Vérification de systèmes et réécriture de plus en plus efficace

Yohan Boichut
LIFO - Université d'Orléans

JIRC 08, Orléans

9 octobre 2008

Context

Java Bytecode analysis

- Rewriting semantics for the Java Bytecode
- Static analysis from reachability analysis in rewriting
- Tree automata technique [RTA98]
- Timbuk tool (http://www.irisa.fr/lande/genet/timbuk)

Context

Java Bytecode analysis

- Rewriting semantics for the Java Bytecode
- Static analysis from reachability analysis in rewriting
- Tree automata technique [RTA98]
- Timbuk tool (http://www.irisa.fr/lande/genet/timbuk)

Rewriting Semantics for the Java Bytecode

JVM Execution Trace

For a given program P

- JVM states as Terms
- Rewrite rules for
- the Bytecode instructions interpretation (generic rules)
- the program

Reachability Analysis in Rewriting

E : initial terms
$\longrightarrow J V M$ initial state
R : term rewriting system
\longrightarrow JVM Transition relation for the given program
Bad : forbidden terms
\longrightarrow Forbidden JVM states

Tree automata completion

- A set of terms is represented by a tree automaton language
- $\mathcal{A}_{i+1}=\mathcal{A}_{i}+$ new transitions and states
- Completion stops when a fix point automaton is found

Computing substitutions for a completion step

Computing substitutions for a completion step

	a	\rightarrow	q_{a}
	b	\rightarrow	q_{b}
	c	\rightarrow	q_{c}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
	$f\left(q_{c}\right)$	\rightarrow	q_{f}
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g} 2$

Computing substitutions for a completion step

	a	\rightarrow	q_{a}
	b	\rightarrow	q_{b}
	c	\rightarrow	q_{c}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
	$f\left(q_{c}\right)$	\rightarrow	q_{f}
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$

Computing substitutions for a completion step

	a		
	b		q_{a}
	c	\rightarrow	q_{b}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	q_{c}
	$f\left(q_{c}\right)$	\rightarrow	$q_{g 1}$
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	q_{f}
			$q_{g 2}$

Computing substitutions for a completion step

	a		q_{a}
	b	\rightarrow	q_{b}
	c	\rightarrow	q_{c}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
	$f\left(q_{c}\right)$	\rightarrow	q_{f}
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$

Computing substitutions for a completion step

	a		
	b		q_{a}
	c	\rightarrow	q_{b}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	q_{c}
	$f\left(q_{c}\right)$	\rightarrow	$q_{g 1}$
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	q_{f}
			$q_{g 2}$

Computing substitutions for a completion step

	a		
	b		q_{a}
	c	\rightarrow	q_{b}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	q_{c}
	$f\left(q_{c}\right)$	\rightarrow	$q_{g 1}$
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	q_{f}
			$q_{g 2}$

Computing substitutions for a completion step

	a		
	b		q_{a}
	c	\rightarrow	q_{b}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	q_{c}
	$f\left(q_{c}\right)$	\rightarrow	$q_{g 1}$
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	q_{f}
			$q_{g 2}$

Computing substitutions for a completion step

	a		q_{a}
	b	\rightarrow	q_{b}
	c	\rightarrow	q_{c}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
	$f\left(q_{c}\right)$	\rightarrow	q_{f}
	$g\left(q_{g 1}, q_{f}\right)$		\rightarrow
$q_{g 2}$			

Computing substitutions for a completion step

	a		
	b		q_{a}
	c	\rightarrow	q_{b}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	q_{c}
	$f\left(q_{c}\right)$	\rightarrow	$q_{g 1}$
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	q_{f}
			$q_{g 2}$

Computing substitutions for a completion step

	a		
	b		q_{a}
	c	\rightarrow	q_{b}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	q_{c}
	$f\left(q_{c}\right)$	\rightarrow	$q_{g 1}$
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	q_{f}
			$q_{g 2}$

Computing substitutions for a completion step

	a		q_{a}
	b	\rightarrow	q_{b}
	c	\rightarrow	q_{c}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
	$f\left(q_{c}\right)$	\rightarrow	q_{f}
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$

Computing substitutions for a completion step

	a		q_{a}
	b	\rightarrow	q_{b}
	c	\rightarrow	q_{c}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
	$f\left(q_{c}\right)$	\rightarrow	q_{f}
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$

Computing substitutions for a completion step

	b		q_{a}
	c	\rightarrow	q_{b}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	q_{c}
		\rightarrow	$q_{g 1}$
	$g\left(q_{c}\right)$	\rightarrow	q_{f}
	$g\left(q_{g 1}, q_{f}\right)$		\rightarrow
$q_{g 2}$			

Computing substitutions for a completion step

	a		
	b		q_{a}
	c	\rightarrow	q_{b}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	q_{c}
	$f\left(q_{c}\right)$	\rightarrow	$q_{g 1}$
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	q_{f}
			$q_{g 2}$

Computing substitutions for a completion step

	a		q_{a}
	b	\rightarrow	q_{b}
	c	\rightarrow	q_{c}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
	$f\left(q_{c}\right)$	\rightarrow	q_{f}
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$

Computing substitutions for a completion step

	a		q_{a}
	b	\rightarrow	q_{b}
	c	\rightarrow	q_{c}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
	$f\left(q_{c}\right)$	\rightarrow	q_{f}
	$g\left(q_{g 1}, q_{f}\right)$		\rightarrow
$l_{g 2}$			

$$
\rightarrow
$$

$$
/_{x\left[q_{b}\right]}^{g\left[q_{g 2}\right]}
$$

Computing substitutions for a completion step

	a		q_{a}
	b	\rightarrow	q_{b}
	c	\rightarrow	q_{c}
\mathcal{A}	$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
	$f\left(q_{c}\right)$	\rightarrow	q_{f}
	$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$
	$g\left(q_{b}, q_{c}\right)$	\rightarrow	$q_{g 2}$

$$
\longrightarrow
$$

$$
/_{x\left[q_{b}\right]}^{g\left[q_{g 2}\right]} \backslash_{y\left[q_{c}\right]}
$$

Don't forget that it is used for Verification!

- Security protocols: [CADE00,WITS03,CAV05,TFIT06,ICTAC06] - Java program verification: [RTA 07]

Don't forget that it is used for Verification!

- Security protocols: [CADE00,WITS03,CAV05,TFIT06,ICTAC06]
- Java program verification: [RTA 07]

Don't forget that it is used for Verification!

- Security protocols: [CADE00,WITS03,CAV05,TFIT06,ICTAC06]
- Java program verification: [RTA 07]

Don't forget that it is used for Verification!

- Security protocols: [CADE00,WITS03,CAV05,TFIT06,ICTAC06]
- Java program verification: [RTA 07]

But for the verification of Java programs...

- TRS are huge (more than 600 rules for a bubble sort program)
- Computation times with Timbuk may exceed 4 days!

Don't forget that it is used for Verification!

- Security protocols: [CADE00,WITS03,CAV05,TFIT06,ICTAC06]
- Java program verification: [RTA 07]

But for the verification of Java programs...

- TRS are huge (more than 600 rules for a bubble sort program)
- Computation times with Timbuk may exceed 4 days!

Goal: Propose practical techniques to solve scalability issues

Reachability Preserving TRS Transformation

Fact: Collecting all possible ground instances of a deep pattern may be expensive

Idea: Transform TRS into simpler TRS

- A simple form for the left hand-side of rules (depth max=2)
- Flat: $f\left(x_{1}, \ldots, x_{n}\right)$ or c
- $f\left(t_{1}, \ldots, t_{n}\right)$ where each t_{i} is flat
- Reachability preserving (Terms computed with the original TRS must be also computed by the resulting TRS)

Reachability Preserving TRS Transformation

Fact: Collecting all possible ground instances of a deep pattern may be expensive

Idea: Transform TRS into simpler TRS

- A simple form for the left hand-side of rules (depth max=2)
- Flat: $f\left(x_{1}, \ldots, x_{n}\right)$ or c
- $f\left(t_{1}, \ldots, t_{n}\right)$ where each t_{i} is flat
- Reachability preserving (Terms computed with the original TRS must be also computed by the resulting TRS)

Reachability Preserving TRS Transformation

Fact: Collecting all possible ground instances of a deep pattern may be expensive

Idea: Transform TRS into simpler TRS

- A simple form for the left hand-side of rules (depth max=2)
- $f\left(t_{1}, \ldots, t_{n}\right)$ where each t_{i} is flat
- Reachability preserving (Terms computed with the original TRS must be also computed by the resulting TRS)

Reachability Preserving TRS Transformation

Fact: Collecting all possible ground instances of a deep pattern may be expensive

Idea: Transform TRS into simpler TRS

- A simple form for the left hand-side of rules (depth max=2)
- Flat: $f\left(x_{1}, \ldots, x_{n}\right)$ or c
- $f\left(t_{1}, \ldots, t_{n}\right)$ where each t_{i} is flat
- Reachability preserving (Terms computed with the original TRS must be also computed by the resulting TRS)

Reachability Preserving TRS Transformation

Fact: Collecting all possible ground instances of a deep pattern may be expensive

Idea: Transform TRS into simpler TRS

- A simple form for the left hand-side of rules (depth max=2)
- Flat: $f\left(x_{1}, \ldots, x_{n}\right)$ or c
- $f\left(t_{1}, \ldots, t_{n}\right)$ where each t_{i} is flat
- Reachability preserving (Terms computed with the original TRS must be also computed by the resulting TRS)

Transformation of the example rule

\mathcal{R}

Transformation of the example rule

$$
\begin{array}{lll}
a & \rightarrow & C_{1} \\
g\left(C_{1}, x\right) & \rightarrow & C_{2}(x)
\end{array}
$$

Transformation of the example rule

a	\rightarrow	C_{1}
$g\left(C_{1}, x\right)$	\rightarrow	$C_{2}(x)$
$f(y)$	\rightarrow	$C_{3}(y)$

Transformation of the example rule

a	\rightarrow	C_{1}
$g\left(C_{1}, x\right)$	\rightarrow	$C_{2}(x)$
$f(y)$	\rightarrow	$C_{3}(y)$

Transformation of the example rule

a	\rightarrow	C_{1}
$g\left(C_{1}, x\right)$	\rightarrow	$C_{2}(x)$
$f(y)$	\rightarrow	$C_{3}(y)$
$g\left(C_{2}(x), C_{3}(y)\right)$	\rightarrow	$C_{4}(x, y)$

Transformation of the example rule

$$
\begin{array}{lll}
a & \rightarrow & C_{1} \\
g\left(C_{1}, x\right) & \rightarrow & C_{2}(x) \\
f(y) & \rightarrow & C_{3}(y) \\
g\left(C_{2}(x), C_{3}(y)\right) & \rightarrow & C_{4}(x, y)
\end{array}
$$

Transformation of the example rule

$$
\begin{array}{lll}
a & \rightarrow & C_{1} \\
g\left(C_{1}, x\right) & \rightarrow & C_{2}(x) \\
f(y) & \rightarrow & C_{3}(y) \\
g\left(C_{2}(x), C_{3}(y)\right) & \rightarrow & C_{4}(x, y) \\
C_{4}(x, y) & \rightarrow & g(x, y)
\end{array}
$$

Transformation of the example rule

\mathcal{R}

$$
\begin{array}{lll}
a & \rightarrow & C_{1} \\
g\left(C_{1}, x\right) & \rightarrow & C_{2}(x) \\
f(y) & \rightarrow & C_{3}(y) \\
g\left(C_{2}(x), C_{3}(y)\right) & \rightarrow & C_{4}(x, y) \\
C_{4}(x, y) & \rightarrow & g(x, y)
\end{array}
$$

Transformation of the example rule

\mathcal{R}

$$
\begin{array}{llll}
& a & \rightarrow & C_{1} \\
& g\left(C_{1}, x\right) & \rightarrow & C_{2}(x) \\
b(\mathcal{R}) & f(y) & \rightarrow & C_{3}(y) \\
& g\left(C_{2}(x), C_{3}(y)\right) & \rightarrow & C_{4}(x, y) \\
& C_{4}(x, y) & \rightarrow & g(x, y) \\
\forall t, t^{\prime} \in \mathcal{T}(\mathcal{F}) \cdot t \rightarrow \mathcal{R} t^{\prime} & \longrightarrow t \rightarrow_{\phi(\mathcal{R})}^{*} t^{\prime}
\end{array}
$$

Main Result

Main Result

An over-approximation computed for $\phi(\mathcal{R})$ is also an over-approximation for \mathcal{R}

Dedicated completion algorithm (1)

Facts

- For each $I \rightarrow r \in \phi(\mathcal{R})$, I does not exceed a depth of 2

$$
g\left(C_{2}(x), C_{3}(y)\right) \rightarrow C_{4}(x, y)
$$

- Very close to a direct pattern-matching on transitions

$$
g\left(q_{g 1}, q_{f}\right) \rightarrow q_{g 2}
$$

- For this transition, the current matching algorithm computes all possible instances from $g\left(q_{g 1}, q_{f}\right)$

Can we reduce the substitution computation to a simple pattern-matching problem?

Dedicated completion algorithm (1)

Facts

- For each $I \rightarrow r \in \phi(\mathcal{R})$, I does not exceed a depth of 2

$$
g\left(C_{2}(x), C_{3}(y)\right) \rightarrow C_{4}(x, y)
$$

- Very close to a direct pattern-matching on transitions

$$
g\left(q_{g 1}, q_{f}\right) \rightarrow q_{g 2}
$$

- For this transition, the current matching algorithm computes all possible instances from $g\left(q_{g 1}, q_{f}\right)$

Can we reduce the substitution computation to a simple pattern-matching problem?

Dedicated completion algorithm (1)

Facts

- For each $I \rightarrow r \in \phi(\mathcal{R})$, I does not exceed a depth of 2

$$
g\left(C_{2}(x), C_{3}(y)\right) \rightarrow C_{4}(x, y)
$$

- Very close to a direct pattern-matching on transitions

$$
g\left(q_{g 1}, q_{f}\right) \rightarrow q_{g 2}
$$

- For this transition, the current matching algorithm computes all possible instances from $g\left(q_{g 1}, q_{f}\right)$

Can we reduce the substitution computation to a simple pattern-matching problem?

Dedicated completion algorithm (2)

a	\rightarrow	q_{a}			
b	\rightarrow	q_{b}			
c	\rightarrow	q_{c}	a		C_{1}
$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$	$g\left(C_{1}, x\right)$		\rightarrow
$C_{2}(x)$					
$f\left(q_{c}\right)$	\rightarrow	q_{f}	$f(y)$	\rightarrow	$C_{3}(y)$
$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$	$g\left(C_{2}(x), C_{3}(y)\right)$	\rightarrow	$C_{4}(x, y)$
$g\left(q_{b}, q_{c}\right)$	\rightarrow	$q_{g 2}$	$C_{4}(x, y)$	\rightarrow	$g(x, y)$
C_{1}	\rightarrow	q_{a}			
$C_{3}\left(q_{c}\right)$	\rightarrow	q_{f}			
$C_{2}\left(q_{b}\right)$	\rightarrow	$q_{g 1}$			

Dedicated completion algorithm (2)

a	\rightarrow	q_{a}			
b	\rightarrow	q_{b}			
c	\rightarrow	q_{c}	a		C_{1}
$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$	$g\left(C_{1}, x\right)$		\rightarrow
$C_{2}(x)$					
$f\left(q_{c}\right)$	\rightarrow	q_{f}	$f(y)$	\rightarrow	$C_{3}(y)$
$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$	$g\left(C_{2}(x), C_{3}(y)\right)$	\rightarrow	$C_{4}(x, y)$
$g\left(q_{b}, q_{c}\right)$	\rightarrow	$q_{g 2}$	$C_{4}(x, y)$	\rightarrow	$g(x, y)$
C_{1}	\rightarrow	q_{a}			
$C_{3}\left(q_{c}\right)$	\rightarrow	q_{f}			
$C_{2}\left(q_{b}\right)$	\rightarrow	$q_{g 1}$			

Dedicated completion algorithm (2)

a	\rightarrow	q_{a}
b	\rightarrow	q_{b}
c	\rightarrow	q_{c}
$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
$f\left(q_{c}\right)$	\rightarrow	q_{f}
$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$
$g\left(q_{b}, q_{c}\right)$	\rightarrow	$q_{g 2}$
C_{1}	\rightarrow	q_{a}
$C_{3}\left(q_{c}\right)$	\rightarrow	q_{f}
$C_{2}\left(q_{b}\right)$	\rightarrow	$q_{g 1}$

Dedicated completion algorithm (2)

a	\rightarrow	q_{a}
b	\rightarrow	q_{b}
c	\rightarrow	q_{c}
$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
$f\left(q_{c}\right)$	\rightarrow	q_{f}
$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$
$g\left(q_{b}, q_{c}\right)$	\rightarrow	$q_{g 2}$
C_{1}	\rightarrow	q_{a}
$C_{3}\left(q_{c}\right)$	\rightarrow	q_{f}
$C_{2}\left(q_{b}\right)$	\rightarrow	$q_{g 1}$

Dedicated completion algorithm (2)

a	\rightarrow	q_{a}	
b	\rightarrow	q_{b}	
c	\rightarrow	q_{c}	
$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$	
$f\left(q_{c}\right)$	\rightarrow	q_{f}	
$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$	
$g\left(q_{b}, q_{c}\right)$	\rightarrow	$q_{g 2}$	
C_{1}	\rightarrow	q_{a}	q_{a}
$C_{3}\left(q_{c}\right)$	\rightarrow	q_{f}	q_{b}
$C_{2}\left(q_{b}\right)$	\rightarrow	$q_{g 1}$	
q_{b}			

Dedicated completion algorithm (2)

a	\rightarrow	q_{a}
b	\rightarrow	q_{b}
c	\rightarrow	q_{c}
$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
$f\left(q_{c}\right)$	\rightarrow	q_{f}
$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$
$g\left(q_{b}, q_{c}\right)$	\rightarrow	$q_{g 2}$
$C_{1}($	\rightarrow	q_{a}
$C_{3}\left(q_{c}\right)$	\rightarrow	q_{f}
$C_{2}\left(q_{b}\right)$	\rightarrow	$q_{g 1}$

Dedicated completion algorithm (2)

a	\rightarrow	q_{a}
b	\rightarrow	q_{b}
c	\rightarrow	q_{c}
$g\left(q_{a}, q_{b}\right)$	\rightarrow	$q_{g 1}$
$f\left(q_{c}\right)$	\rightarrow	q_{f}
$g\left(q_{g 1}, q_{f}\right)$	\rightarrow	$q_{g 2}$
$g\left(q_{b}, q_{c}\right)$	\rightarrow	$q_{g 2}$
C_{1}		
$C_{3}\left(q_{c}\right)$	\rightarrow	q_{a}
$C_{2}\left(q_{b}\right)$	\rightarrow	$q_{g 1}$

Dedicated completion algorithm (3)

We want to do a completion step with the rule $g\left(C_{2}(x), C_{3}(y)\right) \rightarrow C_{4}(x, y)$.

The particular form of the rules allows us to replace the substitution calculus by associative pattern-matching

Dedicated completion algorithm (3)

We want to do a completion step with the rule $g\left(C_{2}(x), C_{3}(y)\right) \rightarrow C_{4}(x, y)$.

The particular form of the rules allows us to replace the substitution calculus by associative pattern-matching

Dedicated completion algorithm (3)

We want to do a completion step with the rule $g\left(C_{2}(x), C_{3}(y)\right) \rightarrow C_{4}(x, y)$.

The particular form of the rules allows us to replace the substitution calculus by associative pattern-matching

Dedicated completion algorithm (3)

We want to do a completion step with the rule $g\left(C_{2}(x), C_{3}(y)\right) \rightarrow C_{4}(x, y)$.

The particular form of the rules allows us to replace the substitution calculus by associative pattern-matching

Dedicated completion algorithm (3)

We want to do a completion step with the rule $g\left(C_{2}(x), C_{3}(y)\right) \rightarrow C_{4}(x, y)$.

The particular form of the rules allows us to replace the substitution calculus by associative pattern-matching

General schema of the implementation

The Tom language [RTA'07]: Piggybacking Rewriting on top of Java

- Efficient support for algebraic terms (hash-consing),
- Pattern-matching (AU theory, variadic operators),
- Expressive strategy language (à la ELAN, Stratego).

General schema of the implementation

The Tom language [RTA'07]: Piggybacking Rewriting on top of Java

- Efficient support for algebraic terms (hash-consing),
- Pattern-matching (AU theory, variadic operators),
- Expressive strategy language (à la ELAN, Stratego).

Generator of dedicated completion programs written in Tom

Experimental results

	NSPK protocol	View-Only protocol	Java program (chained lists)
TRS size (nb of rules)	13	15	303
Timbuk: Time (secs)	19.7	6420	37387
Tom: Time (secs)	5.9	150	303
Timbuk/Tom	3	40	120

Experimental results

	NSPK protocol	View-Only protocol	Java program (chained lists)
TRS size (nb of rules)	13	15	303
Timbuk: Time (secs)	19.7	6420	37387
Tom: Time (secs)	5.9	150	303
Timbuk/Tom	3	40	120

In practice, conclusive analyses with Timbuk are also conclusive with Tom

Conclusion

Main results:

- Definition of a reachability preserving transformation on TRS
- Computations of over-approximations using associative pattern-matching
- Implementation in Tom/Java
- A factor 10 in general, and up to 100 on Java examples

Future work:

- Verification of MIDlets
- A better control of approximations
- Using threads to parallelize the completion procedure

Conclusion

Main results:

- Definition of a reachability preserving transformation on TRS
- Computations of over-approximations using associative pattern-matching
- Implementation in Tom/Java
- A factor 10 in general, and up to 100 on Java examples

Future work:

- Verification of MIDlets
- A better control of approximations
- Using threads to parallelize the completion procedure

