in the
next section, which is adjusted to the peculiarities of frame structures and frame
composition.

6 A new <frame>-dimension

The description language employed in the <frame>-dimension of the extended
XMG follows the one of the <syn>-dimension in many respects.8 Basically, a
<frame>-dimension contains descriptions of nodes and edges, where nodes can
be assigned a variable (with var) and a type, and edges can carry a semantic
label. The example in Fig. 5 illustrates this.9 Note that the var-equations cor-
respond to the boxed numbers found in the AVM notation of frames (see Fig. 1
and 2). But comparing <frame>-descriptions with <syn>-descriptions also reveals
several crucial distinctions: neither do <frame>-descriptions employ non-strict
dominance, nor do they refer to linear precedence, as the daughters of a mother
are generally unordered. Furthermore the edges in the <frame>-dimension can
carry a semantic label, other than those in the <syn>-dimension.

The most essential di�erence, however, is found in the solvers, since the solver
of the <frame>-dimension takes into account the type hierarchy, which is spec-
i�ed globally within the header of the code example in Fig. 5. It also computes
and inserts the highest common subtype. Apart from that the solving of the
<frame>-descriptions is relatively cheap, since nodes and edges are completely
speci�ed, and therefore the solving only consists of �nding the root and traverse
the edges top-down. In contrast, the solvers of the <syn>-dimension (and of
the <sem>-dimension) rest upon the uni�cation of untyped partial descriptions,

7 Of course Pdirected-motion(?X) could be further minimized, since motion-

activity(?X,−) already follows from activity(?X,−).
8 To be exact, we extended XMG2 (http://wikilligramme.loria.fr/doku.php?id=xmg2).
9 A bracket notation is also available, similarly to the one in the <syn>-dimension.
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class POConstr

...

hierarchy TYPE = {(event,activity),(event,motion),(event,causation),

(activity,motion-activity),

(motion,motion-activity),(motion,directed-motion)}

...

<frame> {

node (type=causation,var=?X0) ?ROOT;

node (var=?X1) ?ACTOR;

node (var=?X2) ?THEME;

node (var=?X3) ?GOAL;

node (type=activity) ?CAUSE;

node (var=?X4) ?EFFECT;

node (var=?X1) ?CAUSEACTOR;

node (var=?X2) ?EFFECTTHEME;

edge (label=actor) ?ROOT ?ACTOR;

edge (label=theme) ?ROOT ?THEME;

edge (label=goal) ?ROOT ?GOAL;

edge (label=cause) ?ROOT ?CAUSE;

edge (label=effect) ?ROOT ?EFFECT;

edge (label=actor) ?CAUSE ?CAUSEACTOR;

edge (label=theme) ?EFFECT ?EFFECTTHEME

}

...

Fig. 5. The <frame>-dimension of class POConstr.

which means they only take into account the values when unifying features or
predicates.

The solvers of <frame> and <syn> do not di�er, however, with respect to one
crucial aspect: both resolve only tree structures. This might come as a surprise
given that frames correspond to directed graphs [14], where nodes can be imme-
diately dominated by more than one other node. Of course, in restricting itself to
tree structures, the <frame>-dimension can model structures like the latter one
only in an implicit way, namely by identifying separate nodes based on identi-
cal values in their respective var-property. Going back to the example in Fig. 5,
the identi�cation of nodes ?ACTOR and ?CAUSEACTOR is expressed through the
var-value ?X1. This account obviously borrows from the use of boxed-number
variables in common AVM notation.

It remains to say that single connected frames with a unique root are resolved
based on the descriptions within the <frame>-dimension. We do not see that
solutions with more than one root could become necessary on the level of the
lexicon.10

10 Otherwise the solver of the <frame>-dimension might be modi�ed analogously to the
shift from TAG to multi-component TAG [13].
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Fig. 6. Morphological decomposition of the Russian verb nasypat' ('to put') following
[16]. The aspectual pre�x na adds a perfective reading to the verbal stem sypat'. The
perfective reading is encoded in the frame of na in terms of a speci�c scalar change.

7 An application to morphological decomposition

[16] not only present a metagrammatical factorization of elementary tree tem-
plates and their frame-based semantics, but they also brie�y show that the same
idea can be applied below the word level, namely to verbal pre�xation in Rus-
sian: just as tree templates can be factorized (or decomposed) into tree frag-
ments, complex morphological units can be decomposed into morphemes and
their speci�c frame-semantic contribution. As an example, [16] decompose the
perfective verb nasypat' ('to put') along the lines of Fig. 6. Again, we won't go
into the linguistic details of the proposed analysis, but rather try to answer the
question how this could be implemented by means of XMG.

Until recently, the morphological level of linguistic descriptions had not been
attracting much attention within the framework of XMG. In general, morphology
was (and still is) seen to lie outside its main focus, and that the word lexicon
should be rather treated using other means. To our knowledge, the �rst work to
deviate from this general picture is [4] in treating the system of agglutinative
a�xes in Ikota (a Bantu language). For this, [4] presents an extension of XMG
which lets the grammar writer de�ne linearly ordered ��elds� for each type of
a�x. The speci�cation and �eld assignment of a�xes then takes place in a new
dimension, called <morph>.
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class nasypat

declare ?M1 ?M2 ?S1 ?S2

{

?M1 = na[];

?M2 = sypat[];

?S1 = ?M1.?S;

?S2 = ?M2.?S;

<morph>{

?S1 >> ?S2

}

}

class na

export ?S

declare ?S

{ <morph>{

morpheme ?S;

?S <- "na"

}

}

class sypat

export ?S

declare ?S

{ <morph>{

morpheme ?S;

?S <- "sypat'"

}

}

Fig. 7. The <morph>-dimension of the classes corresponding to the morphological de-
composition of nasypat' in Fig. 6.

Considering the case of morphological decomposition shown in Fig. 6, it would
be possible to adopt the �elds-and-<morph> approach of [4] in a straightfor-
ward way: �rst two �elds, say F1 and F2, would be globally speci�ed, and then
na would be assigned to F1 and sypat' to F2 within their respective morph-
dimension. Given, however, that pre�xation in Russian verbs is more �exible,
allowing for, e. g., the stacking of several aspectual pre�xes, we have chosen a
more general approach which underlies the implementation shown in Fig. 7.11

Instead of specifying a �xed number and order of �elds, the linear order of na
and sypat' is constrained locally inside the instantiating class nasypat using
the common LP-operator (`>>'). Note that the operator <- assigns a surface
string to a morpheme object. No matter what approach to morphology is chosen,
the respective <frame>-dimension remains the same, along the lines of what has
been presented in the last section. It is therefore omitted in Fig. 7.

The solver for the <morph>-dimension is rather simple compared to the one
of <syn>, since the order of morphemes is constrained by immediate precedence
only and the accumulated descriptions are supposed to be complete, meaning
that no precedence between morphemes has to be inferred. After accumulating
the morpheme objects and the precedence rules between them, the solver therefore
just searches for the �rst morpheme (with no morpheme preceding it), and then

11 A more �exible <morph>-dimension could be also advantageous in other cases, such
as nominal compounds in German.
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follows the line(s) of precedence rules. Finally it checks that no morpheme is left
behind.

Of course the presented <morph>-dimension and its solver are very prelimi-
nary and designed speci�cally for the kind of analysis in Fig. 6. It needs to be
clari�ed in subsequent research whether this is also applicable on a larger scale.

8 Conclusion

In this paper, we presented ongoing e�orts to extend the grammar engineering
framework XMG in order to deal with typed feature structures, respectively
frames. We showed that the simulation of frames within the <sem>-dimension is
doable, however there are disadvantages concerning the implementation of type
hierarchies. Therefore a novel <frame>-dimension was developed which is ad-
justed to the peculiarities of frame structure and frame composition, and which
should eventually reduce the burden for the grammar writer. We then showed
that the <frame>-dimension can not only be combined with trees and tree frag-
ments, but it can also be useful for the implementation of recent frame-based
accounts to morphological decomposition, thereby considerably widening the
scope of XMG.

The presented extensions to XMG are fully operational in a recent prototype.
We further plan to make available a bracket notation for <frame>-descriptions
that is closer to the common AVM notation, and to also include the <frame>-
dimension in the XMG viewer.
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1 Introduction

This paper presents a TAG (meta-)grammar of Guadeloupean Creole (GC). Guadelou-
pean is a French-based creole language spoken on the island of Guadeloupe (French
West Indies). While sharing most of its lexicon with French, GC differs from French
in its grammar (see Bernabé (1983) for a comprehensive description, and Damoiseau
(2012) for a comparative approach). In particular, GC has preverbal Tense-Aspect Mark-
ers while French has inflectional suffixes for Tense. I will show that these TMAs can
be correctly described as extended projections of verbs. They are generated as inflected
forms of a verbal lexeme (i.e. in morphology rather than in syntax).

First, I present succinctly the key concepts of a TAG grammar to the reader. Next,
section 2 describes the Tense-Aspect markers (TMAs) in GC and section 3 presents the
way they are incorporated in the GC metagrammar 1. Section 4 briefly presents how the
same approach can be applied to the nominal domain.

Before addressing the question of Tense and Aspect markers, let me briefly present
the key notions of TAG.

Tree-Adjoining Grammar (TAG) allows two operations (for a complete description,
see Joshi and Schabes (1997), from which I take the following definitions):

– “ Substitution takes only place on non-terminal nodes of the frontier of a
tree. [...] By convention, the nodes on which substitution is allowed are
marked by a down arrow (↓). When substitution occurs on a node n, the
node is replaced by the tree to be substituted. When a node is marked for
substitution, only trees derived from initial trees can be substituted for it.”
(Joshi and Schabes, 1997, p.4)

– “ Adjoining2 builds a new tree from an auxiliary tree β and a tree α (α is
any tree, initial, auxiliary or derived). Let α be a tree containing a non-
substitution node n labeled by X and let β be an auxiliary tree whose root
node is also labeled by X. The resulting tree γ, obtained by adjoining β to
α at node n is built as follow:

1 I would like to thank Simon Petitjean, Yannick Parmentier and Denys Duchier for their pre-
cious help. I would also like to express my gratitude to the anonymous reviewers for their
precious comments.

2 I will prefer the term adjunction in the remainder of the paper.



• the sub-tree of α dominated by n, call it t, is excised, leaving a copy of
n behind.

• the auxiliary tree β is attached at the copy of n and its root node is
identified with the copy of n.

• the sub-tree t is attached to the foot node of β and the root node of t
(i.e. n) is identified with the foot node of β. ”

(Joshi and Schabes, 1997, p.4)

As proposed in Frank (2002), Substitution and Adjunction are supposed to be uni-
versal operations. The differences between languages can only reside in the shape of
the elementary trees. The way elementary trees are built is thus a crucial matter, and yet
the locus of divergences between several TAG grammars. It is thus necessary to explain
the principles that govern the building of the elementary trees.

The major reference for a TAG French grammar is Abeillé (2002)3 which presents
the following (linguistic) principles of elementary trees well-formedness:

Lexical Anchoring: An elementary tree must have (at least) one non-empty lexical
head.

Predicate-Argument Co-occurrence: A predicate elementary tree must have a node
for each of its arguments.

Semantic Anchoring: A syntactic elementary tree must correspond to a (non-empty)
semantic element.

Compositionality Principle: An elementary tree corresponds to one and only one se-
mantic unit.

Furthermore, I adopt the Conditions on Elementary Tree Minimality (CETM) (Frank,
2002, 54) :

CETM: The syntactic heads in an elementary tree and their projections must form an
extended projection of a single lexical head.

This leads me to adapt Grimshaw (2000)’s definition of head and projection to the
TAG framework and say that an elementary tree is a maximal projection of one (or
several) lexical head(s) within which the categorial features are shared. This opens dis-
cussions about what is functional and what is lexical. In the case of prepositions, this is
a difficult matter for which the debate remains open (see Cinque (2010)).

2 Tense-Aspect Markers

2.1 A Brief Description of Tense-Aspect Markers in GC

Creole languages are known to make use of independent4 markers to express Tense and
Aspect (see Winford (2012) for a synthesis) usually gathered under the label TMA mark-
ers (Tense, Mood and Aspect markers) or TAM (Tense and Aspect Markers). Guade-
loupean behaves like other creoles w.r.t. TMAs. The inflectional morphology found in

3 For English, see the XTAG project (XTAG Research Group (2001))
4 In a sense that will be clarified later.
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French verbs is replaced in GC by independent morphemes. For comprehensive analy-
ses, the reader may refer to McCrindle (1999) and Pfänder (2000). In Table 1, I will use
the description of Vaillant (2008a), taking as a paradigmatic example the verb dansé ‘to
dance’5 6.

Table 1. Tense and Aspect markers.

Value Form
Accomplished/Aoristic dansé
Unaccomplished / Present ka dansé
Frequentative ka dansé
Progressive ka dansé
Future ké dansé
Unaccomplished Future (seldom) ké ka dansé
Accomplished past (pluperfect) té dansé
Unaccomplished past té ka dansé
Irrealis (Past) té ké dansé
Irrealis unaccomplished (extremely rare) té ké ka dansé
Conditional / Optative té dansé

Vaillant (2008b) also notes that ké ka and té ké ka are attested, although rare7. The
precise semantic value and uses of these TMAs are beyond the scope of this paper and
the reader may refer to Pfänder (2000) for a complete description. The following lines
are just intended to present the useful key points for a non-specialist reader.

Bare Verbs: As in many languages, bare verbs in GC are used to express the (past)
perfective (or preterite) with dynamic processes (as in (1-a)) and express the present
tense with stative verbs8, as in (1-b).

(1) a. Jan
Jean

rivé.
come

‘Jean came.’
b. Jan

Jean
enmé
love

Sofi.
Sophie

‘Jean loves Sophie.’ (and not: * Jean loved Sophie)

Tense: The anterior marker of GC is té. When combined with non-stative verbs, té (ant)
provides a perfective interpretation:

5 There is another marker kay, which is sometimes analysed as part of this system, however, as
I will show later, it can’t be included among the TMAs.

6 This table shows the main uses of the TMA markers to give the reader a quick overview of
the TMAs, but, as it will be claimed below, the interpretation of a TMA sequence is highly
dependent on the context.

7 I leave aside the marker laka which can plausibly be analysed as la (locative) and ka.
8 And more generally with non-stative predicates, such as adjectival predicates.
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(2) Sofi
Sophie

té
ant

palé
speak

ba
to

Jan
Jean

‘Sophie had spoken to Jean.’

And a past imperfective reading with stative verbs:

(3) Jan
Jean

té
ant

enmé
love

Sofi.
Sophie

Litt.:‘(At this time,) Jean was loving Sophie’

Aspect: GC Aspect markers are ka and ké for Imperfective and Prospective respectively.
When ka is combined with stative verbs, the reading must be Iterative, as in:

(4) I
3sg

ka
asp

tini
have

onlo
a-lot-of

lajan
money

a
at

fen
end

a
of

chak
each

mwa.
month

‘He has a lot of money at the end of each month.’ (example from (Delumeau,
2006, 117))

With non-stative predicates, the favored interpretation is Imperfective:

(5) Jan
Jean

ka
ASP

manjé.
eat

‘Jean is eating’

ké triggers a future reading:

(6) Jan
Jean

ké
ASP

manjé.
eat

‘Jean will eat’

2.2 Projecting TMAs

TMAs in GC have already been described in the TAG framework by Vaillant (2008a).
This analysis differs from the one I present here on several aspects: First, it does not rely
on a metagrammar, a point which matters since the implementation I present here relies
heavily on the concept of metagrammar. Second, it calls upon adjunction to describe
the TMA markers, an approach I will question here.

In this section, I will provide arguments in support of integrating TMA markers
into the elementary trees as extended projection of a verbal head9, instead of using
adjunction as a way to integrate TMAs (as auxiliary trees) into the structure. Naturally,
it is well known that every grammar using substitution can be rewritten using adjunction
only. Formal considerations are therefore of little help in this discussion as far as the
derived tree is concerned, but if derivation trees as intended to reflect the meaning of
the sentence, the way the trees combine is a crucial matter. I base my argumentation on
linguistic arguments and propose below a series of tests which show that TMAs behave
differently from verbs.

9 This can be extended to predicates in general, since there are non-verbal predicates in GC.
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Several tests have been proposed for Romance languages (in Abeillé and Godard
(2003) that cannot be used for GC. These are based on clitic-climbing and infinitival
constructions which do not exist as such in GC and are therefore of little help. Instead,
I will base my arguments on coordination and cleft structures.

Coordination: While coordination can apply to lexical items almost without restriction
(see (Bernabé, 1983, 1396ff.) for a review of coordination in GC), TMA markers cannot
be coordinated on the same position:

(7) *Jan
Jean

ka
Imperf

é
and

ké
Prosp

manjé.
eat

‘Jean is and will be eating’

But lexical items can be coordinated:

(8) sèvolan
kite

la
def

ka
imperf

monté,
go-up

monté,
go-up

(é)
(and)

monté
go-up

!

‘The kite goes up, up, up!’ (from (Bernabé, 1983, 545))

(9) shows that the repetition of the predicate is the norm, since coordination of TMA is
blocked, and (10) shows that verb coordination can appear below TMAs.

(9) an
1sg

fouté
win

y,
3sg

an
1sg

ka
imperf

fouté
win

y,
3sg

an
1sg

ké
prosp

fouté
win

y
3sg

!

‘I won (against him in the past), I won (this time) and I will win!’

(10) Jan
Jean

ka
imperf

dansé
dance

é
and

chanté
sing

‘Jean is dancing and singing’

Predicate Cleft: Predicate cleft is a frequent construction in GC (while impossible in
French). In (11), the lexical verb is clefted without the TMA marker. The same sentence
with clefted TMA is ungrammatical, as in (12).

(11) sé
it-is

monté
climb

nou
1pl

ka
imperf

monté
climb

pou
for

nou
1pl

rivé
arrive

la
there

nou
1pl

ka
imperf

alé.
go

‘We are climbing to arrive where we are going’ (intensive meaning)

(12) a. *sé ka monté nou ka monté... [Aspectual marker prohibited]
b. *sé té monté nou té monté...[Tense marker prohibited]

This test highlights the difference between (still) real periphrastic elements and
TMAs. For instance, it is usually accepted that the form kay (ka+ay) ’Imperfective+go’
(example (13)) is one of the TMA (see Vaillant (2008a) and (Bernabé, 1983, 1035)).

(13) Jan
Jean

kay
imperf+go

vini
come

‘Jean is going to come’

But ay ’go’ differs from the TMAs w.r.t this test, as shown in (14):
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(14) sé
it-is

ay
go

Jan
Jean

kay
imperf+go

vini
come

‘Jean is going to come.’ (stress on the movement)

Then, the verb ay ’to go’ will be inserted using adjunction, as in Abeillé (2002) for
aspectual verbs and auxiliaries in French. It anchors its own tree and is stored in the
Lexicon, contrarily to the TMAs.

The negative marker is also excluded from the clefted position (15), lending weight
to the hypothesis that the clefted element is below any verbal functional projections [VP

V (NP)].

(15) Sé
it-is

(*pa)
neg

monté,
climb

nou
1pl

pa
imperf

monté
climb

‘We didn’t climb up.’

A noteworthy exception seems to be (16):

(16) Sé
It-is

vlé
will

pa,
neg

i
3sg

vlé
will

pa
neg

!

‘He really doesn’t want !’

But the behavior of vlé, here, is atypical, since the negative marker follows the verb10.
From these tests, I conclude that TMA markers are functional elements, just like

inflectional affixes in French are. The only – but significant– difference is that these
markers are not expressed via synthesis but via a particular form of periphrasis (a sit-
uation where two or more words express the meaning expected for a single word).
Syntactic intermediate projections are available between Tense and Aspect and allow
some (rare) adverbs to be inserted between the TMA markers, as in (17):

(17) Pyè
Pierre

té
anterior

ja
already

ka
imperf

vin.
come

‘Pierre was already coming.’ (from (Bernabé, 1983, 1060))

Thus, I treat TMA markers as functional elements that form an extended projection of
the lexical head, in conformity with the CETM.

This work is in accordance with many recent works attempting to reconsider the
traditional division between morphology and syntax. For instance, Brown et al. (2012)
try to avoid the binary division of labor between morphology and syntax and claim
that periphrasis are both. I will follow here some key assumptions presented in the
Paradigm Function Morphology (PFM) framework (Stump (2001); Bonami and Stump
(prep)) which are highly compatible with a lexicalist approach of syntax. This separates
clearly the TAG grammar I propose here from the standard GB analyses (in the wake of
Chomsky (1981)) which are non-lexicalist. In particular, I adopt the idea that “some
syntactic constructions express the pairing of a lexeme with a morphosyntactic set,
and should thus be incorporated into inflectional paradigms as inflectional periphrases”
(Bonami and Stump, prep, p.20).

10 It might illustrate a case of lexical integration of pa into the verbal stem.
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In the cases of the GC’s TMAs, it is reasonable to claim that the TMAs and the lexi-
cal verb realize different forms of the same lexeme. Bonami and Webelhuth (2013) note
that most of the morphological descriptions of functional periphrasis are rudimentary in
their description of the periphrasis syntactic structures and that their syntactic behavior
differs from one language to another (see also Abeillé and Godard (2003). I suggest that
TMAs are in part similar to proclitics, an analysis which has also been proposed in the
HPSG framework by Henri and Kihm (2013), but still allow syntactic nodes for adjunc-
tion. The present study – as well as Henri and Kihm (2013) and Schang et al. (2012)
for other creole languages – suggest a finer-grained characterization of the TMAs from
a typological point of view.

3 TMAs in the TAG Metagrammar

3.1 eXtensible Meta-Grammar

XMG11 is a declarative language for specifying tree-based grammars at a meta-level
(Crabbé and Duchier (2004); Crabbé et al. (2013)). XMG allows the linguist to capture
generalizations on his grammar by defining tree fragments (Classes) that can combine
via feature unification (conjunctive / disjunctive combinations of fragments). Once de-
fined, Classes can be reused in distinct contexts, allowing elegant generalizations. A
core grammar is described by fragments of elementary trees and these fragments com-
bine to form the expanded grammar which is made of elementary trees12. I will use these
concepts to describe the TMA part of the core grammar of GC (Crabbé and Duchier,
2004, p.1).

3.2 Fragments of Functional Projections

From the preceding section, I take for granted that TMAs are not stored in the Lex-
icon (they don’t anchor any tree properly) but are co-anchors of the elementary tree
associated with verbs13.

For instance, (19) illustrates the structure of (18).

(18) Jan
Jean

té
ant

ka
imperf

manjé
eat

‘Jean was eating.’

11 I am using XMG-2 version.
12 See Crabbé (2005) for a large metagrammar of French using XMG.
13 For a similar approach on Santomense’s Tense and Aspect markers, see Schang et al. (2012) .
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(19) S

V

V

V

manjé

Imperf

ka

T

té

N

Jan

In (19), S is a projection of V, the maximal functional stretching of the verb.
In XMG’s framework, the structure (19) is broken down into four pieces (i.e. classes)

each containing minimal information. These Classes are listed below.

– CanS ub ject: for the External Argument of the verb. It is described in (20-a) .
– Imper f : as a projection of the Imperfective (Aspect) marker. It is described in

(20-b).
– Tensed: as a projection of Tense.
– Intransitive verb: the minimal projection of V. It is described in (20-d).

(20) a. S

V[pro j:T |Imper f |V]NP↓

b. V[pro j:Imper f ]

V[pro j:V]ka

c. V[pro j:T ]

V[pro j:Imper f |V]té

d. V[pro j:V]

V �
Thus, (19) is built up from the following conjunction of Classes:

CanS ub ject ∧ Intransitive ∧ Imper f ∧ Tensed

As in Schang et al. (2012) for Santomense, the feature proj(ection) is used to rule out
invalid combinations in the output elementary tree.14

14 In the values associated with feature proj, ”|” refers to disjunction.
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From the conjunction of classes given above, the result of the metagrammar com-
pilation are elementary trees for intransitive verbs, inflected with Tense and Aspect, as
shown in (21)15.

(21)

The same mechanism is used to describe verb families. For instance, the class of
Intransitive verbs inflected for TMAs can be described as a class IntransV gathering the
classes of the inflected forms for intransitive verbs16:

BareV | Imper f V | ProspImper f V | TensProspImper f V

| TensedV | ProspV | TensImper f V | TensProspV

As expected from the morphological approach I defend here, the TMAs do not
appear as adjuncts but are co-anchors of the verb. (22) shows the derivation tree17 for
the sentence Jan té ka manjé ‘Jean was eating’.

(22) α1-manjé[Ant; Imper f ]

α2-Jan

The benefit we have here with regards to adjunction is that the semantic interpretation
of the sequence N0 té ka V is directly derivable from the features on the verb (see Table

15 Which is a picture of the elementary tree as displayed by XMG.
16 The abbreviations are: Imperf(ective), Prosp(ective), Tens(ed).
17 Where α is the conventional label for an elementary tree.
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1). There is no need to postulate ambiguous TMA markers triggering various interpre-
tations or different syntactic positions for the same marker, as is commonly proposed
in creole languages descriptions (see Winford (2012)), i.e. postulating several distinct
ka or Ø markers to derive the correct interpretation. On the contrary, it is compatible
with the PFM idea that words (or multiword expressions) realize the morphosyntactic
property set of the lexeme they are member of. Then, té ka manjé is the realization of
the morphosyntactic set {Anterior, imper f ective} for the lexeme manjé.

4 Extended Projections in the Nominal Domain

The same methodology developed for the TMAs is adopted in the Nominal domain,
incorporating Definite, Demonstrative and Plural markers as co-anchors of a lexical
Noun, as in (23), where the Plural marker sé precedes the N and the Definite marker
follows the N, as illustrated in (24). Note that in GC, the Plural requires the Definite,
*sé timoun being agrammatical.

(23) N[pro j:Pl]

N[pro j:De f ]

laN �

sé

(24) [sé
Pl

timoun
child

la]
Def

vin
come

‘The children came.’

(23) is the conjunction of the classes:

Plural | De f inite | Noun

where Plural can only appear if Definite is present.

The genitive preposition a18 ’of’ in (25), which only has a functional role akin to a
Genitive case marker is also treated as a co-anchor.

In (25), the NP [a Lelette] is adjoined to the head noun kaz.

(25) [kaz
house

[a
Genitive

Lelette]]
Lelette

‘Lelette’s house’

The genitival form of the noun (as head of the genitive NP) is an auxiliary tree (for
adjunction) containing the co-achor a, as shown in (26).

18 And its allomorph an when preceding a nasal.
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(26) N

N[pro j:Gen]

N �a

N*

The comparison of GC with a Matiniké Creole (spoken on the island of Martinique,
closely related to GC and diachronically linked to GC) lends weight to this approach,
since in Matiniké, the same NP as in (25) would be kaz Lelette, without preposition.
The difference between these creoles relies only in the fact that Matiniké has a covert
(silent) preposition for the same structure as (26).

To summarize, the inflected forms of a noun can be represented as a conjunction of
classes:

Demonstrative − N | Plural − N | De f inite − N | Bare − N | Genitive − N

Note that while Plural, Demonstrative, Definite and Genitive appear as syntactic
projections in GC, the same functional elements are concatenated at the word level in
other languages.

5 Conclusion

I have shown that Tense and Aspect markers of Guadeloupean Creole are functional
projections that can be described as co-anchors of a lexical head (extended projections).
Their response to the tests of coordination and cleft structures shows that TMAs are
not as free as other periphrastic elements (such as the verb ay ’to go’). Their place is
somewhere between concatenative morphology at the word level and ’free’ periphrastic
elements, which I take to be adjoined elements. In the nominal domain, I have sug-
gested that the definite, demonstrative, plural and genitive markers are also functional
elements of the same sort. These functional elements are integrated in the elementary
trees that form the GC grammar as co-anchors of the lexical item. I have demonstrated
how these elements form fragments of (elementary) trees and how they combine to form
the expanded grammar. To do this, I have used the XMG formalism for metagrammar.
Since the combination of the fragments constitute inflected forms of a lexeme (as the
compound tenses are still members of the verbal paradigm, see Ackerman and Stump
(2004)), the building of Elementary trees is as much a morphological as a syntactic op-
eration. It thus casts a new light on Creole languages which are commonly thought to
have little (or even no) morphology.
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Bernabé, J. (1983). Fondal-natal. l’Harmattan Paris.
Bonami, O. and Stump, G. (in prep). Paradigm Function Morphology. In Spencer, A.,

editor, The Handbook of Morphology, 2nd ed. Wiley-Blackwell.
Bonami, O. and Webelhuth, G. (2013). The phrase-structural diversity of periphrasis: a

lexicalist account. In Chumakina, M. C. G. G., editor, Periphrasis: The role of syntax
and morphology in paradigms. Oxford University Press.

Brown, D., Chumakina, M., Corbett, G., Popova, G., and Spencer, A. (2012). Defining
‘periphrasis’: key notions. Morphology, 22(2):233–275.

Chomsky, N. (1981). Lectures on the Theory of Government and Binding. Dordrecht:
Foris.

Cinque, G. (2010). The syntax of adjectives: a comparative study.
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LORIA, Université de Lorraine, Nancy, France

Abstract. We present Frigram, a French grammar with a large cov-
erage, written in the formalism of Interaction Grammars. The original-
ity of the formalism lies in its system of polarities, which expresses the
resource sensitivity of natural languages and which is used to guide syn-
tactic composition. We focus the presentation on the principles of the
grammar, its modular architecture, the link with a lexicon independent
of the formalism and the companion property, which helps to guarantee
the consistency of the whole grammar.

Keywords: Formal Grammar, Model Theoretic Syntax, Polarity, Inter-
action Grammar.

1 Introduction

The aim of our work is to show that it is possible to build a realistic compu-
tational grammar of French, which integrates fine linguistic knowledge with a
large coverage. As a framework, we have chosen the formalism of Interaction
Grammar (IG) [7]. IG combines a flexible view of grammars as constraint sys-
tems with the use of a polarity system to control syntactic composition. The
system of polarities expresses the saturation state of partial syntactic structures
and their ability to combine together.

The main challenge is to guarantee and to maintain the consistency of the
grammar while aiming at the largest coverage. We resort to several means:

– a modular organization of the grammar in a hierarchy of classes, which is
able to capture the generalizations of the language,

– principles of well-formedness for the elementary structures of the grammar,
– a separation of the grammar itself from the lexicon, which is independent of

any grammatical formalism,
– the use of the companion property to help the checking of the grammar

consistency.

Starting with a brief presentation of IG, we continue with an explanation of
the different points mentioned above and with a comparison with other French
grammars and a discussion about the evaluation of the grammar.

2 Interaction Grammars

IG is a grammatical formalism which is devoted to the syntax of natural lan-
guages using two notions: tree description and polarity. For a complete presen-
tation of the formalism, the reader can refer to [7].



2.1 Tree Descriptions

The notion of a tree description [11] is related to a model theoretic view of the
syntax of natural languages [10]. In this view, the basic objects of the grammar
are not trees but properties that are used to describe them, in other words tree
descriptions. This approach is very flexible allowing the expression of elementary
properties in a totally independent way, and their combination in a free manner.
A tree description can be viewed either as an underspecified tree, or as the
specification of a tree family, each tree being a model of the specification.

nPred

cat → s

funct ← void

nHead

cat ↔ v

funct ↔ head

nSubj

cat ↔ np

empty_type = arg

funct ↔ subj

nObj

cat ← np

funct → obj

nVanch

montrez

cat ↔ v

funct ↔ head

nS

cat ~ ap|s

nVmax

cat ~ v

nCompl

cat → np

empty_type = track

funct ← obj|subjpred

ref = [[9]]?

nVclit

cat ~ v

funct ~ head

nClit

cat ↔ pro

funct ↔ void

ref = [[9]]?

nClit0
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cat ↔ pro

funct ↔ head

nPunct

cat ↔ punct

funct ↔ void

nPunctSign

!

cat ↔ punct

funct ↔ head

nS

cat ↔ s

funct ↔ void

nS0

cat ← s

funct → void

Fig. 1. PTD associated with the sentence “montrez-le !” by the grammar Frigram.

Figure 1 gives an example of the tree description, which is associated with
the sentence “montrez-le !” [“show it !”]. Even if the description is composed of
three parts associated with the three words of the sentence (punctuation signs
are considered as words), it must be considered as a unique tree description.

A tree description is a finite set of nodes structured by two kinds of relations:
dominance and precedence. Dominance relations can be immediate or large. In
the example, there are only immediate dominance relations represented with
solid lines. Precedence relations can also be immediate or large. They are rep-
resented with arrows in Figure 1; these arrow are solid and black or dashed and
green, depending on whether the dependencies are immediate or large.

Nodes, which represent constituents, are labelled with features describing
their morpho-syntactic properties. Feature values are atoms or atom disjunc-
tions. When a feature value is the disjunction of all elements of a domain, this
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value is denoted with “?”. A mechanism of co-indexation between feature values
(a common index [[n]] is put before their values) allows for sharing.

It is possible to add constraints on the phonological form and on the daugh-
ters of nodes: a node is declared to be empty if its phonological form is empty
and it is graphically represented with a white rectangle; at the opposite, it is
declared to be full, and it is represented with a light-yellow rectangle; it is de-
clared to be closed, if the set of its daughters is fixed and it is represented with
a double rectangle; finally, a node is declared to be an anchor, if it is a full leaf,
and it is used to anchor a word of the language. An anchor is represented with
a canary yellow rectangle.

IG uses three kinds of empty nodes:

– when an argument has moved from its canonical position, this position is
marked with a trace, an empty node with the feature empty type = track;
this covers all cases of extraction, subject inversion and cliticization of argu-
ments; in Figure 1, node nCompl is the empty trace of the object represented
with the clitic pronoun “le”;

– when an argument is not expressed with a phonological form, it is represented
with an empty node carrying the feature empty type = arg; this is the case
for subjects of adjectives, infinitives and imperatives, as well as some objects
of infinitives (tough movement); in Figure 1, node nSubj represents the non-
expressed subject of the imperative verb “montrez”;

– in presence of an ellipsis, the head of the elided expression may be represented
with an empty node carrying the feature empty type = ellipsis.

2.2 Polarities

Polarities are used to express the saturation state of syntactic trees. They are
attached to features that label description nodes with the following meaning:

– a positive feature f → v expresses an available resource, which must be
consumed;

– a negative feature f ← v expresses an expected resource, which must be
provided; it is the dual of a positive feature; one negative feature must match
exactly one corresponding positive feature to be saturated and conversely;

– a saturated feature f ↔ v expresses a linguistic property that needs no
combination to be saturated;

– a virtual feature f ∼ v expresses a linguistic property that needs to be
realized by combining with an actual feature (an actual feature is a positive
or saturated feature).

In Figure 1, node nObj carries a negative feature cat ← np and a positive
feature funct → obj, which represents the expected object noun phrase for
the transitive verb “montrez”.

The virtual features of the second part of the tree description represent the
syntactic context required by the clitic pronoun “le”: a verb nVclit put imme-
diately before the pronoun to build the node nVmax with it.
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Only resource sensitive features are polarized. Other features are called neu-
tral features and denoted f = v. For instance, agreement properties are ex-
pressed with neutral features.

The descriptions labelled with polarized features are called polarized tree
descriptions (PTDs) in the rest of the article.

2.3 Grammars as constraint systems

An interaction grammar is defined by a finite set of Elementary PTDs, named
EPTDs in the following, and it generates a tree language. A tree belongs to the
language if it is a model of a finite set of EPTDs in the sense given by [7]. Each
node of the EPTDs is mapped to a node of the model through an interpretation
function. Properties of models include:

– A model is saturated : every positive feature f → v is matched with its dual
feature f ← v in the model and vice versa. Moreover, every virtual feature
has to find an actual corresponding feature in the model.

– A model is minimal : it has to add a minimum of information to the initial
descriptions (it cannot add immediate dominance relations or features that
do not exist in the initial descriptions).

Parsing a sentence with a grammar G consists first in selecting an appropriate
set of EPTDs from G. The selection step is facilitated if G is lexicalized: each
EPTD has an anchor associated with a word of the language. It strongly reduces
the search space for the EPTDs. Then, the parsing process itself reduces to the
resolution of a constraint system. It consists in building all models of the selected
set of EPTDs.

Figure 1 represented a possible selection of EPTDs from Frigram to parse
the sentence “montrez-le !”. The selection includes three EPTDs1, which are
gathered in a unique PTD. Figure 2 shows the unique minimal and saturated
model of the PTD. It is an ordered tree where nodes are labelled with non
polarized features in the form f : v, where v is an atomic value. In the head of
each node, a list gives the nodes of the PTD that are interpreted in the node of
the model.

In an operational view of parsing, the building of a saturated and minimal
model is performed step by step by refining the initial PTD with a merging
operation between nodes, guided by one of the following constraints:

– neutralise a positive feature with a negative feature having the same name
and carrying a value unifiable with the value of the first feature;

– realize a virtual feature by combining it with an actual feature (a positive
or saturated feature) having the same name and carrying a value unifiable
with the value of the first feature.

1 The EPTDs are labelled by the name of the class of the grammar generating them
followed by a number. In the order of the sentence, we have NP0 V NP1 134, PRO-
clit compl impers pos 38 and PUNCTstop S1inter imper 1.
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class_PUNCTstop_S1inter_imper_1.nS0

class_PROclit_compl_imper_pos_38.nS

class_NP0_V_NP1_134.nPred

cat : s

funct : void

class_PROclit_compl_imper_pos_38.nVmax

class_NP0_V_NP1_134.nHead

cat : v

funct : head

nSubj

cat : np

empty_type : arg

funct : subj

class_PROclit_compl_imper_pos_38.nCompl

class_NP0_V_NP1_134.nObj

cat : np

empty_type : track

funct : obj

ref : [[9]]?

nPunct

cat : punct

funct : void

class_PROclit_compl_imper_pos_38.nVclit

class_NP0_V_NP1_134.nVanch

montrez

cat : v

funct : head

nClit

cat : pro

funct : void

ref : [[9]]?

nPunctSign

!

cat : punct

funct : head

nClit0

le

cat : pro

funct : head

nS

cat : s

funct : void

Fig. 2. Model of the PTD shown in Figure 1 representing the syntax of the sentence
“montrez-le !”.

The constraints of the description interact with node merging to entail a partial
superposition of their contexts represented by the tree fragments in which they
are situated. So the model of Figure 2 can be obtained from the PTD of Figure 1
with a sequence of three node merging operations: nVanch with nVclit, nObj with
nCompl and nPred with nS0.

To summarize, IG combine the strong points of two families of formalisms:
the flexibility of Unification Grammars and the saturation control of Categorial
Grammars.

3 The Principles of the Grammar Frigram

Frigram is a IG for the French language; it contains 3 794 EPTD templates.
Frigram follows a set of principles which express formally the chosen linguistic
modeling. These principles are also used to automatically check the consistency
of the grammar and its conformity to linguistic principle. The constituant to
dependency transformation used with Frigram also strongly relies on this set
of principles.
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Definition 1. A node with a positive or saturated cat feature is called a con-
crete node.

Principle 1 (cat-funct) In an EPTD, any node has a cat feature and if it is
concrete, it has also a funct feature.

The consequence is that any node of a model has a cat feature and a funct

feature. Another consequence is that any node of a model has a unique concrete
antecedent in the original PTD, because two concrete nodes of a PTD cannot
merge in the model, according to the composition rules of polarities.

Principle 2 (strict lexicalisation) Any EPTD has exactly one anchor node.
This anchor node has a saturated cat feature with an atomic feature value.

Definition 2. A spine in an EPTD is a list of nodes N1, N2, . . . , Np such that:

– for any i such that 1 < i ≤ p, node Ni is a daughter node of Ni−1;
– for any i such that 1 < i ≤ p, node Ni has a saturated feature cat and a

feature funct ↔ head;
– node N1 is a concrete node and its feature funct has a value different from

head; it is called the maximal projection of all nodes belonging to the spine;
– node Np is either an anchor or an empty leaf; in the first case, the spine is

called a main spine; in the second case, it is called an empty spine; in both
cases, node Np is called the lexical head of all nodes belonging to the spine.

Principle 3 (spine) Any concrete node of an EPTD belongs to exactly one
spine.

An important corollary of the spine principle is that every node N of a PTD
model has exactly one lexical head in this model, denoted head(N) and defined
as follows: the concrete antecedent of N in the initial PTD belongs to exactly
one spine and head(N) is the interpretation in the model of the leaf ending the
spine.

A second important corollary is that every node in a PTD model which is not
a leaf has exactly one daughter node with the feature funct : head. By following
all nodes with this feature, we have a more direct way of finding the lexical head
of every node in a PTD model.

A third corollary is that each model node with a positive feature cat is the
maximal projection of some spine.

From the strict lexicalisation and spine principles, we can also deduce that
every EPTD has exactly one main spine.

To illustrate the concept of a spine, let us consider the EPTDs of Figure 1.
The EPTD associated with the verb “montrez” has two spines: the main spine
nPred, nHead, nVanch with its lexical head nVanch, and an empty spine reduced
to a single node nSubj. The formalism of IG is situated in the constituency
approach to syntax, as opposed to the dependency approach but the principles
of Frigram allow for an automatic transformation of any parse made with IG
from a constituency setting into a dependency setting. Our purpose here is not
to describe the transformation in detail but to give an outline of it.
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Fig. 3. The dependency graphs representing the syntax of the sentence “montrez-le !”.

The dependencies are generated by the interactions between the polarized
features cat and funct of the different nodes of the initial PTD and they are
projected on the full and empty words of the sentence through the notion of
lexical head.

For the sentence “montrez-le !”, from the PTD of Figure 1 and its model
from Figure 2, we compute the dependency graph on the left of Figure 3. It has
two empty words, the subject of “montrez”, named ε a (which corresponds to
the node with feature empty type = arg), and its object ε t (which corresponds
to the node with feature empty type = track), which is the trace of the clitic
pronoun “le”. Traces are linked to their antecedent with the relation ANT .

In a second step, the empty words are removed and their incident dependen-
cies are transferred to their full antecedent, when it exists. In our very simple
example, the resulting dependency graph reduces to the tree on the right of
Figure 3, but in more complex sentences, the dependency graph includes cycles
and nodes with several governors. When there is more than one solution, hand-
crafted rules are used to compute a weight for each solution in order to rank
them.

4 The Architecture of the Grammar

4.1 The Modular Organisation of the Grammar

It is unthinkable to build a grammar with about 4000 EPTD templates manu-
ally, considering each one individually. Even if it were possible, to maintain the
consistency of such a grammar would be intractable.

Now, the EPTD templates of Frigram share a lot of fragments and it is
possible to organize the grammar as a class hierarchy. A tool, XMG [4], was
specially designed to build such kind of grammars. XMG provides a language
to define a grammar as a set of classes. A class can be defined directly but
also from other classes by mean of two composition operations: conjunction and
disjunction.

Each class is structured according to several dimensions. Frigram uses two
dimensions: the first one is the syntactic dimension, where objects are EPTD
templates, and the second one is the dimension of the interface with the lexicon,
where objects are feature structures.

The terminal classes of the hierarchy define the EPTD templates of the gram-
mar that are computed by the XMG compiler. Figure 4 gives the example of a
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BasicVerb

ActiveInflectionVerb

InfiniteVerb FiniteVerb

ParticipialVerbOR

ImperativeVerb NonImperativeVerb

PastParticipialVerbPresentParticipialVerbActiveInflectionClauseVerb

OR

NonReflexiveActiveMorphology

ActiveMorphology

NP_Vactive

AND

NP_Vactive_NP

PredicateCompl

DirectObject

IndirectObject NominalDirectObject

NominalIndirectObject

AND

NP0_V_NP1_PP2

NP0_V_NP1

Fig. 4. The hierarchy of classes used to define the NP0 V NP1 PP2 class of transitive
verbs with an indirect complement

terminal class, the NP0 V NP1 PP2 class of transitive verbs with an indirect
complement, with the hierarchy of classes used to define it.

The current grammar Frigram is composed of 428 classes, including 179
terminal ones, which are compiled into 3 794 EPTD templates. Of course, some
general classes can be used in several different contexts. For instance, adjectives,
nouns and verbs description all inherit from the same subclasses related to com-
plements of predicative structures. The set of classes is organized in a module
hierarchy 5.

There is another hierarchy related to the different forms of extraction, in
relative, interrogative and cleft clauses. The root module of the hierarchy is
the ExtractGramWord module. Three modules depend on it: Complemen-
tizer, Interrogative and Relative. Moreover, there are isolated modules
related to specific categories.
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complement

adverb adjective noun

verb

verbPersonalDiatheses verbImpersonalDiatheses verbSubjectControl

verbKernel

Fig. 5. The main hierarchy of modules

4.2 The link with a lexicon independent of the formalism

The full grammar is produced from the set of EPTD templates and a lexicon.
Each EPTD template is associated to a feature structure (called its interface)
which describes a syntactic frame corresponding to lexical units able to anchor
it; lexicon entries are also described through features structures. Unification
between interface of the EPTD template and lexicon feature structure is used to
control the combination of a lexical unit description and the template. Thanks
to the strict lexicalisation principle, each EPTD of the grammar has a unique
anchor node linked with a lexical unit of the language. Since there is a co-
indexation between features of the EPTD template and features of the interface,
a side effect of anchoring is the instantiation of some feature values in the EPTD.

In our system, the lexicon used is Frilex2 which combines morphological
information taken in ABU3 and in Morphalou [12] with syntactical information
for verbs from Dicovalence [14]. Frilex contains 530 000 entries. To avoid size
explosion, the full grammar is built on the fly on each input sentence.

5 The Companion Property and the Consistency of the
Grammar

Our ambition is to build a grammar with a coverage of all of the most frequent
phenomena of French syntax. Even if the hierarchical structure of the grammar
makes it more compact ans eases the maintenance of its consistency, the size of
the grammar may be important and the grammar offers no global view of its
contents.

To verify the consistency of the grammar, it is necessary to check the behavior
of each EPTD in the composition process with other EPTDs. A way of doing it is
to parse corpora with the grammar but this is a very partial checking. Now, the
formalism of IG provides a mechanism to verify the consistency of a grammar
in a static way based on the EPTDs of the grammar without using parsing. The
mechanism uses the Companion Property.

Originally, this property was introduced by [1] to perform lexical disambigua-
tion with IG. Let us consider an interaction grammar.

2 http://wikilligramme.loria.fr/doku.php?id=frilex
3 http://abu.cnam.fr/DICO/mots-communs.html
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Definition 3. A companion of a polarized feature in an EPTD E1 of the gram-
mar is a polarized feature of an EPTD E2 such that the first feature is saturated
by the second feature in a merging of their nodes leading to a consistent PTD.

What we mean with “a consistent PTD” is that the PTD resulting from the node
merging has at least one model, which is a tree but not necessarily minimal and
saturated.

For instance, consider the EPTD associated with the verb “montrez” in Fig-
ure 1. A companion of the positive feature funct → obj is the negative feature
funct ← obj|subjpred of the EPTD associated with the clitic pronoun “le”.
The notion of companion can be expressed a the template level: we compute
systematically the companions of all polarized features of the EPTDs templates
of the grammar. In this way, we limit the number of companions to compute.

So, for the EPTD template E0 corresponding to the EPTD anchored with
“montrez” in Figure 1 and for the positive feature funct → obj , we find 97
companions: 85 are right companions, that is, companions coming from EPTD
templates for which the anchor is on the right of the anchor of E0 after merging,
and 12 are companions without order constraints on the anchor of their EPTD.

Among all the information given by the computation of all the companions,
a particular part is immediately usable: the polarized features without compan-
ions. If they have no companion, their EPTDs cannot enter any parsing, which
means that the EPTD template must be removed from the grammar or that
there is some mistake in their definition.

6 Comparison with other French Grammars and
Evaluation of the Grammar

There is very little work on the construction of French computational grammars
from linguistic knowledge using semi-automatic tools. Historically, a very fruitful
work was the PhD thesis of Candito [2] about the modular organization of TAGs,
with an application to French and Italian. This thesis was a source of inspiration
for the development of several French grammars.

A first grammar produced according to this approach and able to parse large
corpora was FRMG [15]. FRMG falls within the TAG formalism and its origi-
nality lies in the use of specific operators on nodes to factorize trees: disjunction,
guards, repetition and shuffling. As a consequence, the grammar is very compact
with only 207 trees. Moreover, these trees are not written by hand but they are
automatically produced from a multiple inheritance hierarchy of classes.

Another French grammar inspired by [2] is the French TAG developed by [3].
Like Frigram, this grammar was written with XMG. Contrary to FRMG, it is
constituted of classical TAG elementary trees, hence its more extensive form: it
includes 4200 trees and essentially covers verbs. It was a purely syntactic gram-
mar and then it was extended in the semantic dimension by [5] for generation.

To evaluate the soundness of Frigram and to compare its coverage with
other French grammars is problematic. The first difficulty is that there is no
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robust parser able to deal with IG. The tool developed so far (Leopar [6]) was
designed to experiment, to test and to help grammar development. It was latter
enriched with filtering algorithms to improve the supertagging stages of the pars-
ing process. Nevertheless, it does not have any robust mechanism to deal with
sentences that are not completely covered by the grammar. After filtering steps,
deep parsing relies on an exhaustive search of tree description models which is an
NP-hard task. As a consequence, Leopar can be used to parse sentence of length
up to 15 words. FTB contains 3398 sentences of length lower than 15. Moreover,
all linguistic phenomena present in real corpora, like the FTB, cannot be modeled
through a lexicalized grammar: dislocation, coordination of non constituents,
parenthetical clauses . . . These phenomena require an extra-grammatical treat-
ment, which is not yet implemented in Leopar. Thus, we consider the subset of
sentence without explicit extra-grammatical phenomenon (parenthesis, reported
speech); there are 2166 such sentences. The parser Leopar with the Frigram
resource is able to parse 56.4% of the sentences considered.

Another way to evaluate a grammar coverage is to use test suites. Such
suites must include not only positive examples but also negative examples to
test the overgeneration of the grammar. There exists such a suite for French,
the TSNLP[8], but unfortunately, it ignores a lot of phenomena that are very
frequent in French. On the set of grammatical sentences of the TSNLP, Leopar
and Frigram is able to parse 88% of the sentences. This is equivalent to the
number achieved in [9] but the remaining sentences correspond to sentences that
should be covered by the robustness of the parser rather than by the detailled
grammar (unusual kind of coordination, sentence with incomplete negations,
. . . )

To try to deal with TSNLP drawbacks, we have designed our own test suite
which si complementary to the TSNLP; it contains 874 positive sentences and
180 negative ones. 93% of the grammatical sentences are parsed and the ratio
is 21% for ungrammatical sentences. The reader can find the test suite on a
web page4. For the positive sentences, there is also the result of parsing in the
form of a dependency graph. The variety of the examples gives a good idea of the
coverage of Frigram and the richness of dependency graphs helps to understand
the subtlety of the grammar.

7 Conclusion

The next step to go ahead with Frigram is to solve the bottleneck of the
parser Leopar in order to parse raw corpora. We need to improve the efficiency
of the parser to contain the possible explosion resulting from the increase of
the grammar size in combination with the increased sentence length. It is also
necessary to take robustness into account in the parsing algorithm and to add
extra-grammatical procedures to deal with phenomena that go beyond the lex-
icalized grammar. For English, [13] is a first attempt to build a IG grammar

4 http://wikilligramme.loria.fr/doku.php?id=hmge_2013
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that should be extended in order to have a coverage equivalent to the one of
Frigram.
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Kahina: A Hybrid Trace-Based and Chart-Based
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Abstract. This paper provides an overview of the debugging framework
Kahina, discussing its architecture as well as its application to debug-
ging in different constraint-based grammar engineering environments.
The exposition focuses on and motivates the hybrid nature of the sys-
tem between source-level debugging by means of a tracer and high-level
analysis by means of graphical tools.

1 Introduction

Several decades after their inception, the design, implementation and debugging
of symbolic, constraint-based grammars is still a considerable challenge. Despite
all efforts to modularize grammars, declarative constraints can have far-reaching
unexpected side effects at runtime. The original grammar writers are often lin-
guists with little experience in software development, meaning that in practice
their declarative designs must be optimized for the algorithmic environment by
iterative refinement. It is a major challenge in this scenario that the execution
of even relatively simple grammars tends to result in many thousand computa-
tion steps. To make debugging of such grammars feasible at all, innovative and
carefully designed debugging tools are needed.

In this paper, we present central aspects of the Kahina debugging framework,
which was created to address these issues. We discuss its general architecture as
well as its application to grammar debugging in two implementation platforms
for constraint-based grammars, TRALE [3] and QType [15]. Unlike other gram-
mar engineering environments, Kahina emphasizes the analysis of the execution
model of declaratively designed grammars, with the goal of making the proce-
dural effects of constraint systems more transparent. Developers can spot more
easily where constraints have adverse side effects, and where an implementation
can be optimized for efficiency. The main challenge in creating such a debugging
system is to find appropriate ways to project functionally meaningful intervals
from large sequences of computations onto intuitively comprehensible graphical
displays. Within the overall display, the close connections between the differ-
ent perceptual units need to be highlighted, while at the same time avoiding to
produce redundant information that could easily overwhelm the user. A highly
configurable selection of various perspectives on grammar execution is offered to
make its contingencies explorable in a balanced fashion.



Kahina was initially developed as a graphical front end for TRALE’s source-
level debugger. TRALE is an interesting target, as it is explicitly designed for the
implementation of grammatical constraints that stay close to the specification of
theoretical HPSG grammars. As Melnik [13] finds in her comparison of the LKB
[4] and TRALE for HPSG grammar implementation, the latter system requires
fewer initial adjustments of theoretical grammars, at the price of a possibly
stronger deviation of the processing model from non-technical user expectations.
At the same time, the LKB traditionally provided more graphical debugging
support and guidance to users, similar to the facilities featured by XLE [11],
an implementation environment for LFG. Kahina aims at graphical debugging
support for complex implementation systems such as TRALE, especially to help
novice linguist users understand the underlying procedural model. It is designed
to bridge the considerable gap between detailed but low-level, command-line
based debugging for expert users, and the high-level view of chart-based tools,
which (deliberately) hide many potentially relevant procedural details.

Beyond support for grammar implementation platforms, Kahina provides ad-
vanced general debugging facilities for logic programming. The system expands
on earlier ideas for graphical Prolog debugging presented by e.g. Dewar & Cleary
[8] and Eisenstadt [9], and is also inspired by SWI-Prolog’s GUI tracer [16], the
most mature visualization tool for Prolog processes currently available.3

Section 2 gives a bird’s-eye view of the Kahina architecture, also outlining the
process of implementing a debugging system. Sections 3–5 focus on the central
features and functions of a debugging system for TRALE. Section 6 discusses
chart displays as a central component of many grammar development systems,
and provides a case study of how demands of different systems are accommo-
dated. Section 7 critically evaluates Kahina’s approach to grammar debugging,
before Section 8 summarizes prominent features and points to open issues.

2 The Kahina Architecture

Kahina is written in Java and distributed under the GPL.4 Core components
are a GUI framework based on Swing, a State class for storing large amounts
of step data, a message passing system (Controller) for communication among
components, and a control agent system for automatization of user interactions.

Kahina is designed as a general framework for implementing debugging sys-
tems, by which we mean integrated graphical environments for analyzing com-
putations consisting of hierarchically related steps, where each step may be as-
sociated with a source code location and other detail information for visual
display. A debugging system is built by implementing specialized components
using Kahina’s classes and interfaces. The architecture of the TRALE debugger
is shown in Fig. 1; a similar architecture has been used to implement graphical
debuggers for different client systems, including SICStus and SWI Prolog.

3 An earlier version of Kahina for TRALE was previously presented in a poster session
at the HPSG conference 2010 [7].

4 http://www.kahina.org
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Fig. 1: Architecture of the Kahina-based TRALE debugger

On the Prolog side, the existing source-level debugger was extended by a control
loop that interleaves with TRALE’s execution process and communicates with
Kahina to transmit step details and obtain tracing commands for controlling exe-
cution. Communication with Kahina is done via SICStus Prolog’s Jasper library,
which uses the Java Native Interface. On the Java side it is handled by a special-
ized bridge which translates low-level TRALE tracing information into Kahina’s
data model for storage and visualization. Another important application-specific
Java component is a step class used by the State component, defining the data
attributes associated with each step. Finally, a customizable configuration of
view components defines how the step data are visualized.

3 Visualizing Parsing Processes

In this and the next two sections, we focus on the TRALE debugger and the
features it offers to grammar engineers. In TRALE, a chart parser steps through
the input from right to left, building all possible chart edges starting at each
position before proceeding. Its principal operations or steps are:

– rule close: A failure-driven loop over all phrase-structure rules in the gram-
mar, takes a chart edge as input and recursively builds all edges that can be
built with the selected edge as the leftmost child.

– rule: Tries to apply a phrase-structure rule with the input edge as leftmost
daughter. Existing chart edges are used for covering the other daughters.
Success leads to a new edge on which rule close is called recursively.

– retrieve edge: Retrieves a passive edge from the chart for use as a non-
leftmost daughter in a rule application.

– cat: Applies a daughter description as part of a rule application.
– goal: Executes a procedural attachment as part of a rule application.
– mother: Applies a mother description as part of a rule application.
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Fig. 2: Control flow tree of a parsing process with three levels of detail

TRALE comes with a command-line based tracer which treats these steps as
procedure boxes following the Prolog tracing model of [1]. Kahina builds upon
this notion and visualizes parsing processes as trees with goals as nodes and
subgoals as child nodes. The resulting control flow tree is a central element of
Kahina’s GUI and is used to retrieve details on individual steps (see Section 4)
by mouseclick. Each node is labeled with a numeric ID and a short description
of the step, and is color-coded for status (Call, Exit, DetExit, Redo or Fail).

Since a single huge tree with thousands of parse steps cannot be navigated,
the tree is split into three subviews that show different levels of detail (Fig. 2).
The first subview shows a thinned-out version of the tree in which only the
cornerstones are displayed, i.e. the rule close and rule steps. Selection of
cornerstone nodes controls which part of the tree occupies the second subview:
it contains the descendants of the selected cornerstone down to the next corner-
stones, displayed as leaves. Descendants of cat, goal and mother nodes are in
turn displayed in the third subview when the respective step is selected.

Apart from their size, TRALE parsing processes are challenging to visualize
due to their complex structure. Steps can be arranged in at least two meaningful
tree structures. The call tree, in which goals have their subgoals as children,
is visualized in the control flow tree through indentation. This tree roughly
corresponds to the structure of clauses and subclauses in a logic program. The
search tree is used in backtracking. Without backtracking, a search tree would
be a long unary branch in which each step is the child of the step invoked before
it, visualized by the top-to-bottom arrangement of steps in the control flow tree.
When Prolog backtracks, the step that is the last active choicepoint is copied
to represent the new invocation. The copy becomes a sibling of the original,
starting a new branch. Kahina shows only one branch of the search tree at a
time, focusing on visualizing the call tree, but at each choicepoint two arrow
buttons permit browsing through siblings in the search tree. Access to earlier,
“failed” branches is important because TRALE makes extensive use of failure-
driven loops for exhausting the search space of possible edges. The user can flip
through the different rules that were applied to any particular edge.

One way to inspect parsing processes is to trace them interactively, watching
the tree grow step by step or in larger chunks. The available tracing commands
are similar to those of a classical Prolog tracer (e.g. SICStus Prolog [2]). They
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Fig. 3: Kahina’s GUI showing tracing buttons, the chart, and all step detail views

are exposed as clickable buttons, shown in Fig. 3: creep advances to the next
step. fail forces a not-yet-completed step to fail, making it possible to explore
otherwise inaccessible parts of the search space. auto-complete completes the
current step without interaction at substeps, but saves all information about the
substeps for later inspection. skip does the same without collecting any tracing
information. In effect it prunes parts of the process currently not of interest.
leap proceeds without interaction up to the next breakpoint (see Section 5)
or the end of the parsing process. Additional buttons pause or stop leap and
auto-complete actions, or step through a history of recently selected steps. Since
Kahina keeps old backtracking branches available – a feature that sets it apart
from other graphical Prolog tracers such as that of SWI-Prolog [16] – it also
supports full post-mortem analysis of a completed parsing process.

The message console complements the control flow tree as a navigation tool
by displaying a timeline of tracing events. Events include step ports just like in
a console-based Prolog tracer, but also user-generated and automatized tracing
events: forced fails, auto-completes, skips, and leaps. All events associated with
the currently selected step are highlighted, such as the Call port and the DetExit
port of the selected unify step in Fig. 3.
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4 Step Detail Views

Kahina’s GUI contains different views for displaying details of the currently
selected step. Steps are selected dynamically according to the context, in most
cases through direct user interaction with either the control flow tree or the
chart display, a graphical representation of the parse chart (Section 6).

The source code editor reacts to the selection of a step that corresponds
to an element in the grammar (a rule application, a description, a constraint
or a procedure) by marking the corresponding source code line. Computation
steps are thus connected to the underlying grammar code. Fig. 3 shows the
step details of a unification step within a constraint application (HPSG’s Head
Feature Principle) that fires during the application of a description of a rule to
the mother feature structure. The defining source code line is colored. Syntax
highlighting and basic editing are also supported.

While the source code view shows the reasons for what is happening, the
feature structure view shows the structures that are being built as a result.
For this view, Kahina draws on the Gralej5 library. For steps that belong to rule
applications, it shows the corresponding local tree, with feature structures for all
daughters that have been or are being processed, and also the mother structure
once it is being processed. The substructure that is being modified in each step is
highlighted in yellow. For steps that belong to procedural attachments, the active
goal is displayed with embedded graphical representations for feature structure
arguments. A separate bindings view analogously shows feature structures
associated with variables in the TRALE description language at every point
during the application of a rule, constraint, or procedure.

In Fig. 3, the head complement rule is being applied to the input substring
“likes mary”, as shown by the local tree in the feature structure view. The current
constraint binds the mother’s synsem:loc:cat:head to a variable. The effect is
seen in the bindings view, which compares the state before and after execution
of the step. Before, the Head variable is still unbound, defaulting to mgsat (most
general satisfier). Afterwards, it contains the value of the head feature.

5 Automatization via Control Agents

Stepping through a parsing process manually and skipping or auto-completing ir-
relevant sections is error-prone and tiring. The leap command completes a parse
without interaction for later post-mortem analysis, but may preserve too much
information if only a certain part of the grammar should be debugged. Classic
Prolog tracers, and also TRALE’s console-based debugger, offer automatization
via leashing and breakpoints. The user determines that certain types of steps
should be unleashed, i.e. the tracer will simply proceed (creep) at them with-
out asking what to do. Thus, the user can step through the parse faster, without
having to issue a creep command at every step. Breakpoints single out a class

5 http://code.google.com/p/gralej/
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of steps of interest and then use the leap command to immediately jump to the
next occurrence of that kind of step in the trace without further interaction.

Kahina generalizes leashing and breakpoints to the more powerful concept
of control agents. A control agent is best seen as a simple autonomous agent
consisting of a sensor which detects a pattern in individual steps or in a step tree,
and an actuator which reacts to pattern matches by issuing tracing commands.
Control agents are a method of describing and implementing intelligent behavior
with the purpose of automatizing parts of the tracing and thereby of the grammar
debugging process.

Fig. 4: The control agent editor

The control agent editor (Fig. 4) serves to define, activate and deactivate con-
trol agents. Control agents are grouped according to their tracing command, and
are accordingly called creep agents, skip agents, etc. While creep agents typically
effect unleashing behavior, skip agents and complete agents complete steps with-
out interaction, including all descendant steps, making these steps atomic for the
purposes of tracing. Break agents act like breakpoints by exiting leap mode when
their sensors fire. Fail agents let certain steps fail immediately, which is useful
e.g. for temporarily deactivating some phrase-structure rule. Warn agents have
actuators which not only stop a leap but also display a warning. Their sensor
counts the pattern matches, and only fires after reaching a predefined threshold.
Warn points detect infinite recursion or inefficiencies, e.g. when a procedural
attachment predicate is called too often.

Due to the flexibility in their actuators, control agents are more powerful
than traditional debugging mechanisms. Since they build on the existing tracing
commands rather than introducing completely new concepts6, we believe they
are more intuitive to learn after a short exposure to manual tracing. The central
technique for defining basic control agents is the creation of sensors by defining
step patterns. Usually a simple substring check suffices to identify the relevant
step class, but users can also build complex conditions with logical connectives
and a range of elementary step tests, as exemplified in Fig. 4. Additionally,
source code sensors that fire at steps associated with a code location can be
created by opening the source code view’s context menu for the line of interest

6 In fact, Kahina sees the manually-tracing user as just another, external control agent
with especially complex behavior.
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(such as the line containing the name of a phrase structure rule, in order to catch
rule application steps) and selecting the desired actuator. In sum, control agents
provide an expressive yet accessible tool for automatization, which is crucial for
efficient tracing of parse processes.

6 Specialized Charts for TRALE and QType

Apart from storing partial results in parsing algorithms based on dynamic pro-
gramming, a chart summarizes the parsing process by storing successfully parsed
constituents, including those which do not become part of a complete parse. The
spans covered by constituents are usually symbolized as edges over the input
string. By default, Kahina’s chart display shows currently active edges (gray)
and successfully built passive edges (green). Dependencies between chart edges
are optionally displayed by highlighting the edges the selected edge is composed
of, and the edges that it is part of. An unexpected parse can often be narrowed
down to an unwanted edge for a substructure, while a missing parse is often due
to an unrecognized constituent. This has made chart displays a central top-level
parse inspection tool in the LKB and XLE. Practical grammar engineering in
TRALE has heavily relied on a third-party chart display. While parsing algo-
rithms usually only require storage of positive intermediate results, a grammar
engineer often needs to find out why an expected substructure is missing. Kahina
recognizes the equal importance of successful and failed edges: A failed attempt
to build an edge can be displayed as a failed edge which is linked to the step
where the respective failure occurred. A chart that does not contain failed edges,
such as the LKB chart, does not provide direct access to such information.

As the chart display is fully integrated with the basic tracing functionality,
the number of edges on the chart grows as a parse progresses. Every chart edge
constitutes a link into the step tree, giving quick access to the step where the
respective attempt to establish a constituent failed or succeeded.

Fig. 5: Examples of the chart displays for TRALE and QType

Kahina’s view components are designed for flexible customization to different
grammar engineering systems, as demonstrated by two very different chart vari-
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ants tailored to TRALE and QType, respectively. On the left side of Figure 5, we
see a chart from a TRALE implementation of the English grammar by Pollard
& Sag [14]. After recognizing all the input tokens, the right-to-left bottom-up
parser has established an edge for the constituent “likes him” by means of the
head complement schema. The chart also contains failed edges for several other
schemas. The red edges below the successful edge represent failed attempts to
form constituents by means of the respective lexicon edge. The edges above it
represent failed attempts to build larger constituents from the successful edge.
The lexicon edge for the input symbol “she” is currently being closed. The active
application of the head subject schema will eventually lead to a successful parse.

Unlike TRALE, QType does not use dynamic programming. To still provide
the functionality of a chart for analyzing left-corner parses, we defined a bridge
that constructs a left-corner (LC) chart from the incoming step information.
An intermediate stage of this chart for a parse process is displayed on the right
side of Figure 5. The top-down prediction steps of the LC parser are visualized
by inverted L-shaped prediction edges which wrap around the edges that were
generated while attempting to complete the prediction. In the example, the
active prediction edge labeled s -> np vpc ranging over the entire sentence
indicates that QType is working on a parse based on the corresponding rule
at the root level. The required np constituent has already been recognized by
successful unification with the feature structure derived from the lexical entry
for “uther”, and QType is now trying to complete the expected vpc constituent.
The feature structure for the next token “storms” is of category tv. Attempts
to interpret it directly as a vpc, or to once again apply the rule s -> np vpc to
integrate it, have failed. The unary rule vp -> v was more successful, resulting
in a feature structure of type vp. Its unification with the vpc specification in
the rule definition will fail due to the mismatch between the subcat lists of
the transitive verb and the postulated vpc structure, causing the correct phrase
structure rule for verbs with one complement to be predicted next.

7 Discussion

One of the main contributions of Kahina to symbolic grammar engineering con-
sists in the integration of two very different debugging paradigms of previous
grammar debugging environments. We first compare Kahina to the old console-
based source level debugger (SLD) for TRALE, and then to LKB and XLE
as the two most popular environments which rely on a graphical interface and
high-level representations.

During unifications and applications of descriptions, TRALE’s SLD displays
feature structures only on demand, and for one step at a time. This makes it hard
to recognize these operations as processes and to understand them. Kahina’s
GUI makes it easy to go back and forth between steps and to quickly compare
different points in time. Neither does the old SLD provide explicit information
on how and when constraints and procedural attachments are executed. Given
the complexities of TRALE’s constraint formalism, this is a severe problem,

Kahina: A Hybrid Trace-Based and Chart-Based Debugging System 83



since goals are often suspended until some preconditions are fulfilled, and are
only then executed in a delayed fashion. In larger parses, this behavior makes it
virtually impossible to infer the current state of execution from a linear trace.
Kahina’s two-dimensional step tree with specialized nodes for representing sus-
pended goals makes these aspects much more transparent.

In a classical tracer, decisions are always made locally, without any possibil-
ity to correct errors. A single erroneous skip command or a small mistake in a
breakpoint definition may force the user to abort and restart a long tracing pro-
cess. This necessarily leads to defensive behavior to prevent the loss of relevant
information. As a result, traces tend to take longer than they would if infor-
mation on past steps remained accessible. Kahina improves the accessibility of
non-local information by its support for post-mortem inspection, but also with
the simultaneous graphical display of multiple types of information.

The other major debugging paradigm of grammar engineering is character-
ized by chart-based high-level debugging (LKB and XLE). The LKB is the most
relevant point of comparison for a TRALE debugger, since both systems are pri-
marily designed for HPSG implementations. The LKB excels at detailed error
messages for violations of formal conditions, whereas for more complex debug-
ging tasks, especially those involving rule interactions, its tools are a lot less
developed. It is standard debugging procedure to find a short sentence that
exhibits the relevant problem, and then to inspect the parse chart in a time-
consuming process which may require substantial intuition about the grammar.
Once the problem is isolated in a small set of phrases, LKB’s mechanism for
interactive unification checks comes into play. Any two structures in the feature
structure visualization can be tested for unifiability. If unification fails, the user
receives explicit feedback on the reasons for failure. To trace the interaction
between multiple constraints, intermediate results of successful unifications are
used to chain together unification checks.

While Kahina also supports high-level parse chart inspection in the spirit
of the LKB, interactive unification is only supported experimentally. Kahina
compensates for this by its much more direct support for locating sources of
error. Since every single unification or retrieval step is fully exposed by the
source-level debugger, the inefficient process of narrowing down a problem only
by means of the chart and test parses can in most cases be avoided. This reduces
the importance of interactive unification, since the relevant failure can already
be observed in the full context of the original problematic parse.

The LFG parser of XLE consists of a c-structure parsing component, and a
constraint system that subsequently enforces f-structure constraints. A display
of legal c-structures for which no valid f-structures could be found provides more
fine-grained feedback about the reasons for structure invalidity than in the LKB.
The XLE chart shows edges for partial matches of c-structure rules. While this
provides some of the desired information on failed edges, compared to Kahina
it still lacks information on rules that fail to apply because already the first
constituent cannot be established. For the failed edges that are shown, XLE
provides advanced analysis tools, also for finding out why no valid f-structure
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for a given c-structure could be found. All views offer options for extending the
displayed information by invalid or incomplete structures, and selecting such a
structure will highlight the parts which were missing in a c-structure rule or
which violated some f-structure constraint. The exact way in which f-structure
constraints are enforced still remains intransparent. This means that XLE lacks
Kahina’s support for grammar optimization, because the order in which the
individual constraints are enforced is not exposed and cannot be manipulated.

To sum up the discussion, Kahina combines desirable properties of both the
chart-based and the tracer-based grammar debugging paradigms. The main ad-
vantage of its hybrid approach lies in providing support for high-level parse
inspection via the chart interface, while still making it possible to find out and
to visualize on demand how exactly a parse is computed, effectively giving di-
rect and fine-grained access to sources of undesirable behavior. The procedural
orientation also supports the application of profiling techniques for grammar
optimization, which is not possible if access is limited to high-level abstractions.

A downside of Kahina’s hybrid nature may be that it could take longer for the
beginner to develop an efficient grammar debugging workflow than in other en-
vironments, mainly because heavy use of control agents is necessary to keep step
data extraction efficient and manageable. Moreover, the high-level components
do not provide very advanced functionality in the area of interactive error diag-
nostics by default. Users must dig a little deeper in search of error diagnosis, but
the explanations they obtain along the way are very detailed and complete. Fi-
nally, Kahina’s layered system architecture makes it straightforward to integrate
further high-level error diagnosis modules tailored to the user requirements. The
prototype of a grammar workbench presented in [5] gives a glimpse of related
ongoing developments. Recent extensions are not yet completely integrated, and
need to be evaluated by grammar developers before they can become part of a
release.

8 Conclusion

Kahina is a framework for building debugging environments for different gram-
mar implementation systems. Its debuggers can take advantage of a modular
system architecture, predefined bridges for communication with Prolog systems,
a variety of view components, and external software modules. An implementa-
tion time of less than 500 person hours for the most recent debugger, compared
with an estimated 3,000 person hours for the first, demonstrates the effective-
ness of the framework in facilitating the development of interactive graphical
debuggers for additional grammar engineering systems. In the present paper, we
emphasized the application to TRALE in our discussion of Kahina’s strategies
for breaking up traces into conceptually meaningful chunks of information. The
amount of information presented to the user, and the strategies by which it is
gathered (in small steps, forcing shortcuts, leaping with or without recording
information) can be customized by means of control agents that offer a very
powerful abstraction layer for modifying tracing behavior.
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The design of Kahina is tailored to a hybrid approach to grammar debugging
which attempts to combine the advantages of a high-level chart-based view of
parsing processes with the usefulness of a Prolog tracer for understanding every
aspect of computational behavior and system performance. Initial experiences
with the new TRALE debugger indicate that its low-level components especially
help novice users to gain better insight into controlling parsing behavior within
the system. The needs of expert users are currently catered for by a flexible chart
display with high interactivity. This aspect of the system will be strengthened
in future work through the development of tools that go beyond the analysis of
parses.
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Abstract. We present the initial steps and outlook of Slaviclimb, the
dynamic component of an effort to develop grammatical resources for
Slavic languages around a shared core grammar. The requirements of this
component are: (i) it should provide a platform for sharing similar but not
identical analyses, (ii) it should be able to contain alternative analyses for
the same phenomenon, (iii) it should be easy to use for syntacticians and
grammar engineers and (iv) it should provide an interface for Slavicists
not trained in grammar engineering allowing them to create grammars.
Though the first two properties have been addressed in previous work,
this paper is, to our knowledge, the first to address (iii) and (iv) within
the context of metagrammars and multilingual grammar development.

Keywords: Metagrammar engineering, alternative analyses management,
linguistic hypotheses testing, Slavic languages

1 Introduction

This paper introduces initial ideas on Slaviclimb, a metagrammar that is part
of an effort to develop hpsg (Pollard and Sag, 1994) grammatical resources for
a closed set of languages constituting the traditionally well-studied Slavic lan-
guage family. The structural design of the applied framework (Avgustinova and
Zhang, 2009) is centered on a common Slavic core grammar (SlaviCore) whose
components are shared within the language group (Avgustinova, 2007). In the
exploration phase of the project, SlaviCore is viewed as an extension of the typo-
logically dedicated components of the LinGO Grammar Matrix (Bender et al.,
2002, 2010), with Slaviclimb representing a dynamic grammar engineering com-
ponent that captures language specific variations and facilitates grammar devel-
opment for individual Slavic languages. We address the main goals of Slaviclimb
and how we plan to achieve them by creating extensions to existing technology.

We define the following requirements for Slaviclimb: It should provide a
platform for sharing analyses that are similar, but not identical in different
Slavic languages, i.e. it should trigger variations based on parameters of lin-
guistic properties. Second, it should be able to contain alternative analyses for



the same phenomenon for more systematic exploration as suggested by Fokkens
(2011). Third, it should be easy for syntacticians and grammar engineers to im-
plement analyses. Finally, it should provide a customization interface, so that
Slavicists can create grammars for Slavic languages by selecting implemented
analyses without being an expert in grammar engineering or even hpsg.

This paper is structured as follows. In §2, we outline the background of this
work. §3 illustrates the role of Slaviclimb through an example. We describe
the currently available software and planned additions for Slaviclimb in §4 and
conclude by comparing Slaviclimb to related work in §5.

2 Background

Limiting the typological coverage to a closed group of related languages provides
a special perspective on cross-linguistic modeling. Our long term goal is to encode
mutually interoperable analyses of a wide variety of linguistic phenomena, tak-
ing into account eminent typological commonalities and systematic differences.
The parallel construction of hpsg-based Slavic grammatical resources employs
a common core module in combination with language specific extensions and
corpus-based grammar elaboration at all stages of the project. Playing a key
role in linguistic research, alternative analyses are indispensable in modeling
language variation. The Slavic language group offers “laboratory conditions”
for experimenting with a novel type of phenomena-oriented alternatives-aware
grammar modeling. Therefore, the explicit formulation of alternative analyses
needs to be supported from the beginning. As the grammar engineering effort
presented here is mainly concerned with enhancing the empirical validation of
grammar sharing, the following aspects of multilingual parallel grammar devel-
opment are of immediate interest to us: (i) what can be included in the common
core module and what are the implications of such decisions; (ii) the practi-
cability of phenomena-driven management of alternative analyses; (iii) robust
guidelines supporting the grammar engineering activities in (i) and (ii).

The primary purpose of Slaviclimb is to support the development of Slavi-
Core. It follows the climb3 metagrammar engineering methodology (Fokkens,
2011, Fokkens et al., 2012) which is tightly linked to the Grammar Matrix cus-
tomization system (Bender et al., 2010). The latter can create starter grammars
covering a wide range of typological variation for a limited set of phenomena.
Users can specify linguistic properties through a web interface and the customiza-
tion system automatically generates an implemented grammar. The resulting
grammar can then be extended manually. The climb methodology extends the
idea of generating code to a general approach for grammar development. The
grammar engineer includes new implementations in a metagrammar which uses
the original structure of the Grammar Matrix and part of its code generation
software. Advantages of the approach include facilitating a phenomenon-based
structure of the grammar, supporting alternative analyses for the same phe-
nomenon and increasing modularity (Fokkens et al., 2012). However, we need
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to introduce a few adjustments to climb in order to accommodate the third
and fourth requirement mentioned above, namely: it should be easy to use for
grammar engineers, and Slavicists not trained in hpsg should be able to cre-
ate grammars. These adjustments will be presented in detail in §4. First, we’ll
illustrate the contribution of Slaviclimb through an example in §3.

3 Experimental modeling of the Slavic case system

3.1 The original SlaviCore model

The notion of case, as it is used in linguistic theory, is quite complex and refers
to a range of linguistic properties at different levels of description (Avgustinova,
2007, p.25). The main distinction lies in understanding case as morphological
marking of forms and as a syntactic notion linked to a particular function. This
can be modeled by classifying the type case along two dimensions: f-case for
the level of syntactic functions and m-case representing case marking. The func-
tional case is an abstraction over regular case variation and language-specific
constraints with respect to case marking. In the hpsg type hierarchy it intro-
duces an additional dimension of case classification. This in particular means
that in the lexical entry of a verb, the case value is of type respective f-case
type. These abstract case values will be expanded to their concrete instances
on the basis of lexical and contextual constraints, taking into consideration the
relevant (language-specific) morphological and adpositional case marking.

Currently, SlaviCore contains an elaborate case hierarchy of 117 types that
captures the wide variety of case marking found in Slavic languages, as well as
(among others) the range of functional subjective cases (most subjects in Slavic
are nominatives, but Polish also has dative subjects and Russian both datives
and genitives, whereas Bulgarian exhibits a morphological base form), as well as
functional objective cases (mostly accusative, but also genitive and instrumental
in Polish and Russian, whereas Bulgarian exhibits a morphological oblique form).
None of the Slavic languages uses all 117 types which forms the first motivation
for a dynamic component.

3.2 Modeling with SlaviCLIMB

The customization machinery used in climb can add underspecified types to the
type hierarchy based on underspecified properties of lexical items or morpholog-
ical markers.4 A similar mechanism can be used to create the subtypes that
link morphological cases to the right functional cases. As for now, Slaviclimb
includes an option that triggers the top of the case hierarchy including the main
functional cases, while the morphological case can be specified for the language
in question. The following addition to Slaviclimb will provide a setup where the
rest of the type hierarchy is based on direct observations in the language.

4 This is a Grammar Matrix functionality described in Drellishak (2009).
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Fig. 1. Overview of development of a Bulgarian grammar with Slaviclimb

If a lexical item subcategorizes for a specific functional case, an option in-
dicating the morphological case it subcategorizes for is used to generate the
necessary subtypes. In this setup, the case hierarchy depends on the lexical
items and morphemes that are defined in choices.5 A Slavicist can define lexi-
cal items and morphemes with the relevant linguistic properties and the exact
case hierarchy will be derived from these definitions. The case hierarchies thus
created for individual languages can be compared to the original proposal in
SlaviCore. Modeling the case hierarchy through Slaviclimb provides an environ-
ment to empirically verify Avgustinova’s theoretical work. The original purpose
of Slaviclimb to support parallel analyses allows grammar writers to either in-
clude the functional-morphological distinction or not. For instance, Slaviclimb
supports Avgustinova’s model for Bulgarian placing it in a wider Slavic con-
text, but also the language specific solution adopted in the Bulgarian grammar
BURGER (Osenova, 2010).

4 SlaviCLIMB

Figure 1 provides a schematic overview of how a Bulgarian grammar may be
created using Slaviclimb. The ellipses indicate components that are generated
by the system, the rectangle and diamond represent components requiring active
interaction with experts. Slavicists fill out a web-based questionnaire, defining
phenomena of a particular language and, if applicable, which analysis should be
selected. They can indicate whether the phenomenon is a general Slavic property,
a property of a subgroup of languages or language specific. This information does
not influence the behavior of the ultimate grammar, but is represented in its
architecture. The definitions provided by the Slavicist are stored in standardized
form in choices, which allows us to verify hypotheses about language specific or
shared behavior by comparing the choices for individual languages. Choices is
the input to the Slaviclimb metagrammar developed by a grammar engineer.

5 choices refers to the file that contains definitions of linguistic properties which trigger
implementations in the metagrammar.
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The metagrammar creates type definitions based on choices and places them in
the common core, in a subcore or in the language specific file.

Slaviclimb currently covers the process starting with choices and can gener-
ate the complete SlaviCore and Russian Resource Grammar (RRG, Avgustinova
and Zhang, 2010). It supports both the functional-morphological distinction and
a simple case hierarchy. As such, it currently fulfills our first two requirements
as defined in §1. A declarative version of climb has been developed, which al-
lows grammar engineers to define their analyses in tdl. This revision can serve
as a basis to redesign Slaviclimb so that it is easier for grammar engineers to
work with, which will fulfil the third requirement. It is technically possible for
a Slavicist to manually define choices, but this requires extensive training. The
Grammar Matrix architecture has a web interface that can be filled out by lin-
guists without hpsg expertise, and detailed documentation on how to use the
customization system (Fokkens et al., 2012). A Slavic specific version of the in-
terface and documentation will be created to make Slaviclimb more accessible
to Slavicists (fulfilling the fourth requirement). Designing such an interface is not
a trivial task and will be ongoing research requiring both grammar engineering
and Slavic expertise. Though the Slavicist will likely need support from gram-
mar engineering experts to fix elements in the grammar or extend it further,
a significant amount of work can be done through this method. This is shown
by Borisova (2010) who modelled poly-personal agreement in Georgian almost
exclusively using the Grammar Matrix customization system.

5 Conclusion

Methods for sharing analyses across grammars have been developed since the
early days of grammar engineering. Grammar engineers of individual grammars
that are part of the ParGram Project (Butt et al., 2002) meet biannually to com-
pare and discuss their grammars. Kinyon et al. (2006) bring Candito’s (1998)
MetaGrammar to a cross-linguistic level through a study of verb second word
order in several languages. Grammatical Formalism (GF, Ranta, 2009) reveals
several similarities to our approach. It uses a metagrammar to divide expertise
and share implementations across languages, including family-based cores for
Romance and Scandinavian languages. Unlike Slaviclimb, it is mainly designed
as a practical approach and even though it is based on a well-defined formal-
ism and contains a vast amount of linguistic information, it is not related to
a linguistic theory. Both the syntacticians and the engineers with knowledge of
the languages in GF need a strong technical background, whereas Slaviclimb
aims to provide a platform that allows also Slavicists without technical knowl-
edge to create grammars. The CoreGram project (Müller 2013) is particularly
interesting in relation to the work presented in this paper. It takes a bottom up
approach of sharing analyses between hpsg grammars by means of a common
core. If a property is found in several grammars, it is placed in a subcore shared
by these grammars. It is in principle possible to gain knowledge about linguistic
universals through CoreGram, but no strong claims are made on innateness of
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such principles. The closed set of languages in the Slavic family allow us to par-
tially adapt a top down approach potentially leading to different insights than a
bottom up approach. It should therefore be interesting to compare the insights
of the two projects.

The methods mentioned above mainly resemble SlaviCore. To our knowledge,
Slaviclimb forms the first proposal of a dynamic component that can combine
expertise to empirically validate theoretical linguistic models.
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This paper gives a brief overview of the CoreGram project. For a more detailed
description of the project, further motivation and comparison with similar enterprises
see Müller, 2013.

1 Overview and Motivation

The goal of the CoreGram project is the development of large scale computer process-
able grammar fragments of several languages that share a common core. The theoretical
framework is Head-Driven Phrase Structure Grammar (HPSG, Pollard and Sag, 1994;
Müller, 2007b). Currently we work on the following languages:

– German (Müller, 2007b, 2009b, 2012; Müller and Ørsnes, 2011a; Müller, To ap-
pear a)

– Danish (Ørsnes, 2009; Müller, 2009b, 2012; Müller and Ørsnes, 2011a, In Prepa-
ration)

– Persian (Müller, 2010; Müller and Ghayoomi, 2010; Müller, Samvelian and Bonami,
In Preparation)

– Maltese (Müller, 2009a)
– Mandarin Chinese (Lipenkova, 2009; Müller and Lipenkova, 2009)
– Yiddish (Müller and Ørsnes, 2011b)
– English (Müller, 2009b, 2012)
– Spanish
– French

For the implementation we use the TRALE system (Meurers, Penn and Richter, 2002;
Penn, 2004), which allows for a rather direct encoding of HPSG analyses (Melnik,
2007; Müller, 2013). The grammars of German, Danish, Persian, Maltese, and Man-
darin Chinese are of non-trivial size and can be downloaded at http://hpsg.fu-berlin.de/
Projects/CoreGram.html. They are also part of the next version of the Grammix CD-
ROM (Müller, 2007a). The grammars of Yiddish and English are toy grammars that are
used to verify cross-linguistic analyses of special phenomena and the work on Spanish
and French is part of work in the Sonderforschungsbereich 632 which just started. See
Bildhauer, 2008 for an implemented grammar of Spanish that will be converted into the
format of the grammars mentioned above.

I believe that working out large scale computer-implemented grammars is the best
way to verify the consistency of linguistic theories (Müller, 1999, Chapter 22; Bender,



2008). Much linguistic work is published in journal articles but the underlying assump-
tions of articles may be different so that it is difficult to imagine a coherent view that
incorporates all insights. Even for articles by the same author it is not guaranteed that
basic assumptions are shared between articles since it can take several years for indi-
vidual papers until they are published. Hence, I believe that books are the right format
for describing linguistic theories and ideally such theories are backed up by computer
implementations. The larger fragments of the CoreGram project will be documented in
a series of book publications. The first book in this series was Müller, 2007b, which
describes a fragment of German that is implemented in the grammar BerliGram. Three
further books are in preparation and will be submitted to the series Implemented Gram-
mars by Language Science Press: one on the Persian Grammar developed in the Per-
Gram project (Müller, Samvelian and Bonami, In Preparation), the Danish Grammar
developed in the DanGram project (Müller and Ørsnes, In Preparation) and the Man-
darin Chinese grammar developed in the ChinGram project.

2 The Poverty of the Stimulus and Motivation of Analyses

Huge progress has been made in recent years in the area of language acquisition. Input-
based methods with an utterance-final bias have been shown to explain acquisition data
better than maturation explanations or principle and parameters models (Freudenthal
et al., 2006, 2007, 2009). Bod (2009) showed that English auxiliary inversion can be
learned even with the evidence that Chomsky (1971, p. 29–33) claimed to be necessary
and unavailable. The cited research shows that quite elaborate structures can be learned
from the input alone and hence if there is any innate language-specific knowledge at
all it is probably rather general as assumed for instance by Hauser, Chomsky and Fitch
(2002). The consequence for linguistic research is that the existence of certain struc-
tures in one language does not imply that such structures are part of the grammar of
all languages. So, the existence of object agreement in Basque cannot be used as evi-
dence for object agreement projections (AgrO) in German. Neither can the existence of
postpositions and agreement in Hungarian be seen as evidence for AgrO projections and
hidden movement processes in English. Such complicated analyses cannot be motivated
language internally and hence are not acquirable from input alone.

Instead of imposing constraints from one language onto other languages, a bottom-
up approach seems to be more appropriate: Grammars for individual languages should
be motivated language internally. Grammars that share certain properties can be grouped
in classes. This makes it possible to capture generalizations about groups of languages
and language as such. Let us consider some examples: German, Dutch, Danish, English
and French. If we start developing grammars for German and Dutch, we find that they
share a lot of properties: both are SOV and V2 languages, both have a verbal complex.
One main difference is the order of elements in the verbal complex. The situation can
be depicted as in Figure 1 on the facing page. There are some properties that are shared
between German and Dutch (Set 3). For instance, the argument structure, a list con-
taining descriptions of syntactic and semantic properties of arguments, and the linking
of these arguments to the meaning of the sign is contained in Set 3. In addition the
constraints for SOV languages, the verb position in V2 clauses and the fronting of a
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Figure 1. Shared properties of German and Dutch

constituent in V2 clauses are contained in Set 3. The respective constraints are shared
between the two grammars. When we add another language, say Danish, we get further
differences. While German and Dutch are SOV, Danish is an SVO language. Figure 2
shows the resulting situation: The top-most node represents constraints that hold for
all languages (for instance the argument structure constraints, linking and V2) and the
node below it contains constraints that hold for German and Dutch only.1 For instance
these constraints contain constraints regarding verbal complexes and SOV order. The
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Figure 2. Shared Properties of German, Dutch, and Danish

union of Set 4 and Set 5 is the Set 3 of Figure 1.
If we add further languages further constraint sets will be distinguished. Figure 3

on the following page shows the situation that results when we add English and French.
Again, the picture is not complete since there are constraints that are shared by Danish

1 In principle, there could be constraints that hold for Dutch and Danish but not for German and
for German and Danish, but not for Dutch. These constraints would be removed from Set 1
and Set 2 respectively and put into another constraint set higher up in the hierarchy. These sets
are not illustrated in the figure and we keep the names Set 1 and Set 2 for the constraint sets
for German and Dutch.
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and English but not by French, but the general idea should be clear: by consequently
working this way, we should arrive at constraint sets that directly correspond to those
that were established in the typological literature.

It should be clear from what has been said so far that the goal of every scientist that
works this way is to find generalizations and to describe a new language in a way that
reuses theoretical constructs that have been found useful for a language that is already
covered. However, as was explained above the resulting grammars should be motivated
by data of the respective languages and not by facts from other languages. In situations
where more than one analysis would be compatible with a given dataset for language X
the evidence from language Y with similar constructs is most welcome and can be used
as evidence in favor of one of the two analyses for language X. I call this approach the
bottom-up approach with cheating: unless there is contradicting evidence we can reuse
analyses that have been developed for other languages.

3 Coverage and Highlights

The grammars of German, Persian, and Danish are relatively big. The German gram-
mar (BerliGram) was the first one that was implemented. It is an extension of the gram-
mars that were developed for the individual chapters of the HPSG text book (Müller,
2007b). The Situation Semantics was replaced by a Minimal Recursion Semantics
(MRS, Copestake et al., 2005). MRS allows for underspecification of scope so that
a sentence like (1a) gets one representation from which the several scopings can be
derived.

(1) a. dass
that

Max
Max

wieder
again

alle
all

Fenster
windows

öffnete
opened

‘that Max opened all windows again’
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b. again′(∀(CAUSE(open))); repetitiv
c. again′(CAUSE(∀(open))); repetitiv
d. CAUSE(again′(∀(open))); restitutiv

The example in (1a) is an example of lexical subscoping: öffnen is lexically decomposed
into CAUSE(open) and the wieder can scope below the CAUSE operator although there
is no decomposition in syntax.

Apart from the modification of the semantics component further special phenomena
were implemented. For instance an analysis of multiple frontings (Müller, 2003), some-
thing that is unique among the existing HPSG implementations. For a discussion of ap-
proaches to constituent order that are incompatible with the multiple fronting data see
Müller, 2005, In Preparation. Furthermore the analysis of depictives was added (Müller,
2008). Analyses that have been implemented in my earlier grammars of German have
not yet been transferred to BerliGram.

The Danish grammar is documented in a 500+ page book, which is not complete yet.
The following examples show in a compact way the interaction of several phenomena:
passive with promotion of either the direct object or the indirect object (2a,c), passive
and pronoun shift (2b,d), partial fronting and object shift in (2b,d):

(2) a. Bjarne
Bjarne.NOM

bliver
is

ikke
not

anbefalet
recommended

den.
it.ACC

‘The book is not recommended to Bjarne.’
b. ? Anbefalet

recommended
bliver
is

Bjarne
Bjarne.NOM

den
it.ACC

ikke.
not

‘The book is not recommended to Bjarne.’
c. Bogen

book.DEF.NOM
bliver
is

ikke
not

anbefalet
recommended

ham.
him.ACC

‘The book is not recommended to him.’
d. ? Anbefalet

recommended
bliver
is

bogen
book.DEF.NOM

ham
him.ACC

ikke.
not

‘The book is not recommended to him.’

The Mandarin Chinese grammar was implemented with the help of Jia Zhongheng.
We used the description in Li and Thompson, 1981 as basis of our implementation.
Among the things that are special are NPs that contain classifiers (3) and change of part
of speech by reduplication as in (4).

(3)
na4
that

liang4
CL

hong2
red

de
DE

che1
car

xiu4.le
rust.ASP

‘That red car rusts.’

The adjective gao1xing4 is converted into an adverb by forming the pattern AABB
from the original adjective AB, that is gao1 is doubled and xing4 is doubled as well.

(4)
ta1
he

gao1gao1xing4xing4
AABB=happily

you3yong3
swims

‘He swims happily.’
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The Persian grammar is a larger fragment, which needs to be documented. The
examples in (5) show lightverb constructions, which are an important feature of the
language. (5a) shows that the future auxiliary can interrupt the preverb verb sequence
of lightverbs. (5b) shows an example with the negation prefix and pro-drop.

(5) a. Man
I

in
this

kr
job

r
DOM

anjm
performance

xham
will-1SG

dd.2

gave
‘I will do this work.’

b. mard
man

râ
DOM

dust
friend

nadât.
NEG-had

‘he/she does not like the man.’

The Maltese grammar is an implementation of the description of Fabri, 1993. Fabri
works in the framework of Lexical Decomposition Grammar, which is also a lexical
framework and his analysis were translatable into HPSG without great efforts. The ex-
amples in (6) show definiteness marking. (6b) shows assimilation and (6c) shows clitics:

(6) a. Il-komunist
DEF-communist

xejjer
winks(3msg)

lil-l-papa.
Case-DEF-pope(msg)

‘the communist winks the pope.’
b. It-terrorist

DEF-terrorist
bagat
sent

l-ittr-a
DEF-letter-F

lil-l-president.
Case-DEF-president

‘The terrorist sent the president the letter.’
c. It-terrorist

DEF-terrorist
bagat=hie=l.
send.3M.SG=3F.SG=3M.SG

‘The terrorist sent it to him.’

(6c) is ambiguous. There is a reading with clitic left dislocation. Both readings are
found by the grammar.

4 Basic Assumptions

4.1 Valence

We assume that valence is represented in a uniform way across languages. Arguments
of a head are represented in the ARG-ST list (Pollard and Sag, 1994, Chapter 9). They
are mapped to the valence features SPR and COMPS in a language dependent fashion.
For instance, English and Danish map the subject to the SPR list and the other arguments
to COMPS. Danish inserts an expletive in cases in which there is no element that can be
mapped to SPR, while English does not do this. German differs from both languages in
mapping all arguments of finite verbs to the COMPS list.

The arguments in the ARG-ST list are ordered according to the obliqueness hierar-
chy of Keenan and Comrie (1977), which plays a role in the analysis of a variety of
phenomena. The elements of the ARG-ST list are linked to the semantic roles that a
certain head has to fill. Since the traditional role labels like agent and patient are prob-
lematic, we adopt Dowty’s proto-role approach (Dowty, 1991). We use ARG1, ARG2,
and so on as role labels.

2 Karimi-Doostan, 1997, p. 73.
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4.2 Constituent Structure and Constituent Order

Classical HPSG came with very view immediate dominance schemata: Head-Comple-
ment Schema, Head-Specifier Schema, Head-Adjunct Schema, the Head-Filler Schema
for binding off unbounded dependencies, and the Head-Extra Schema for binding off
clause bound nonlocal dependencies. Since Sag, 1997 many HPSG analyses have a
more constructional flavor, that is, specific subconstructions of these general schemata
are introduced (Sag, 2010). In the CoreGram project we stay within the old tradition
of HPSG and keep the rather abstract dominance schemata. However, it is possible to
state further constraints on the respective structures. So rather than having several very
specific instances of the Head-Filler Schema, we have very few ones, for instance, for
verb second clauses and relative clauses and formulate additional implicational con-
straints that constrain actual instances of head filler phrases further if the antecedent
of the implicational constraint is true. Since the schemata are rather general they can
be used for all languages under consideration so far. Of course the languages differ in
terms of constituent order, but this can be dealt with by using linearization rules that are
sensitive to features whose values are language specific. For instance, all heads have a
feature INITIAL. The value is ‘+’, if the head has to be serialized before its complements
and ‘–’ if it follows its complements. German and Persian verbs are INITIAL −, while
English, Danish, Mandarin Chinese and Maltese verbs are INITIAL +.

We assume binary branching structures and hence we get the structures in (7) for
English and the corresponding German example:

(7) a. He [[gave the woman] a book].
b. er

he
[der
the

Frau
woman

[ein
a

Buch
book

gab]]
gave

The LP rules enforce that gave is linearized before the woman and gave the woman is
linearized before a book.

The scrambling of arguments is accounted for by ID schemata that allow the com-
bination of a head with any of its arguments independent of the position an element
has in the valence list of its head. Non-scrambling languages like English on the other
hand combine heads with their complements in a strict order: the least oblique element
is combined with the head first and then the more oblique complements follow. Non-
scrambling languages with head-final order take the last element from the valence list
first.

4.3 Morphology and Lexical Rules

We follow a lexical rule based approach to morphology. Lexical rules are basically
unary branching trees that license new lexical items. A lexical rule can add or subtract
to the phonology (in implementations the orthography) of an input item. For instance,
it is possible to analyze the complex morphological patterns that we observe in Semitic
languages by mapping a root consisting of consonants to a full-fledged stem or word
that has the appropriate vowels inserted. We follow Bresnan and Mchombo (1995) in as-
suming the Lexical Integrity Principle. This means that all morphological combinations
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have to be done by lexical rules, that is, fully inflected forms are part of the lexicon,
most of them being licensed by productive lexical rules.

Lexical rules do not have to change the phonology/orthography of the item they
apply to. For instance lexical rules can be used to license further lexical items with
extended or reduced valence requirements. As was argued in Müller, 2002, 2006 resul-
tative constructions should be treated lexically. So there is a lexical rule that maps the
stem fisch- of the intransitive version of the verb fischen (‘to fish’) onto a stem fisch-
that selects for a secondary predicate (adjective or PP) and the subject of this predicate.

(8) Er
he

fischt
fishes

den
the

Teich
pond

leer.
empty

5 Implementation Details

5.1 TRALE

The grammars are implemented in TRALE. TRALE implements typed feature descrip-
tions. Every grammar consists of a signature (a type hierarchy with feature introduction
and appropriateness constraints) and a theory that states constraints on objects of these
types. TRALE is implemented in Prolog and comes with an implementation of rela-
tional constraints that maps the TRALE relations to Prolog relations. TRALE has two
parsers: a standard bottom-up chart parser and a linearization parser. The CoreGram
project uses the standard bottom-up parser. Both parsers use a phrase structure back-
bone.

Compared to other systems like the LKB (Copestake, 2002) the expressive power of
the description language is high (see also Melnik, 2007). This allows for the rather direct
implementation of analyses that are proposed by theoretical linguists. The following
descriptive devices are used in the theory and are provided by TRALE. The references
point to papers who argue for such constructs.

– empty elements (Kiss, 1995; Meurers, 1999; Müller, 2007b; Levine and Hukari,
2006; Bender, 2000 und Sag, Wasow and Bender, 2003, p. 464; Borsley, 2004,
Section 3.3; Müller, To appear b),

– relational constraints (Pollard and Sag, 1994; Bouma et al., 2001),
– complex antecedents in implicational constraints (Meurers, 2000, p. 207; Koenig

and Davis, 2004, p. 145, 149; Müller, 2007b, p. 145, Section 10.3; Bildhauer and
Cook 2010, p. 75),

– cyclic structures (Engdahl and Vallduví, 1994, p. 56, Meurers, 1999, Meurers, 2001,
p. 176, Samvelian, 2007, p. 638), and

– a morphology component that has the expressive power that is needed to account
for nontrivial morphological phenomena.

5.2 Setup of CoreGram

The grammars are organized in one directory for every language. The respective direc-
tories contain a subdirectory named Core-Grammar. This directory contains files that
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are shared between the grammars. For instance the file core-macros.pl contains macros
that are or can be used by all languages. For every language there is a load file that
loads the files from the core grammar directory that are relevant for the respective lan-
guage. So, for instance english.pl, french.pl, and danish.pl all load nom-acc.pl since
these languages are nominative-accusative languages. These files also contain code for
loading macros and constraints for languages that do not form a verbal complex, while
german.pl does load the files for cluster-forming languages. These files directly corre-
spond to the constraint sets that were discussed in Section 2.

The possibility to specify type constraints makes it possible to specify constraints
that hold for a certain construction cross-linguistically in a file that is loaded by all
grammars and restrict structures of this type further in language particular files.

Lexical rules are also described by feature descriptions and organized in type hier-
archies (Meurers, 2001). Like other constraints the constraints on lexical rules can be
shared.

6 Measuring Progress

Much to the frustration of many linguists the contribution of certain approaches to
progress in linguistics is rather unclear. Many proposals do not extend the amount of
data that is covered in comparison to analyses that were developed during the 1980s in
the framework of GB and other, non-transformational frameworks. In comparison the
methodology described in Section 2 leads to grammars with increasing coverage and
analyses that are improved by cross-linguistic considerations.

The TRALE system has been combined with [incr tsdb()], a software for systematic
grammar profiling (Oepen and Flickinger, 1998). The grammars are accompanied with
a set of example phrases that can be analyzed by the grammar. In addition the test suite
files contain ungrammatical word sequences from the literature and ungrammatical se-
quences that were discovered during the grammar development process. Since TRALE
has a chart display that makes it possible to inspect the parse chart, it is possible to
inspect all linguistic objects that are licensed by the grammar, even if they do not play a
role in analyzing the particular sentence under consideration. The result of this careful
inspection is a collection of ungrammatical word sequences that no theoretical linguist
would have been able to come up with since it is very difficult to find all the side effects
that an analysis might have that is not constrained sufficiently. These negative examples
are distributed with the grammars and book publications and can help theoretical and
computational linguists improve their theories and implementations.

After changing a grammar the sentences of the respective test suite are parsed and
the result can be compared to previous results. This way it is ensured that the coverage
of grammars is extended. If constraints in files are changed that are shared with other
grammars the respective grammars are tested as well. The effects that changes to gram-
mar X cause in grammar Y are often unexpected and hence it is very important to do
systematic testing.
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7 Conclusions

We argued that linguistic theories have reached a level of complexity that cannot be
handled by humans without help by computers. We discussed a method for constructing
surface-oriented theories by extending the number of languages that are considered and
finally provided a brief description of basic assumptions and the basic setup of the
CoreGram project.
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Abstract. In syntactic research, often more than one analysis can be
found to account for available data. Interaction with analyses of other
phenomena may help choose among them, but only phenomena analyzed
in the past are taken into account. As a result, syntactic research is
influenced by the order in which phenomena are treated. This paper
presents a metagrammar-based methodology for maintaining alternative
analyses over time. This way, we can use evidence from phenomena to be
analyzed in the future to choose between analyses. We describe climb,
a methodology that implements this idea for hpsg grammars in tdl.

Keywords: Linguistic hypothesis testing, metagrammars

1 Introduction

Grammars, both those built by linguists and the natural objects they are in-
tended to model, are complex objects (Bierwisch, 1963, Bender 2008a, Bender
et al. 2011). A key benefit of grammar engineering as an approach to syntactic
research is that it allows researchers to build and manipulate models of much
greater complexity. In fact, it is extremely difficult to verify if all interactions
between phenomena in a language model behave correctly without implementing
them and checking them with a computer (Bierwisch, 1963, Müller 1999).

In any given grammar engineering project, analyses are implemented in some
temporal order. But analyses of phenomena interact and the analytical choices
already made influence the relative attractiveness of alternatives at each later
choice point and thus the order in which phenomena are added affects the re-
sult (Fokkens, 2011). We argue (with Fokkens (2011)) that better grammars can
result if grammar engineers can break free of the temporal sequence of imple-
mentation, and that metagrammar engineering is an effective way to do so.

Challenges related to deeply embedded analyses are familiar to most gram-
mar engineers working on large scale grammars. Francis Bond (p.c.) reports that

? The authors thank Ned Letcher and the anonymous reviewers for their feedback
which helped improve this paper. All remaining errors are our own.



it is often hard to identify parts of the grammar which relate to obsolete analyses
in the Japanese grammar Jacy (Siegel and Bender, 2002). Montserrat Marimon
(p.c.) reports that there are analyses in her Spanish grammar (Marimon, 2010)
for clitics and word order that need revisions, but it would be an elaborate un-
dertaking to make these changes, due to interactions with other phenomena, and
they have been put on hold for now. Tracy King (p.c.) reports an ongoing dis-
cussion within ParGram (Butt et al. 2002) on whether adjectives have subjects
or not. The English LFG grammar (Riezler et al. 2002) was changed a few times,
but this was so time consuming that King decided to call the last change final.

This paper presents the workflow of a metagrammar engineering approach
that helps avoid such problems. §2 discusses the theoretical question of what
makes an analysis correct. In §3, we discuss the role a metagrammar can play
when using grammar engineering for hypothesis testing. §4 presents the workflow
of a specific approach for using this idea for building grammars in hpsg (Pollard
and Sag, 1994). We compare our approach to related work in §6.

2 Correct analyses

We take it as uncontroversial that grammar engineers, whether working towards
practical ends or building grammars to test linguistic hypotheses, strive to de-
velop correct analyses. But what does it mean for a linguistic analysis to be
correct? In order to answer that question, we first have to pin down our model-
ing domain. Many linguists (e.g. Chomsky (1986)) take the modeling domain to
be internalized knowledge of language. That is, the rules and principles proposed
in the grammatical model should stand in a transparent relation to the rules and
principles that speakers encode in ‘wet-ware’. However, we do not have direct
access to speaker knowledge. Instead, our primary data include attested utter-
ances (written and spoken) as well as speaker intuitions about the meanings of
those utterances (entailments, paraphrase relations) and their acceptability.

The first test of a model of grammar, then, is that it should be able to account
for the available data: Chomsky’s (1965) ‘descriptive adequacy’ is a prerequisite
for any kind of ‘explanatory adequacy’. However, the available data typically
vastly underdetermine the analysis (Wasow, 1978; Soames, 1984; Bender (2010):
Even with the large data sets that implemented grammars can work with, and
even fixing the general grammatical framework, there are always multiple ways
to approach the analysis of any given phenomenon. Possible sources of informa-
tion constraining the choice between alternative analyses include psycholinguistic
evidence (Sag and Wasow, 2011) and cross-linguistic comparability. That is, if
an analysis works for comparable phenomena across different languages, it can
be considered a point in favor of the analysis, though the weight given to such
evidence varies depending on the theoretical status of universals in a framework.

Here, however, we will focus on evidence which comes from the rest of the
grammar. A correct analysis should not only work correctly in isolation, but also
work in the larger context of the grammar, making correct predictions when it
interacts with other analyses. This is part of descriptive adequacy and therefore
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Fig. 1. Grammar engineering workflow, from 2011, p. 10

uncontroversial. Care should be taken however with its application, as we need
to distinguish between phenomena and their analyses. If an analysis leads to
incorrect predictions regarding the interaction with another phenomenon, then
the analysis can be shown to be in error. However, if the incorrect predictions
come from the interaction of the analyses of two phenomena, then it is not clear
a priori which of the analyses is incorrect.

3 Metagrammar engineering for hypothesis testing

Because grammars are such complex objects, testing hypotheses about gram-
matical phenomena generally requires the development of complex models, with
many interacting parts. Bender et al. (2011) illustrate how grammar engineer-
ing, together with regression testing, can help linguists manage the complexity
of their models. This involves both testing the interactions between analyses and
testing analyses against much larger collections of data than is feasible by hand.
Bender et al. illustrate the process with the diagram in Fig. 1. Grammar engi-
neering is a powerful tool for linguistic hypothesis testing because humans and
computers are good at different things: Whereas humans are (still!) better suited
to the task of developing linguistic analyses, computers are better at systematic
checking and can verify the interaction of analyses on large amounts of data.

3.1 Multiple analyses

The process depicted in Fig. 1 is cyclic, with new phenomena being added on
each successive pass. The testsuites document the analyses that have been im-
plemented and allow the linguist to ensure that later work does not break what
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has gone before. This is key to the ability of grammar engineering to facilitate
linguistic hypothesis testing. However, when we view the process of grammar
engineering in this light, it also becomes apparent that phenomena considered
earlier in the development of a grammar and their analyses have an asymmetrical
influence on analyses of phenomena developed later (see also Bender (2008b)).

This asymmetrical influence is unfortunate: It is fairly common for a key
phenomenon constraining the choice of analysis of another phenomenon to be
only addressed after several further passes through the cycle. In the meantime,
whichever analysis was chosen of the phenomenon implemented earlier may be-
come deeply embedded in the growing grammar. This has several unfortunate
consequences: First, over time, it is easy to forget what alternative analyses were
available. Second, the longer an analysis has been part of a grammar, the more
other analyses are likely to depend on it in some way. As noted in the intro-
duction, this leads to scenarios where it becomes cumbersome or impractical to
change an analysis, even when it is discovered to be suboptimal. Finally, even if
a grammar engineer is inspired to revise a deeply-embedded analysis, it is sim-
ply not possible to explore all the paths-not-taken, that is, all the alternative
analyses of the various interacting phenomena that might have been just slightly
more desirable had the revised analysis been the one chosen in the first place.

In order to escape from this asymmetrical influence problem, what is required
is the ability to explore multiple development paths. As described in the next
section, this is exactly what metagrammar engineering provides.

3.2 A Many-Model interpretation

We will illustrate how a metagrammar may help improve this situation by draw-
ing a parallel to the many-world interpretation of quantum mechanics (Everett
1957, DeWitt 1972). Quantum mechanics can predict the probability of a loca-
tion of a photon and this prediction forms a wave function. However, as soon
as the photon is observed, the probability function is reduced to one point and,
according to the alternative Copenhagen Interpretation, the wavefunction col-
lapses. The many-world interpretation rejects this idea and maintains that the
alternative worlds in which the photon is at another location than the one ob-
served are real, implying that alternative histories and futures are real. The
analogue we imagine for grammar engineering is a many-model interpretation,
where each model considers different analyses to be correct. Each implementa-
tion decision we make places us in a given model. While making a decision in
grammar engineering, the grammar engineers sets off on a specific road and the
route that is taken (the order in which phenomena are considered, the choices
made concerning their implementations) influences the final destination (the re-
sulting grammar). However, unlike real life, where we are stuck in a specific
world and cannot explore alternatives, we can look at alternative models for
grammars. The only problem is that it is not feasible to have a clear picture of
all consequences of a specific decision while following the traditional grammar
engineering approach. But what if we could monitor more than one model at the
same time? What if, instead of making a decision to commit to a specific model,
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Fig. 2. Metagrammar engineering workflow

we follow a couple of models for a while, and test them with new analyses until
we have gathered enough evidence to feel comfortable about a decision?

The methodology of metagrammar engineering can achieve this. The meta-
grammar can contain alternative analyses, including the alterations needed to
make them interact correctly with analyses for other phenomena. Alternative
models can be generated by selecting different options in the metagrammar. In
§4, we describe a specific approach that applies this idea to hpsg grammars
(Pollard and Sag, 1994) written in the tdl (Copestake, 2000).3 It should be
noted, however, that the idea of using a metagrammar and code generation to
monitor alternative grammar models is both theory- and software-independent.

Fig. 2 schematizes the general workflow with a metagrammar approach. The
stacked ovals represent manual processes that manipulate sets of alternative
analyses, and the stacked diamonds automatic processes involving alternative
grammars compiled out of those resources. The grammar engineer has the option
of adding multiple alternative analyses for any phenomenon and, maintains a
set of so-called ‘choices’ files specifying grammars built out of particular sets
of choices among the analyses. The testing cycle involves compiling all of these
grammars and parsing the testsuite with all of them. Using the many worlds
metaphor, the resources encoding the alternative analyses and grammars are
what define the space of models that the grammar engineer can monitor, the
testsuite is the lens through which the monitoring is done, and the automated
processing steps constitute the observations of each of the many ‘worlds’.

4 The CLIMB approach

This section describes the climb4 approach for metagrammar engineering. We
first describe how climb emerged from the Grammar Matrix (Bender et al.
2010), and then describe the three variations of climb that currently exist: the
traditional procedural climb, declarative climb and short-climb.

3 tdl is the delph-in (www.delph-in.net) joint reference formalism.
4 Comparative Libraries of Implementations with a Matrix Basis; See moin.delph-

in.net/ClimbTop for more project information and software download.
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4.1 The Grammar Matrix and CLIMB

Climb (Fokkens 2011, Fokkens et al. 2012) builds on the LinGO Grammar Ma-
trix (Bender et al. 2010), sharing with it the key idea of grammar customization.
Grammar customization is the practice of generating grammar code from stored
analyses on the basis of some input. There are, however, important differences,
stemming from the goals of the projects: the Grammar Matrix aims to help (pos-
sibly novice) grammar engineers start new grammars, where the goal of climb is
to support long-term grammar development for experienced grammar engineers.

The Grammar Matrix applies grammar customization to the problem of rapid
development of precision grammars. It stores a core grammar and libraries of
analyses of cross-linguistically varying phenomena, which users can select in
order to create a grammar fragment for (ideally) any human language. The
project emphasizes typological coverage, and therefore can only add phenomena
slowly, as each one must be grounded in thorough typological research. Climb
generalizes the idea of grammar customization to metagrammar engineering,
placing the customization source code under control of the grammar engineer, so
that different levels of parameterization can be achieved in individual grammar
development projects. Users are encouraged to explore the possibilities of the
customization system and expand it for their language specific needs. This entails
further differences between the projects: Matrix users access the system through
a web-based questionnaire that hides the underlying hpsg analyses, while climb
users are actively developing hpsg analyses (as implemented in tdl). Also, using
grammar customization in the development of language-specific resources frees
the grammar engineer to focus on phenomena as they manifest in the language(s)
at hand, without concern for the full range of typological variation.

4.2 Procedural CLIMB

The original version of climb (procedural climb) builds directly on the Gram-
mar Matrix, by simply taking the customization system (minus the web front-
end), and allowing grammar engineers to extend it for particular languages. A
climb metagrammar takes a choices file as its input and produces a grammar
in tdl. The choices file specifies phenomena and properties that are generated
using the metagrammar’s libraries, which mainly consist of procedural functions
that add type definitions to the grammar based on definitions in the choices file.

Fig. 3 gives a sample analysis as implemented in procedural climb. The
metagrammar code contains control statements which check for certain proper-
ties in the choices file and statements which output tdl accordingly. The small
boxes to the left of the figure are partial choices files, while the (declarative) tdl
code at the top and bottom shows the system output according to those choices.
This example illustrates the ways in which the analysis of object raising verbs
depends on the presence or absence of reflexives in the grammar specification,
on the one hand, and the chosen analysis of verbal clusters on the other.

Procedural climb can capture alternative analyses and thus achieves the goal
of maintaining analyses in parallel. It has some additional advantages common
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if ch.get(‘obj-raising’) == ‘yes’:

if ch.get(‘has-reflexives’):

mylang.add(‘obj-raising-verb-lex := non-refl-verb-lex.’)

else:

mylang.add(‘obj-raising-verb-lex := main-verb-lex.’)

typedef = \

‘obj-raising-verb-lex := ditrans-second-arg-raising-lex-item & \

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >, \

SPR < >, \

SPEC < > ], \

ARG-ST < #subj & [ LOCAL.CAT [ VAL.SPR < > ] ], [ ], [ ] > ].’

mylang.add(typedef)

if ch.get(‘vc-analysis’) == ‘aux-rule’:

comps_struc = \

‘[ SYNSEM.LOCAL.CAT.VAL.COMPS < #obj, #vcomp >, \

ARG-ST < [ ], #obj & [ LOCAL.CAT.VAL.SPR < > ], \

#vcomp & [ LOCAL.CAT.VAL.SUBJ < [ ] > ] > ].’

else:

comps_struc = \

‘[ SYNSEM.LOCAL.CAT.VAL.COMPS < #obj, #vcomp . #comps >, \

ARG-ST < [ ], #obj & [ LOCAL.CAT.VAL.SPR < > ], \

#vcomp & [ LOCAL.CAT.VAL [ SUBJ < [ ] >, \

COMPS #comps ]] > ].’

mylang.add(‘obj-raising-verb-lex := ’ + comps_struc)

1

obj-raising=yes

has-reflexives=on

vc-analysis=aux-rule

obj-raising=yes

has-reflexives=on

vc-analysis=basic

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[ SUBJ < #subj >, SPR < >, SPEC < > ],

ARG-ST < #subj & [ SPR < > ], [ ], [ ] > ].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[ COMPS < #obj, #vcomp >,

ARG-ST < [ ], #obj & [ SPR < > ],

#vcomp & [ SUBJ < [ ] > ] > ].

End=aux-rule-vc

Begin=basic-vc

[ COMPS < #obj, #vcomp . #comps >,

ARG-ST < [ ], #obj & [ SPR < > ],

#vcomp & [ SUBJ < [ ] >,

COMPS #comps ] > ].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp > ],

ARG-ST <[ ], #obj & [ LOCAL.CAT.VAL.SPR < > ],

#vcomp & [ LOCAL.CAT.VAL.SUBJ <[ ]> ] > ].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp . #comps > ],

ARG-ST <[ ], #obj & [ LOCAL.CAT.VAL.SPR < > ],

#vcomp & [ LOCAL.CAT.VAL [ SUBJ <[ ]>,

COMPS #comps ] ] > ].

2

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[ SUBJ < #subj >, SPR < >, SPEC < > ],

ARG-ST < #subj & [ SPR < > ], [ ], [ ] > ].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[ COMPS < #obj, #vcomp >,

ARG-ST < [ ], #obj & [ SPR < > ],

#vcomp & [ SUBJ < [ ] > ] > ].

End=aux-rule-vc

Begin=basic-vc

[ COMPS < #obj, #vcomp . #comps >,

ARG-ST < [ ], #obj & [ SPR < > ],

#vcomp & [ SUBJ < [ ] >,

COMPS #comps ] > ].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp > ],

ARG-ST <[ ], #obj & [ LOCAL.CAT.VAL.SPR < > ],

#vcomp & [ LOCAL.CAT.VAL.SUBJ <[ ]> ] > ].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp . #comps > ],

ARG-ST <[ ], #obj & [ LOCAL.CAT.VAL.SPR < > ],

#vcomp & [ LOCAL.CAT.VAL [ SUBJ <[ ]>,

COMPS #comps ] ] > ].

2

Fig. 3. Snippet of procedural climb code with alternative choices and their output

to metagrammar approaches, including increased modularity, more phenomena-
oriented organization, facilitation of multilingual grammar development and ap-
plication dependent variations in grammars. A draw-back of this approach, how-
ever, is that it requires implementing procedural functions in Python. Even for
grammar engineers proficient in programming, it can be a nuisance to switch
back and forth between declarative definitions of constraints in the grammar
and procedural code invoking constraints based on choices in the metagrammar.

4.3 Declarative CLIMB

Declarative climb addresses this drawback of procedural climb. Fig. 4 shows
the implementation of a basic type for object raising in declarative climb. The
definitions in declarative climb are written directly in tdl, where paths in type
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definitions may optionally be abbreviated. A small set of additional declarative
statements is used to identify where analysis-specific parts of an implementa-
tion start. The example includes alternative additions made to the basic type
depending on the analysis chosen for verbal clusters (like in Fig. 3). The choices
file indicates which analyses in the metagrammar should not be selected for the
generated grammar. Procedural Python implementations are still used to in-
terpret a choices file and merge type definitions from different locations in the
metagrammar, but grammar engineers can treat these like a black box.

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[ SUBJ < #subj >,

SPR < >,

SPEC < > ],

ARG-ST < #subj & [ SPR < > ], [ ], [ ] > ].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[ COMPS < #obj, #vcomp >,

ARG-ST < [ ], #obj & [ SPR < > ],

#vcomp & [ SUBJ < [ ] > ] > ].

End=aux-rule-vc

Begin=basic-vc

[ COMPS < #obj, #vcomp . #comps >,

ARG-ST < [ ], #obj & [ SPR < > ],

#vcomp & [ SUBJ < [ ] >,

COMPS #comps ] > ].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >,

SPR < >,

SPEC < >,

COMPS < #obj, #vcomp > ],

ARG-ST <[ ], #obj & [ LOCAL.CAT.VAL.SPR < > ],

#vcomp & [ LOCAL.CAT.VAL.SUBJ <[ ]> ] > ].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >,

SPR < >,

SPEC < >,

COMPS < #obj, #vcomp . #comps > ],

ARG-ST <[ ], #obj & [ LOCAL.CAT.VAL.SPR < > ],

#vcomp & [ LOCAL.CAT.VAL [ SUBJ <[ ]>,

COMPS #comps ] ] > ].

2

category=analysis

exclude=basic-vc

category=analysis

exclude=aux-rule-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[ SUBJ < #subj >, SPR < >, SPEC < > ],

ARG-ST < #subj & [ SPR < > ], [ ], [ ] > ].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[ COMPS < #obj, #vcomp >,

ARG-ST < [ ], #obj & [ SPR < > ],

#vcomp & [ SUBJ < [ ] > ] > ].

End=aux-rule-vc

Begin=basic-vc

[ COMPS < #obj, #vcomp . #comps >,

ARG-ST < [ ], #obj & [ SPR < > ],

#vcomp & [ SUBJ < [ ] >,

COMPS #comps ] > ].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp > ],

ARG-ST <[ ], #obj & [ LOCAL.CAT.VAL.SPR < > ],

#vcomp & [ LOCAL.CAT.VAL.SUBJ <[ ]> ] > ].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp . #comps > ],

ARG-ST <[ ], #obj & [ LOCAL.CAT.VAL.SPR < > ],

#vcomp & [ LOCAL.CAT.VAL [ SUBJ <[ ]>,

COMPS #comps ] ] > ].

2

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[ SUBJ < #subj >, SPR < >, SPEC < > ],

ARG-ST < #subj & [ SPR < > ], [ ], [ ] > ].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[ COMPS < #obj, #vcomp >,

ARG-ST < [ ], #obj & [ SPR < > ],

#vcomp & [ SUBJ < [ ] > ] > ].

End=aux-rule-vc

Begin=basic-vc

[ COMPS < #obj, #vcomp . #comps >,

ARG-ST < [ ], #obj & [ SPR < > ],

#vcomp & [ SUBJ < [ ] >,

COMPS #comps ] > ].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp > ],

ARG-ST <[ ], #obj & [ LOCAL.CAT.VAL.SPR < > ],

#vcomp & [ LOCAL.CAT.VAL.SUBJ <[ ]> ] > ].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[ SYNSEM.LOCAL.CAT.VAL [ SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp . #comps > ],

ARG-ST <[ ], #obj & [ LOCAL.CAT.VAL.SPR < > ],

#vcomp & [ LOCAL.CAT.VAL [ SUBJ <[ ]>,

COMPS #comps ] ] > ].

2

Fig. 4. Snippet of declarative climb code with alternative choices and their output

4.4 SHORT-CLIMB

Both procedural and declarative climb assume that the grammar is built within
a climb approach from the ground up. But mature grammars can also bene-
fit from the ability to explore alternative analyses (even if most of what has
been implemented before adopting climb is kept constant). It is not practical
to take a very large grammar and re-implement it from the ground up just to
get this benefit. Instead, short-climb5 provides support for maintaining alter-

5 Starting High On a Roof Top climb
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native analyses for grammars that have been developed the traditional way. An
alternative analysis can be included by writing declarative statements on types
and (partial) type definitions to be added to the grammar, types or constraints
to be removed from the grammar and types that need to be modified.

The short-climb processing code takes a grammar written in tdl and a
set of modifications as input and produces a revised grammar. It can optionally
also provide a short-climb definition file to convert the revised grammar into
the original grammar. Finally, it can produce a reduced grammar that only
contains the common properties of both analyses, together with two files that
can either create the original or the revised analysis using short-climb software.
As such, short-climb can be used to convert a traditionally written grammar
to declarative climb step by step.

5 Scalability

Climb has been used to develop gclimb, a metagrammar for Germanic lan-
guages, developed with the goals of exploring the efficiency of alternative anal-
yses and the applicability of the climb methodology at the scale of resource
grammars (Fokkens, in progress). The results in Fokkens (in progress) indicate
that climb scales well for longterm projects. gclimb has been developed for
two and a half years and in spite of it having been a side project for most of
that time, it already covers a wide range of phenomena for German. It contains
alternative analyses for word order and auxiliaries, two phenomena that interact
heavily with other phenomena in the grammar together resulting in five varia-
tions. In addition, the system provides for different approaches to the lexicon,
including fully inflected or abstract forms of morphemes as well as a variation
that integrates the lexicon and morphology of Cheetah (Cramer, 2011). In to-
tal, there are 25 different choices files specifying grammars representing different
combinations of these analytical possibilities. As far as quantity is concerned,
gclimb was built on top of a version of the Grammar Matrix that had 3,651
lines of code in the linguistic libraries. The metagrammar’s libraries now consist
of 13,032 lines of code, compared to 6,250 lines of code in the current version of
the Grammar Matrix customization system. The choices files for these grammars
have 1,970 lines of definitions (for small grammars used for testing) up to 3,657
lines (for creating the complete Cheetah core grammar and incorporating its
lexicon). A customized grammar consists of approximately 7,300 lines of code.

6 Related Work

Metagrammars have been in use for over a decade, with notable long term efforts
such as the MetaGrammar project (Candito 1998, Clément and Kinyon 2003)
and GF (Ranta 2004, Ranta 2011). They have supported code sharing (Clément
and Kinyon 2003, Ranta 2011), increased modularity, provided means for gen-
eralizations (Candito, 1998), combined expertise from linguists and engineers
(Ranta, 2004) and facilitated multilingual grammar development (Ranta, 2011).
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The two projects that most closely resemble declarative climb in their ar-
chitecture are Sygal and Wintner’s (2011) approach for modular development of
typed unification grammars and the CoreGram Project (Müller, 2013). Like the
work mentioned above, neither of these has addressed systematic comparison of
alternative analyses, instead focusing on increasing modularity (Sygal and Wint-
ner, 2011) and cross-linguistic grammar sharing (CoreGram). These difference
in goals are reflected in differences in architecture.

Sygal and Wintner (2011) propose a structure that allows engineers to im-
plement modules defining a part of a type hierarchy. These modules can be com-
bined to form a complete grammar by specially defined functions. They point
out the similarity between their approach and the Grammar Matrix customiza-
tion system, where the main difference is that the grammar engineer does not
have control over customization. This is exactly where climb differs from the
Grammar Matrix. Where Sygal and Wintner improve modularity by developing
a mathematically well-founded model, climb resulted from a practical approach
to implementing alternative analyses, which requires increased modularity. This
difference is also reflected in the verification of the approach. The former has
been tested in a proof-of-concept implementation of the small hierarchy from in
the appendix of Pollard and Sag (1994). Climb includes a grammar for German
covering phenomena including subordinate clauses, complex predicates and ex-
traposed comparatives. It seems promising that the theoretically well-founded
approach and the practical broad-coverage approach are similar.

The CoreGram Project (Müller, 2013) is a bottom-up approach for cross-
linguistic sharing of analyses between hpsg grammars running in TRALE (Meur-
ers et al., 2002). Implementations that can be used for all grammars form a com-
mon core. When properties are observed that are shared by a subset of languages,
they can be placed in subcores. Definitions belonging to the core, a subcore or
language specific properties are defined in different files, and complete grammars
are created by selecting the appropriate files. This approach partially provides
the same functionality as declarative climb. In fact, the CoreGram approach
can be used to monitor alternative analyses, but this is not (yet) a goal of the
CoreGram project. Declarative climb differs from the CoreGram in providing
a few additional features to facilitate the accommodation of alternative analy-
ses. First, climb allows the metagrammar engineer to consolidate all constraints
associated with one alternative in a single location, even if in the compiled gram-
mar they affect many different types, allowing the grammar engineer two views:
one based on analyses and one based on complete types. Declarative climb also
supports the possibility of defining abbreviated paths which to a certain extent
supports the exploration of alternative feature geometries. These differences can
all be traced back to the different goals of CoreGram and climb, respectively.

To our knowledge, the only work that suggests that a metagrammar can be
used to test alternative analyses is Fokkens (2011), but that work focuses on
efficiency of implemented grammars. As such, we believe this work is the first to
address the role of a metagrammar in hypothesis testing for syntactic research.
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7 Conclusion

This paper outlined the role metagrammars can play in linguistic hypothesis
testing. We described climb: a metagrammar engineering approach that provides
the means to create hpsg grammars written in tdl. Three versions of climb
have been presented: procedural climb following Fokkens (2011), declarative
climb and short-climb. Declarative climb allows grammar engineers to define
their metagrammar libraries declaratively in tdl and has been developed to
make the approach more accessible to grammar engineers who are not trained
in procedural programming. Short-climb can be used to create libraries that
apply changes to large grammars that have been developed using the traditional
(non-metagrammar) way. It thus provides the possibility of testing alternative
analyses systematically in a large scale grammar.

The advantages of implementing grammars for hypothesis testing are well-
known (Bierwisch 1963, Müller 1999, Bender 2008b). Metagrammar engineering
adds an additional advantage in that allows the syntactician to systematically
explore alternative analyses over time. In traditional grammar engineering, anal-
yses may be so deeply embedded in the grammar it becomes too cumbersome
to go back and change them. Metagrammar engineering makes it possible to
monitor multiple models of a grammar. If we include two alternative analyses in
a metagrammar and evidence for a particular analysis is found in the far future,
we have the complete paths of both analyses. There is thus no need to dive into
past decisions instead we can simply follow the path of the right choice as if we
time traveled and corrected our past decision.
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A Toolkit for Engineering Type-Logical
Grammars
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This demo shows a multi-purpose toolkit for annotating and parsing type-
logical grammars. The current implementation and demo focus on the analysis
of French but the tools are fully general and can be adapted to other languages.
Figure 1 gives an overview of the different tools and resources.

Input text

POS-tagger

Tagged text

Supertagger

Formulas

Parser

DRT semantics

POS model

Supertag model

Semantic lexicon

Resources Programs

Fig. 1. An overview of the toolkit

The POS-tag model and the su-
pertag model have been trained using
the tools of [1]. They provide first part-
of-speech tags then a set of contextually
likely formulas (supertags) for each of
the words in an input sentence. These
formulas are the input to the chart
parser, a stripped-down and optimized
version of the Grail parser for type-
logical grammars [2], which produces a
representation of the meaning of the
sentence but also LATEX ouput of the
parse/proof.

In addition to these programs, a
number of interface tools is provided
to simplify user interaction. For exam-
ple, an annotation tool helps bootstrap
unannotated parts of the corpus. It uses

the POS-tagger and supertagger to give an annotation for a sentence and allows
the user to interactively correct this sentence: either by selecting an alternative
proposed by the supertagger or by manually typing the correct formula. To help
prevent errors, the number of times this word-POS tag combination occurs with
this formula is listed and the full annotation can be passed directly to the parser.

All tools and resources are released under the GNU Lesser General Public
License.

References

1. Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In:
Proceedings of the 42nd annual meeting of the Association for Computational Lin-
guistics (ACL-2004). pp. 104–111. Barcelona, Spain (2004)

2. Moot, R.: Wide-coverage French syntax and semantics using Grail. In: Proceedings
of Traitement Automatique des Langues Naturelles (TALN). Montreal (2010)





eXtensible MetaGrammar: a modular tool for
grammar engineering

Simon Petitjean
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1 Introduction

Designing and maintaining a large scale formal grammar is a long and complex
task, because it means manipulating and checking thousands of structures. XMG
[1] is a compiler inspired by the concept of MetaGrammar [2] created to address
this issue. The idea behind XMG is to generate the grammar by describing frag-
ments of the grammar rules, and combining them to produce the whole set of
rules.
Linguists can work with different languages, get interested in different represen-
tation levels of these languages, and use different formalisms to represent the
linguistic information. Dimensions are a concept that XMG uses to separate
these levels of description, and provide adapted languages to describe the struc-
tures that they imply. Linguistic theories are represented into the compiler by
the means of principles. Principles are set of constraints that can be applied to
dimensions. For example, the unicity principle ensures that a property is unique
inside a model.
A high level of modularity is necessary for the compiler to be easily adapted for
new linguistic theories, coming with their own dimensions and principles. For
this reason, the compiler can be built dynamically by choosing compiler bricks
and combining them.

2 Compiling a MetaGrammar

Generating a grammar with XMG is going through a set of compiling steps,
summarized in figure 1. The first ones take a MetaGrammar file, compile it and
execute the generated code. This leads to a set of accumulations, corresponding
to dimensions. Then, for each dimension, the last dedicated compiling steps
extract all models from the descriptions, producing the grammar.

3 Compiler Bricks

Every part of the compiler that defines a dedicated language and associates
compiling steps to this language is called a Compiler Brick. These bricks can
correspond to dimensions, but also to finest reusable parts of the compiler. For
example, to declare and manipulate Attribute Value Matrices inside a dimension,
one just needs to instantiate the AVM brick.



.mg file .xml file

accumulations

dim 1

dim 2

execution solving

Fig. 1. A basic view of the compiler

4 Extensions

Originally designed to deal with two tree based formalisms for syntax, Tree
Adjoining Grammars [3] and Interaction Grammars [4], and a predicate based
formalism for semantics (“flat” semantics), XMG has lately been extended with
new dimensions. Another level of linguistic description has been explored: the
morphological one. Two different bricks, based on different linguistic theories,
were created. One of them has been used in [5]. A new semantic dimension is
also available, handling frame based semantics. It has been used together with
the second morphological brick in [6].
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Leopar: an Interaction Grammar Parser
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1 Overview

Leopar1 is a parser for natural languages which is based on the formalism
of Interaction Grammars. The parsing principle (called “electrostatic parsing”)
consists in neutralizing opposite polarities: a positive polarity corresponds to
an available linguistic feature and a negative one to an expected feature. The
structures used in IG are underspecified syntactic trees decorated with polari-
ties and called Polarized Tree Descriptions (PTDs). During the parsing process,
PTDs are combined by partial superposition guided by the aim of neutraliz-
ing polarities: two opposite polarities are neutralized by merging their support
nodes. Parsing succeeds if the process ends with a minimal and neutral tree. The
figure below describes Leopar and the toolchain around it (EPTD stands for
Elementary Polarized Tree Descriptions).

2 Main modules

Anchoring: each lexicon entry is described with an hypertag (i.e. a feature
structure which describes morpho-syntactic information on the lexical unit);
in order to preserve tokenization ambiguities, tokenization is represented as
a Direct Acyclic Graph (DAG) of hypertags; for each hypertag describing
a lexical unit, the relevant EPTDs are build by instanciation of template
EPTDs defined in the grammar.

Filtering: paths in the DAG produced by the anchoring represented the set of
lexical selections that should be considered by the parsing process. In order
to reduce the number of paths and so to speed up the deep parsing, the next
step in Leopar is to filter out paths that are doomed to fail. Two kinds of
filters are used: polarity filters remove lexical selections for which the set of
polarities in not well-balanced and companion filters remove lexical selections

1 http://leopar.loria.fr



for which it can be predicted (from knowledge on the template EPTDs) that
some polarity will fail to find a dual polarity (called a companion) able to
saturate it.

Deep parsing: the atomic operation used during deep parsing is the node
merging operation. At each step, two dual polarities are chosen; the two
nodes carrying these polarities are merged and tree description around the
two are superposed. Of course, in case of dead-lock, backtracking is used to
chose another pair of polarities.

Phrase-structure trees and dependency graphs: (E)PTD are tree descrip-
tions which describes constraints on the phrase-structure tree. The parsing
process aims to build a phrase structure tree which is a model the EPTDs
chosen for each lexical unit. Dependency graphs are build from the phrase
structure tree but also with information about taken from the parsing pro-
cess itself.
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Ygg, parsing French text using AB grammars
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This demo focuses on the use of Ygg, our sentence analyzer which uses a
probabilistic version of the CYK algorithm [Yo1]. An overview of our various
softwares is explained by the scheme 1.

corpus derivation trees grammar

analysed sentences

sentences typed sentences

SynTAB extractor

Supertagger
Ygg

Fig. 1. Processing line.

In order to run our analyzer, we need an input grammar and sentences to
analyze. The raw sentences come from various corpora, and will be typed by
the Supertagger [Mo2]. The AB grammar [La1] is extracted from the French
Treebank, with SynTAB, described in detail in [SM1]: our tree transducer takes
as input the syntactic trees of the French Treebank, and gives as output a forest
of AB derivation trees. Among others, we choose an AB grammar for the links
with semantics and the possibility to extract λ-terms from the derivation trees.

By gathering the leaves of derivation trees, we can have the usual form of an
AB grammar, a lexicon which links words and their various types. However, we
decided, for the need of the CYK algorithm, to extract a more usual grammar.
The AB grammar is already in Chomsky Normal Form, which is necessary for the
algorithm. We added a stochastic component by subdividing the rules from their
root (label plus type), and counting the occurrences of various instantiations of
an AB grammar (a→ a/b b and a→ b b\a).

Finally, we use the CYK to create derivations trees and λ-terms correspond-
ing to them.
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