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Introdution : historial motivations

Learnability of natural languages and other things� in the 1960ies : ontroversies about natural language aquisition� �behaviorists� onsider the mind as a blak box : learningresults from onditionning (stimulus-response)� Chomsky argues about the poverty of the (linguisti) stimulus� he onludes there exists an innate human apability to aquireformal grammars� �rst researhs in the domain of indutive inferene : how is itpossible to ontinue a sequene like 0, 2, 4, 6... ? (Solomono�,Kolmogorov...)

=⇒ need to formalize the notion of learnability
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The learnability aording to Gold

General requirements for NL learning� inputs : syntatially orret sentenes (and inorret ones ?)belonging to a language� target : a formal grammar generating this language� learnability onerns lasses of grammars and not a single one� a lass is learnable if there exists a learning algorithm to identifyany of its members� the learning proess is a never-ending one :
e1 e2 e3 e4 e5 ...
↓ ↓ ↓ ↓ ↓ ...

G1 G2 G3 G4 G5 ...



The learnability aording to Gold

Learnability �in the limit� from positive examples model (Gold 67)� G : a lass (set) of grammars� L(G) denotes the language of strings/strutures of G ∈ G� the learner algorithm φ learns G if :� ∀G ∈ G� ∀{ei}i∈N with L(G) = {ei}i∈N

∃G′ ∈ G with L(G′) = L(G)

∃n0 ∈ N : ∀n > n0 φ({e1, . . . , en}) = G′ ∈ G� G is learnable in the limit if there exists φ that learns G� if no suh algorithm exists, G is not learnable



The learnability aording to Gold

First results� with positive and negative examples : every reursively enumerablelass is learnable with a stupid enumeration algorithm� with positive examples only : if a lass generates every �nitelanguage plus at least an in�nite one, it is not learnable� example : let Σ = {a}� the set of every �nite language on Σ is L� the target lass is L ∪ {a∗}� let a sequene of examples : aaa, a, aaaaaaaaaaa, a, aa,...� if the algorithm hooses the generator of a �nite language, itwill never �nd a∗� if the algorithm hooses a∗, it may overgeneralize but will neverreeive a ounterexample

=⇒ L∪ {a∗} is not learnable from positive examples



The learnability aording to Gold

Problems and heritage of Gold's de�nition� a lass an be proved learnable without expliitely providing alearning algorithm (a default enumerating one is enough)� no omplexity riterion is required for the learning proess� diret onsequene of the �rst result : none of the lass in theChomsky hierarhy is learnable from positive examples� negleted for a time, Gold's de�nition revived in the 80ies� interesting new results inlude :� the de�nition of learnable lasses of grammars transversal tothe Chomsky hierarhy : Angluin 80, Kanazawa 98� the de�nition of original learning algorithms



The learnability aording to Gold

The main two possible strategies� available data : a set of positive examples, the target lass� learning by generalization :� build a least general grammar generating the examples� apply a generalization operator until it belongs to the targetlass� learning by speialization :� the initial hypothesis spae is the whole target lass� use the examples to onstrain this spae until it is reduedto one grammar
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Categorial Grammars and their properties

De�nition of a AB-Categorial Grammar� a �nite voabulary : Σ = {John, runs, fast, a, man}� a set of basi ategories among whih is the axiom S :

B = {S, T, CN} (T for �term�, CN for �ommon noun�)� the set of available ategories is the set of oriented fration overategories : T\S, (S/(T\S))/CN...� a Categorial Grammar is set of assoiations (word,ategory) :

word ategoryJohn Truns T\Sfast (T\S)\(T\S)man CNa (S/(T\S))/CN



Categorial Grammars and their properties

Language of a AB-Categorial Grammar� Syntati rules are expressed by two shemes : ∀A, B ∈ Cat(B)� Forward Appliation FA : A/B B −→ A� Bakward Appliation BA : B B\A −→ A� a string of words is syntatially orret if a orrespondingsequene of ategories redues to S

Example

S

BA

TJohn T\Sruns
S

FA

S/(T\S)

FA

(S/(T\S))/CNa CNman
T\Sruns



Categorial Grammars and their properties

AB-Categorial Grammars are well adapted to natural languages(Oehrle, Bah & Wheeler 88) beause :� they are lexialized� they have a good expressivity : ǫ-free ontext-free languages(Bar-Hillel, Gaifman, Shamir 60)� they an be ompositionally linked with formal semantis(Montague 74, Moortgat 88) :� a morphism h transforms eah syntati ategory into asemanti type� a translation funtion assoiates to eah ouple (word,ategory) a logial formula of the right type� eah syntati sheme of rule is transformed into a semantiomposition rule



Categorial Grammars and their properties� elementary types : t (type of truth values) and e (type of entities)� h(S) = t, h(T ) = e, h(CN) = 〈e, t〉 (one-plae prediate)� for any ategory A, B : h(A/B) = h(B\A) = 〈h(B), h(A)〉� eah ouple (word, ategorie) is translated into a logial formula

S

BA

TJohn T\Sruns



Categorial Grammars and their properties� elementary types : t (type of truth values) and e (type of entities)� h(S) = t, h(T ) = e, h(CN) = 〈e, t〉 (one-plae prediate)� for any ategory A, B : h(A/B) = h(B\A) = 〈h(B), h(A)〉� eah ouple (word, ategorie) is translated into a logial formula

S

BA

TJohn T\Sruns
run〈e,t〉(Johne)

BA

Johne
run〈e,t〉



Categorial Grammars and their properties� elementary types : t (type of truth values) and e (type of entities)� h(S) = t, h(T ) = e, h(CN) = 〈e, t〉 (one-plae prediate)� for any ategory A, B : h(A/B) = h(B\A) = 〈h(B), h(A)〉� eah ouple (word, ategorie) is translated into a logial formula

S

BA

TJohn T\Sruns
run〈e,t〉(Johne)

BA

Johne
run〈e,t〉

S

FA

S/(T\S)

FA

(S/(T\S))/CNa CNman

T\Sruns
∃x[man〈e,t〉(x) ∧ run〈e,t〉(x)]

FA

λQ〈e,t〉∃x[man〈e,t〉(x) ∧ Q(x)]

FA

λP 〈e,t〉λQ〈e,t〉∃x[P (x) ∧ Q(x)] man〈e,t〉

run〈e,t〉



Categorial Grammars and their properties

Links with Reursive Automata (Tellier06)� A RA is like a Finite State Automaton exept that transitions anbe labelled by a state� Using a transition labelled by a state Q means produing w ∈ L(Q)� There are two distint kinds of RA :� the RAFA-kind where the language L(Q) of a state Q is theset of strings from Q to the �nal state� Every unidiret. FA CG is strongly equivalent with a RAFA� the RABA-kind where the language L(Q) of a state Q is theset of strings from the initial state to Q� Every unidiret. BA CG is strongly equivalent with a RABA� Every CG is equivalent with a pair MRA = 〈RAFA, RAFA〉



T

S T\S F (T\S)\(T\S)

S/(T\S) CN

S/(T\S)

JohnT
T\Sruns (T\S)\(T\S)fasta

(S/(T\S))/CN

man CN
CN (T\S)\(T\S)

I T S

(S/(T\S))/CN T\S

manCN
T

John
T\S

runsruns T\Sa(S/(T\S)/CN

fast (T\S)\(T\S)

(T\S)\(T\S)
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Learning CG by generalization

The BP (Buskowsky-Penn) algorithm� target lass : rigid CG, available data : strutural examples

BA

John runs

FA

FA

a man
runs

� algorithm :1. introdue S at the root and a distint variable at eahargument node2. indue the other intermediate labels3. ollet the variable(s) assoiated with eah word4. try to unify them if there are several



Learning CG by generalization

The BP (Buskowsky-Penn) algorithmstep 1 : introdue S at the root and a distint variable at eahargument node
S

BA

x1John runs
S

FA

FA

a x2man

x3runs



Learning CG by generalization

The BP (Buskowsky-Penn) algorithmstep 2 : indue the other intermediate labels

S

BA

x1John x1\Sruns
S

FA

S/x3
FA

(S/x3)/x2a x2man

x3runs



Learning CG by generalization

The BP (Buskowsky-Penn) algorithmstep 3 : ollet the variable(s) assoiated with eah word

S

BA

x1John x1\Sruns
S

FA

S/x3
FA

(S/x3)/x2a x2man

x3runs

word ategoryJohn x1runs x1\S, x3man x2a (S/x3)/x2



Learning CG by generalization

The BP (Buskowsky-Penn) algorithmstep 4 : Try to unify them if there are several

S

BA

x1John x1\Sruns
S

FA

S/x3
FA

(S/x3)/x2a x2man

x3runs

word ategoryJohn x1runs x1\S = x3man x2a (S/(x1\S))/x2



Learning CG by generalization

General results� this algorithm learns the lass of rigid CGs from positivestrutural examples (Kanazawa 96, 98)� it is linear in time, inremental...� extensions are possible to learn� from strings (at the prie of a ombinatorial explosion)� the lass of CG assigning at most n ategory with eah word(at the prie of a ombinatorial explosion)� strutural examples an be seen as oming from semantiinformation (Tellier 98)� unifying variables an be seen as state and/or transition merges inthe orresponding MRA (Tellier 06)



Learning CG by generalization

The BP (Buskowsky-Penn) algorithm : the very idea

BAJohn runs
FA

FAa manruns CG

⊥



Learning CG by generalization

Grammar spei�ed by introduing variables

BAJohn runs
FA

FAa manruns G CG

⊥



Learning CG by generalization

Sublass in whih we searh for the target

BAJohn runs
FA

FAa manruns G CG

⊥



Learning CG by generalization

Resulting grammar after uni�ation
BAJohn runs
FA

FAa manruns G CG

⊥

+
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Learning CG by speialization

Algorithm (Moreau 04)� target lass : rigid CG, available data : strings� algorithm :1. assoiate a distint unique variable with eah word2. for eah sentene do� try to parse the sentene (CYK-like algorithm)� indue onstraints on the variables3. output : (disjuntions of) set(s) of onstraints, eah setorresponding with a (set of) rigid grammar(s)



Learning CG by speialization

Algorithm (Moreau 04)� input data : The set D = {John runs, a man runs fast}� assoiate a distint unique variable with eah word :

A = {〈John, x1〉, 〈runs, x2〉, 〈a, x3〉, 〈man, x4〉, 〈fast, x5〉}� for every rigid CG G, there exists a substitution from A to G� A spei�es the set of every rigid CGs� A an also be represented by a MRA = 〈RAFA, RABA〉 :

x1 x2

F

x3 x5

x4

John runsaman fast x1 x2

I

x3 x5

x4

John runsaman fast



Learning CG by speialization

Algorithm (Moreau 04)� the only two possible ways to parse �John runs� :

S

FA

x1 = S/x2John x2runs
S

BA

x1John x2 = x1\Sruns� to parse �a man runs fast� :� theoretially : 5 ∗ 23 = 40 distint possible ways� but some ouples of onstraints are not ompatible with thelass of rigid grammars� mainly operates state splits on the MRA� main problem with this algo : ombinatorial explosion� to limit it : initial knowledge in the form of known assignments



Learning CG by speialization

Learning From Typed Examples (Dudau, Tellier &Tommasi 01)� ognitive hypothesis : lexial semantis is learned before syntax� formalization : words are given with their (Montagovian) semantitype� types derive from ategories by a homomorphism� reall : h(T ) = e, h(S) = t, h(CN) = 〈e, t〉 and

h(A/B) = h(B\A) = 〈h(B), h(A)〉� input data : typed sentenes are of the formJohn runs

e 〈e, t〉

a man runs fast

〈〈e, t〉, 〈〈e, t〉, t〉〉 〈e, t〉 〈e, t〉 〈〈e, t〉, 〈e, t〉〉



Learning CG by speialization

Learning From Typed Examples (Dudau, Tellier &Tommasi 01)� target lass : the set of CGs suh that every distint ategoryassigned to the same word gives a distint type� ∀〈v, C1〉, 〈v, C2〉 ∈ G, C1 6= C2 =⇒ h(C1) 6= h(C2)� Theorem (Dudau, Tellier & Tommasi 03) : for everyCF-language, there exists G, h satisfying this ondition� learning algorithm (Dudau, Tellier &Tommasi 01)1. introdue variables to represent the lass2. for eah sentene� try to parse the sentene (CYK-like)� indue onstraints on the variables3. output : (disjuntions) of set(s) of ontraint(s), eah beingrepresented by a least general grammar



Learning CG by speialization

Learning From Typed Examples (Dudau, Tellier &Tommasi 01)step 1 : introdue variables to represent the lass : a distint one whosepossible values are / or \ in front of every subtypeJohn runs
e x1〈e, t〉a man runs fast

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x6〈e, t〉 x1〈e, t〉 x7〈x8〈e, t〉, x9〈e, t〉〉



Learning CG by speializationstep 2 : for eah sentene, try to parse and indue onstraints

t

FA : x1 = \

eJohn x1〈e, t〉runs
t

FA : x4 = /

x5 = x9

x4〈x5〈e, t〉, t〉

FA : x2 = /

x3 = x6

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉a x6〈e, t〉man
x9〈e, t〉

BA : x7 = \

x8 = x1

x1〈e, t〉runs x7〈x8〈e, t〉, x9〈e, t〉〉fast



e\t e

t x5〈e, t〉 F (e\t)\x5〈e, t〉

t/x5〈e, t〉 x3〈e, t〉

t/(x5〈e, t〉)

Johne

x5〈e, t〉

e\t

runs

(e\t)\(x5〈e, t〉)fast

a(t/x5〈e, t〉)/x3〈e, t〉

man x3〈e, t〉

x3〈e, t〉 (e\t)\x5〈e, t〉

I e t

(t/(x5〈e, t〉))/x3〈e, t〉 e\t x5〈e, t〉

manx3〈e, t〉
e

John
e\t

runs

runse\ta(t/x5〈e, t〉)/x3〈e, t〉

fast (e\t)\(x5〈e, t〉)

(e\t)\x5〈e, t〉

fast



Learning CG by speialization

Sum-up� ombination of state splits (x1 = \) and state merges (x3 = x6)� types ontain in themselves where splits are possible� not every (omplex) state an be merged : only those that areuni�able in the sense of (Coste & alii 2004)� types redue the ombinatorial explosion of possible splits andhelp to onverge to the orret solution quiker� the starting point is either a lower ound or an upper bound of thetarget (linked to it by a morphism)voabulary Moreau's initial target ategory pre-treated typeassigmentJohn x1 T ea x2 (S/(T\S))/CN x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉man x3 CN x6〈e, t〉runs x4 T\S x1〈e, t〉



Learning CG by speialization

Learning from Typed Examples : the very idea

John runs

e 〈e, t〉a man runs

〈〈e, t〉, 〈〈e, t〉, t〉〉 〈e, t〉 〈e, t〉



Learning CG by speialization

Learning from Typed Examples : introdue variables

John runs

e x1〈e, t〉a man runs

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x6〈e, t〉 x1〈e, t〉



Learning CG by speialization

Constraint learned : x1 = \

John runs

e \〈e, t〉a man runs

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x6〈e, t〉 \〈e, t〉



Learning CG by speialization

Constraint learned : x2 = /, x3 = x6

John runs

e \〈e, t〉a man runs

/〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x3〈e, t〉 \〈e, t〉



Learning CG by speialization

Constraint learned : x4 = /, x5 = x1 = \

John runs

e \〈e, t〉a man runs

/〈x3〈e, t〉, /〈/〈e, t〉, t〉〉 x3〈e, t〉 \〈e, t〉



Learning CG by speialization

Output : the least general grammar in the set

John runs

e \〈e, t〉a man runs

/〈x3〈e, t〉, /〈/〈e, t〉, t〉〉 x3〈e, t〉 \〈e, t〉

+



Learning CG by speialization

Sum-up� learnability from typed data �in the limit� assured in the newsublass� good properties of the new sublass� types an be onsidered as lexial semanti information� the set of possible grammars dereases while the resultinggrammar(s) generalize(s)
=⇒ strategy oherent with natural language learning� a prototype has been implemented and tested on real data
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Conlusion

General ritis on the approah� Gold's riterion too rudimentary� strong ognitive asumptions about symboli internalrepresentations (not realisti)� formal approahes are too sensistive to �noises� (errors,mistakes...)� mainly theoretial results (algorithms not tratable)

Main ahievements� onnexion established between various domains, pluridisiplinarity� formalizes the onditions of possibility of learning� semantis onsidered as providing strutures� for generalization : in the form of strutural examples� for speialization : in the form of strutural lexial types
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