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JIRC 08, Orléans
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Context

Java Bytecode analysis

I Rewriting semantics for the Java Bytecode

I Static analysis from reachability analysis in rewriting
I Tree automata technique [RTA98]
I Timbuk tool (http://www.irisa.fr/lande/genet/timbuk)
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Rewriting Semantics for the Java Bytecode

s  : JVM state

ss s s s

JVM Execution Trace

s
1 2 3 4 5 6

i

inst inst inst inst inst
1 2 3 4 5

i
inst  : Bytecode instruction

: JVM transition

For a given program P

I JVM states as Terms

I Rewrite rules for
I the Bytecode instructions interpretation (generic rules)
I the program

3/16



Reachability Analysis in Rewriting

Bad

?

R : term rewriting system

E : initial terms

Bad : forbidden terms

JVM initial state

Forbidden JVM states

JVM Transition relation for the given program

E

R*(E)

R*

Over−approximation of R*(E)
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Tree automata completion

))R*(L(A

L(A1)
L(A2)

L(Ak)
. . .

L(A0) 0

I A set of terms is represented by a tree automaton language

I Ai+1 = Ai+ new transitions and states

I Completion stops when a fix point automaton is found
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Computing substitutions for a completion step

g

g

a b

f

c

A

a → qa

b → qb

c → qc

g(qa, qb) → qg1

f (qc) → qf

g(qg1, qf ) → qg2

g(qb, qc) → qg2
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Don’t forget that it is used for Verification!

I Security protocols: [CADE00,WITS03,CAV05,TFIT06,ICTAC06]

I Java program verification: [RTA 07]

But for the verification of Java programs. . .

I TRS are huge (more than 600 rules for a bubble sort program)

I Computation times with Timbuk may exceed 4 days!

Goal: Propose practical techniques to solve scalability issues
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Reachability Preserving TRS Transformation

Fact: Collecting all possible ground instances of a deep pattern may be
expensive

Idea: Transform TRS into simpler TRS

I A simple form for the left hand-side of rules (depth max=2)
I Flat: f (x1, . . . , xn) or c
I f (t1, . . . , tn) where each ti is flat

I Reachability preserving (Terms computed with the original TRS
must be also computed by the resulting TRS)

8/16



Reachability Preserving TRS Transformation

Fact: Collecting all possible ground instances of a deep pattern may be
expensive

Idea: Transform TRS into simpler TRS

I A simple form for the left hand-side of rules (depth max=2)
I Flat: f (x1, . . . , xn) or c
I f (t1, . . . , tn) where each ti is flat

I Reachability preserving (Terms computed with the original TRS
must be also computed by the resulting TRS)

8/16



Reachability Preserving TRS Transformation

Fact: Collecting all possible ground instances of a deep pattern may be
expensive

Idea: Transform TRS into simpler TRS

I A simple form for the left hand-side of rules (depth max=2)
I Flat: f (x1, . . . , xn) or c
I f (t1, . . . , tn) where each ti is flat

I Reachability preserving (Terms computed with the original TRS
must be also computed by the resulting TRS)

8/16



Reachability Preserving TRS Transformation

Fact: Collecting all possible ground instances of a deep pattern may be
expensive

Idea: Transform TRS into simpler TRS

I A simple form for the left hand-side of rules (depth max=2)
I Flat: f (x1, . . . , xn) or c
I f (t1, . . . , tn) where each ti is flat

I Reachability preserving (Terms computed with the original TRS
must be also computed by the resulting TRS)

8/16



Reachability Preserving TRS Transformation

Fact: Collecting all possible ground instances of a deep pattern may be
expensive

Idea: Transform TRS into simpler TRS

I A simple form for the left hand-side of rules (depth max=2)
I Flat: f (x1, . . . , xn) or c
I f (t1, . . . , tn) where each ti is flat

I Reachability preserving (Terms computed with the original TRS
must be also computed by the resulting TRS)

8/16



Transformation of the example rule

R

g

g

a x

f

y

→

g

x y

a → C1

g(C1, x) → C2(x)
φ(R) f (y) → C3(y)

g(C2(x),C3(y)) → C4(x , y)
C4(x , y) → g(x , y)

∀t, t ′ ∈ T (F).t→Rt ′ =⇒ t→∗φ(R)t
′
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Main Result

An over-approximation computed for φ(R) is also an over-approximation
for R

))

0)

(R)*(L(Aφ 0))

R*(L(A0

L(A
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Dedicated completion algorithm (1)

Facts

I For each l→r ∈ φ(R), l does not exceed a depth of 2

g(C2(x), C3(y))→ C4(x , y)

I Very close to a direct pattern-matching on transitions

g(qg1, qf )→ qg2

I For this transition, the current matching algorithm computes all
possible instances from g(qg1, qf )

Can we reduce the substitution computation to a simple
pattern-matching problem?
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Dedicated completion algorithm (2)
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a → C1

g(C1, x) → C2(x)
f (y) → C3(y)
g(C2(x),C3(y)) → C4(x , y)
C4(x , y) → g(x , y)
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Dedicated completion algorithm (3)

We want to do a completion step with the rule
g(C2(x),C3(y))→ C4(x , y).

g

C2

x

C3

y

→
C4

x y

The particular form of the rules allows us to replace the substitution
calculus by associative pattern-matching
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General schema of the implementation

The Tom language [RTA’07]: Piggybacking Rewriting on top of Java

I Efficient support for algebraic terms (hash-consing),

I Pattern-matching (AU theory, variadic operators),

I Expressive strategy language (à la ELAN, Stratego).

Generator of dedicated completion programs written in Tom

CCG

Completion 
Code 

Generator

Tom compiler
Java 

completion 
program

Specification
input file

Tom 
completion 

program 
dedicated to 

the input
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Experimental results

NSPK View-Only Java program
protocol protocol (chained lists)

TRS size (nb of rules) 13 15 303
Timbuk:
Time (secs) 19.7 6420 37387
Tom:
Time (secs) 5.9 150 303
Timbuk/Tom 3 40 120

In practice, conclusive analyses with Timbuk are also conclusive with Tom
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Conclusion

Main results:

I Definition of a reachability preserving transformation on TRS

I Computations of over-approximations using associative
pattern-matching

I Implementation in Tom/Java

I A factor 10 in general, and up to 100 on Java examples

Future work:

I Verification of MIDlets

I A better control of approximations

I Using threads to parallelize the completion procedure
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