Introduction à l'inférence grammaticale

Isabelle Tellier

LIFO, Université d'Orléans

Outline

- 1. Introduction : historical motivations
- 2. The learnability according to Gold
- 3. Categorial Grammars and their properties
- 4. Learning CG by generalization
- 5. Learning CG by specialization
- 6. Conclusion

Learnability of natural languages and other things

- in the 1960ies : controversies about natural language acquisition
 - "behaviorists" consider the mind as a black box : learning results from conditionning (stimulus-response)
 - Chomsky argues about the poverty of the (linguistic) stimulus
 - he concludes there exists an innate human capability to acquire formal grammars
- first researchs in the domain of inductive inference : how is it possible to continue a sequence like 0, 2, 4, 6...? (Solomonoff, Kolmogorov...)
- \implies need to formalize the notion of learnability

Outline

- 1. Introduction : historical motivations
- 2. The learnability according to Gold
- 3. Categorial Grammars and their properties
- 4. Learning CG by generalization
- 5. Learning CG by specialization
- 6. Conclusion

General requirements for NL learning

- inputs : syntactically correct sentences (and incorrect ones?)
 belonging to a language
- target : a formal grammar generating this language
- learnability concerns classes of grammars and not a single one
- a class is learnable if there exists a learning algorithm to identify any of its members
- the learning process is a never-ending one :

$$e_1 \quad e_2 \quad e_3 \quad e_4 \quad e_5 \quad \dots$$
$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \dots$$
$$G_1 \quad G_2 \quad G_3 \quad G_4 \quad G_5 \quad \dots$$

Learnability "in the limit" from positive examples model (Gold 67)

- ${\cal G}$: a class (set) of grammars
- L(G) denotes the language of strings/structures of $G \in \mathcal{G}$
- the learner algorithm ϕ learns ${\cal G}$ if :
 - $\ \forall G \in \mathcal{G}$
 - $\forall \{e_i\}_{i \in \mathbb{N}}$ with $L(G) = \{e_i\}_{i \in \mathbb{N}}$
 - $\exists G' \in \mathcal{G} \text{ with } L(G') = L(G)$
 - $\exists n_0 \in \mathbb{N} : \forall n > n_0 \ \phi(\{e_1, \dots, e_n\}) = G' \in \mathcal{G}$
- ${\cal G}$ is learnable in the limit if there exists ϕ that learns ${\cal G}$
- if no such algorithm exists, ${\cal G}$ is not learnable

First results

- with positive and negative examples : every recursively enumerable class is learnable with a stupid enumeration algorithm
- with positive examples only : if a class generates every finite language plus at least an infinite one, it is not learnable
- example : let $\Sigma = \{a\}$
 - the set of every finite language on Σ is ${\cal L}$
 - the target class is $\mathcal{L} \cup \{a^*\}$
 - let a sequence of examples : *aaa*, *a*, *aaaaaaaaaaa*, *a*, *aa*,...
 - if the algorithm chooses the generator of a finite language, it will never find a^*
 - if the algorithm chooses a^* , it may overgeneralize but will never receive a counterexample
 - $\implies \mathcal{L} \cup \{a^*\}$ is not learnable from positive examples

Problems and heritage of Gold's definition

- a class can be proved learnable without explicitly providing a learning algorithm (a default enumerating one is enough)
- no complexity criterion is required for the learning process
- direct consequence of the first result : none of the class in the Chomsky hierarchy is learnable from positive examples
- neglected for a time, Gold's definition revived in the 80ies
- interesting new results include :
 - the definition of learnable classes of grammars transversal to the Chomsky hierarchy : Angluin 80, Kanazawa 98
 - the definition of original learning algorithms

The main two possible strategies

- available data : a set of positive examples, the target class
- learning by generalization :
 - build a least general grammar generating the examples
 - apply a generalization operator until it belongs to the target class
- learning by specialization :
 - the initial hypothesis space is the whole target class
 - use the examples to constrain this space until it is reduced to one grammar

Outline

- 1. Introduction : historical motivations
- 2. The learnability according to Gold
- 3. Categorial Grammars and their properties
- 4. Learning CG by generalization
- 5. Learning CG by specialization
- 6. Conclusion

Definition of a AB-Categorial Grammar

- a finite vocabulary : $\Sigma = \{ John, runs, fast, a, man \}$
- a set of basic categories among which is the axiom S : $\mathcal{B} = \{S, T, CN\}$ (*T* for "term", *CN* for "common noun")
- the set of available categories is the set of oriented fraction over categories : $T \setminus S$, $(S/(T \setminus S))/CN...$
- a Categorial Grammar is set of associations (word, category) :

word	category
John	T
runs	Tackslash S
fast	$(T \backslash S) \backslash (T \backslash S)$
man	CN
а	$(S/(T \setminus S))/CN$

Language of a AB-Categorial Grammar

- Syntactic rules are expressed by two schemes : $\forall A, B \in Cat(\mathcal{B})$
 - Forward Application $FA : A/B \to A$
 - Backward Application $BA : B B \setminus A \longrightarrow A$
- a string of words is syntactically correct if a corresponding sequence of categories reduces to ${\cal S}$

AB-Categorial Grammars are well adapted to natural languages (Oehrle, Bach & Wheeler 88) because :

- they are lexicalized
- they have a good expressivity : ϵ -free context-free languages (Bar-Hillel, Gaifman, Shamir 60)
- they can be compositionally linked with formal semantics (Montague 74, Moortgat 88) :
 - a morphism h transforms each syntactic category into a semantic type
 - a translation function associates to each couple (word, category) a logical formula of the right type
 - each syntactic scheme of rule is transformed into a semantic composition rule

Categorial Grammars and their properties

- elementary types : t (type of truth values) and e (type of entities)
- h(S) = t, h(T) = e, $h(CN) = \langle e, t \rangle$ (one-place predicate)
- for any category $A, B : h(A/B) = h(B \setminus A) = \langle h(B), h(A) \rangle$
- each couple (word, categorie) is translated into a logical formula

Categorial Grammars and their properties

- elementary types : t (type of truth values) and e (type of entities)
- h(S) = t, h(T) = e, $h(CN) = \langle e, t \rangle$ (one-place predicate)
- for any category $A, B : h(A/B) = h(B \setminus A) = \langle h(B), h(A) \rangle$
- each couple (word, categorie) is translated into a logical formula

Categorial Grammars and their properties

- elementary types : t (type of truth values) and e (type of entities)
- h(S) = t, h(T) = e, $h(CN) = \langle e, t \rangle$ (one-place predicate)
- for any category $A, B : h(A/B) = h(B \setminus A) = \langle h(B), h(A) \rangle$
- each couple (word, categorie) is translated into a logical formula

Links with Recursive Automata (Tellier06)

- A RA is like a Finite State Automaton except that transitions can be labelled by a state
- Using a transition labelled by a state Q means producing $w \in L(Q)$
- There are two distinct kinds of RA :
 - the RA_{FA} -kind where the language L(Q) of a state Q is the set of strings from Q to the final state
 - Every unidirect. FA CG is strongly equivalent with a RA_{FA}
 - the RA_{BA} -kind where the language L(Q) of a state Q is the set of strings from the initial state to Q
 - Every unidirect. BA CG is strongly equivalent with a RA_{BA}
- Every CG is equivalent with a pair $MRA = \langle RA_{FA}, RA_{FA} \rangle$

Outline

- 1. Introduction : historical motivations
- 2. The learnability according to Gold
- 3. Categorial Grammars and their properties
- 4. Learning CG by generalization
- 5. Learning CG by specialization
- 6. Conclusion

The BP (Buskowsky-Penn) algorithm

- target class : rigid CG, available data : strutural examples

– algorithm :

- 1. introduce S at the root and a distinct variable at each argument node
- 2. induce the other intermediate labels
- 3. collect the variable(s) associated with each word
- 4. try to unify them if there are several

The BP (Buskowsky-Penn) algorithm

step 1 : introduce ${\cal S}$ at the root and a distinct variable at each argument node

The BP (Buskowsky-Penn) algorithm step 2 : induce the other intermediate labels

The BP (Buskowsky-Penn) algorithm

step 3 : collect the variable(s) associated with each word

The BP (Buskowsky-Penn) algorithm step 4 : Try to unify them if there are several

word	category
John	x_1
runs	$x_1 \backslash S = x_3$
man	x_2
а	$(S/(x_1 \backslash S))/x_2$

General results

- this algorithm learns the class of rigid CGs from positive structural examples (Kanazawa 96, 98)
- it is linear in time, incremental...
- extensions are possible to learn
 - from strings (at the price of a combinatorial explosion)
 - the class of CG assigning at most n category with each word (at the price of a combinatorial explosion)
- structural examples can be seen as coming from semantic information (Tellier 98)
- unifying variables can be seen as state and/or transition merges in the corresponding MRA (Tellier 06)

The BP (Buskowsky-Penn) algorithm : the very idea

Grammar specified by introducing variables

Subclass in which we search for the target

Resulting grammar after unification

Outline

- 1. Introduction : historical motivations
- 2. The learnability according to Gold
- 3. Categorial Grammars and their properties
- 4. Learning CG by generalization
- 5. Learning CG by specialization
- 6. Conclusion

Algorithm (Moreau 04)

- target class : rigid CG, available data : strings
- algorithm :
 - 1. associate a distinct unique variable with each word
 - 2. for each sentence do
 - try to parse the sentence (CYK-like algorithm)
 - induce constraints on the variables
 - 3. output : (disjunctions of) set(s) of constraints, each set corresponding with a (set of) rigid grammar(s)

Algorithm (Moreau 04)

- input data : The set $D = \{$ John runs, a man runs fast $\}$
- associate a distinct unique variable with each word :
 - $\mathcal{A} = \{ \langle \text{John}, x_1 \rangle, \langle \text{runs}, x_2 \rangle, \langle a, x_3 \rangle, \langle \text{man}, x_4 \rangle, \langle \text{fast}, x_5 \rangle \}$
- for every rigid CG G, there exists a substitution from ${\cal A}$ to G
- \mathcal{A} specifies the set of every rigid CGs
- ${\cal A}$ can also be represented by a ${\it MRA} = \langle {\it RA}_{\it FA}, {\it RA}_{\it BA} \rangle$:

Algorithm (Moreau 04)

- the only two possible ways to parse "John runs" :

– to parse "a man runs fast" :

- theoretically : $5 * 2^3 = 40$ distinct possible ways
- but some couples of constraints are not compatible with the class of rigid grammars
- mainly operates state splits on the MRA
- main problem with this algo : combinatorial explosion
- to limit it : initial knowledge in the form of known assignments

Learning From Typed Examples (Dudau, Tellier & Tommasi 01)

- cognitive hypothesis : lexical semantics is learned before syntax
- formalization : words are given with their (Montagovian) semantic type
- types derive from categories by a homomorphism
- recall : h(T) = e, h(S) = t, $h(CN) = \langle e, t \rangle$ and $h(A/B) = h(B \setminus A) = \langle h(B), h(A) \rangle$
- input data : typed sentences are of the form

John	runs	а	man	runs	fast
e	$\langle e,t angle$	$\langle \langle e,t \rangle, \langle \langle e,t \rangle,t \rangle \rangle$	$\langle e,t angle$	$\langle e,t angle$	$\langle \langle e,t \rangle, \langle e,t \rangle \rangle$

Learning From Typed Examples (Dudau, Tellier & Tommasi 01)

- target class : the set of CGs such that every distinct category assigned to the same word gives a distinct type
- $\forall \langle v, C_1 \rangle, \langle v, C_2 \rangle \in G, \ C_1 \neq C_2 \Longrightarrow h(C_1) \neq h(C_2)$
- Theorem (Dudau, Tellier & Tommasi 03) : for every CF-language, there exists G, h satisfying this condition
- learning algorithm (Dudau, Tellier & Tommasi 01)
 - 1. introduce variables to represent the class
 - 2. for each sentence
 - try to parse the sentence (CYK-like)
 - induce constraints on the variables
 - output : (disjunctions) of set(s) of contraint(s), each being represented by a least general grammar

Learning From Typed Examples (Dudau, Tellier & Tommasi 01)

step 1 : introduce variables to represent the class : a distinct one whose possible values are / or \setminus in front of every subtype

John	runs				
е	$x_1\langle e,t\rangle$				
	а		man	runs	fast
$x_2\langle x_3\langle$	$\langle e,t angle, x_4\langle x$	$_{5}\langle e,t angle ,t angle angle$	$x_6 \langle e, t \rangle$	$x_1 \langle e, t \rangle$	$x_7 \langle x_8 \langle e, t \rangle, x_9 \langle e, t \rangle \rangle$

step 2 : for each sentence, try to parse and induce constraints

Sum-up

- combination of state splits $(x_1 = \setminus)$ and state merges $(x_3 = x_6)$
- types contain in themselves where splits are possible
- not every (complex) state can be merged : only those that are unifiable in the sense of (Coste & alii 2004)
- types reduce the combinatorial explosion of possible splits and help to converge to the correct solution quicker
- the starting point is either a lower ound or an upper bound of the target (linked to it by a morphism)

vocabulary	Moreau's initial	target category	pre-treated type
	assigment		
John	x_1	T	е
а	<i>x</i> 2	$(S/(T \setminus S))/CN$	$x_2\langle x_3\langle e,t angle, x_4\langle x_5\langle e,t angle, t angle angle$
man	x3	CN	$x_{6}\langle e,t angle$
runs	x_{4}	$T \backslash S$	$x_1\langle e,t angle$

Learning from Typed Examples : the very idea

Learning from Typed Examples : introduce variables

Constraint learned : $x_1 = \setminus$

Constraint learned : $x_2 = /, x_3 = x_6$

Constraint learned : $x_4 = /, x_5 = x_1 = \setminus$

Output : the least general grammar in the set

Sum-up

- learnability from typed data "in the limit" assured in the new subclass
- good properties of the new subclass
- types can be considered as lexical semantic information
- the set of possible grammars decreases while the resulting grammar(s) generalize(s)
 - \implies strategy coherent with natural language learning
- a prototype has been implemented and tested on real data

Outline

- 1. Introduction : historical motivations
- 2. The learnability according to Gold
- 3. Categorial Grammars and their properties
- 4. Learning CG by generalization
- 5. Learning CG by specialization
- 6. Conclusion

General critics on the approach

- Gold's criterion too rudimentary
- strong cognitive asumptions about symbolic internal representations (not realistic)
- formal approaches are too sensistive to "noises" (errors, mistakes…)
- mainly theoretical results (algorithms not tractable)

Main achievements

- connexion established between various domains, pluridisciplinarity
- formalizes the conditions of possibility of learning
- semantics considered as providing structures
 - for generalization : in the form of structural examples
 - for specialization : in the form of structural lexical types