Introduction a l'inference grammaticale

Isabelle Tellier

LIFO, Universite d’'Orléans

Outline

o o W N

. Introduction : historical motivations

The learnability according to Gold
Categorial Grammars and their properties
Learning CG by generalization

Learning CG by specialization

Conclusion

Introduction : historical motivations

LLearnability of natural languages and other things

— in the 1960ies : controversies about natural language acquisition
— “behaviorists” consider the mind as a black box : learning
results from conditionning (stimulus-response)
— Chomsky argues about the poverty of the (linguistic) stimulus

— he concludes there exists an innate human capability to acquire
formal grammars

— first researchs in the domain of inductive inference : how is it

possible to continue a sequence like 0, 2, 4, 6... 7 (Solomonoff,
Kolmogorov...)

—— need to formalize the notion of learnability

Outline

o o & W N

. Introduction : historical motivations

The learnability according to Gold
Categorial Grammars and their properties
Learning CG by generalization

Learning CG by specialization

Conclusion

T he learnability according to Gold

General requirements for NL learning

inputs : syntactically correct sentences (and incorrect ones?)
belonging to a language

target : a formal grammar generating this language
learnability concerns classes of grammars and not a single one

a class is learnable if there exists a learning algorithm to identify

any of its members

the learning process is a never-ending one
€1 € €3 €4 €5
Ll
Gi1 G Gz Gy Gs

T he learnability according to Gold

Learnability “in the limit" from positive examples model (Gold 67)

— G : a class (set) of grammars
— L(G) denotes the language of strings/structures of G € G

— the learner algorithm ¢ learns G if :
- VG eg
— V{ei}tien With L(G) = {e; }ien
3G’ € G with L(G") = L(G)
dng € N :Vn >ng ¢({e1,...,en}) =G €¢G
— G Is learnable in the limit if there exists ¢ that learns ¢

— if no such algorithm exists, ¢ is not learnable

T he learnability according to Gold

First results

— with positive and negative examples : every recursively enumerable
class is learnable with a stupid enumeration algorithm

— with positive examples only : if a class generates every finite
language plus at least an infinite one, it is not learnable
— example : let > = {a}
— the set of every finite language on > is L
— the target class is LU {a*}
— let a sequence of examples : aaa, a, acaaaaaaaaa, a, aa,...
— if the algorithm chooses the generator of a finite language, it
will never find a*
— if the algorithm chooses a*, it may overgeneralize but will never
receive a counterexample
— L U{a™} is not learnable from positive examples

T he learnability according to Gold

Problems and heritage of Gold’'s definition

— a class can be proved learnable without explicitely providing a
learning algorithm (a default enumerating one is enough)

— Nno complexity criterion is required for the learning process

— direct consequence of the first result : none of the class in the
Chomsky hierarchy is learnable from positive examples

— neglected for a time, Gold’s definition revived in the 80ies

— interesting new results include :
— the definition of learnable classes of grammars transversal to
the Chomsky hierarchy : Angluin 80, Kanazawa 98
— the definition of original learning algorithms

T he learnability according to Gold

The main two possible strategies

— available data : a set of positive examples, the target class
— learning by generalization :
— build a least general grammar generating the examples

— apply a generalization operator until it belongs to the target
class

— learning by specialization :
— the initial hypothesis space is the whole target class

— use the examples to constrain this space until it is reduced
to one grammar

Outline

o o & W N

. Introduction : historical motivations

The learnability according to Gold
Categorial Grammars and their properties
Learning CG by generalization

Learning CG by specialization

Conclusion

Categorial Grammars and their properties

Definition of a AB-Categorial Grammar

— a finite vocabulary : > = {John, runs, fast, a, man}

— a set of basic categories among which is the axiom S :
B={S,T,CN} (T for “term”, CN for “common noun”

— the set of available categories is the set of oriented fraction over
categories : T\ S, (S/(T\S))/CN...

— a Categorial Grammar is set of associations (word,category) :

word category
John T
runs T\S
fast (T\S)\(T\S)
man CN

a | (S/(T\S))/CN

Categorial Grammars and their properties

Language of a AB-Categorial Grammar

— Syntactic rules are expressed by two schemes : VA, B € Cat(B)
— Forward Application FA : A/B B— A
— Backward Application BA : B B\A — A

— a string of words is syntactically correct if a corresponding
sequence of categories reduces to S

Example

S S
BA

/ N\ / N\

T T\S S/(T\S) T\S

John runs FA runs

(S/(T\S))/CN CN
a man

Categorial Grammars and their properties

AB-Categorial Grammars are well adapted to natural languages
(Oehrle, Bach & Wheeler 88) because :

— they are lexicalized

— they have a good expressivity : e-free context-free languages
(Bar-Hillel, Gaifman, Shamir 60)

— they can be compositionally linked with formal semantics

(Montague 74, Moortgat 88) :
— a morphism h transforms each syntactic category into a

semantic type
— a translation function associates to each couple (word,

category) a logical formula of the right type
— each syntactic scheme of rule is transformed into a semantic

composition rule

Categorial Grammars and their properties

elementary types : t (type of truth values) and e (type of entities)
h(S)=t, h(T) =e¢, h(CN) = (e, t) (one-place predicate)

for any category A, B : h(A/B) = h(B\A) = (h(B),h(A))

each couple (word, categorie) is translated into a logical formula

S
BA

/ N\

T T\S
John runs

Categorial Grammars and their properties

elementary types : t (type of truth values) and e (type of entities)
h(S)=t, h(T) =e¢, h(CN) = (e, t) (one-place predicate)

for any category A, B : h(A/B) = h(B\A) = (h(B),h(A))

each couple (word, categorie) is translated into a logical formula

S U, t>(Johne)
BA
, . / O\
\ Johne run (e,t)

John runs

Categorial Grammars and their properties

elementary types : t (type of truth values) and e (type of entities)
h(S)=t, h(T) =¢, h(CN) = (e,t) (one-place predicate)

for any category A, B : h(A/B) = h(B\A) = (h(B),h(A))

each couple (word, categorie) is translated into a logical formula

S TUR g 1) (Johne)
BA BA
T T\S / >n
John runs Johne (e,t)
S El:z:[man<e,t> (z) A U) ()]
FA FA
/() T\S AQe,t) 39‘/‘[””“””b<e) () N Q)] \W%)

runs

/N SN

IS z[P(x T man,
a man AP o 1y AQ e gy F2P(2) A Q(2)]

Categorial Grammars and their properties

Links with Recursive Automata (Tellier06)

— A RA is like a Finite State Automaton except that transitions can

be labelled by a state

— Using a transition labelled by a state Q means producing w € L(Q)
— There are two distinct kinds of RA :

the RAps-kind where the language L(Q) of a state @ is the
set of strings from (@ to the final state

Every unidirect. FA CG is strongly equivalent with a RA 4

the RAg -Kind where the language L((Q) of a state @ is the
set of strings from the initial state to @

Every unidirect. BA CG is strongly equivalent with a RAgy

— Every CG is equivalent with a pair MRA = (RApy, RApy)

T?John
S/(T\S) T\S

(T\SI\(T\5)
runs @

(5/(T\S))/CN

(T\SHI\(T\S)

man John

(5/(T\S)/CN

(T\SI\(T\S)

Outline

o o W N

. Introduction : historical motivations

The learnability according to Gold
Categorial Grammars and their properties
Learning CG by generalization

Learning CG by specialization

Conclusion

Learning CG by generalization

The BP (Buskowsky-Penn) algorithm
— target class : rigid CQG, available data : strutural examples

AVVA

John runs runs

/\

1. introduce S at the root and a distinct variable at each

— algorithm :

argument node
2. induce the other intermediate labels
3. collect the variable(s) associated with each word

4. try to unify them if there are several

Learning CG by generalization

The BP (Buskowsky-Penn) algorithm

step 1 : introduce S at the root and a distinct variable at each
argument node

x/\ /\

runs

John / \ runs
LD

man

Learning CG by generalization

The BP (Buskowsky-Penn) algorithm
step 2 : induce the other intermediate |labels

/\ /\

xl\S 5/233
John runs runs

/\

(S/$3)/$2
man

Learning CG by generalization

The BP (Buskowsky-Penn) algorithm
step 3 : collect the variable(s) associated with each word

/\ /\

xl\S S/x3

John runs

(S/$3)/$2

runs

man

word | category

John 1
runs 5131\3, T3
man o

a | (S/xz3)/x2

Learning CG by generalization

The BP (Buskowsky-Penn) algorithm
step 4 : Try to unify them if there are several

/\ /\

xl\S 5/233
John runs runs
(S/$3)/$2
man
word category
John 1
runs xl\S = I3
man o
a (S/(x1\5))/z2

Learning CG by generalization

General results

— this algorithm learns the class of rigid CGs from positive
structural examples (Kanazawa 96, 98)

— it is linear in time, incremental...

— extensions are possible to learn
— from strings (at the price of a combinatorial explosion)
— the class of CG assigning at most n category with each word
(at the price of a combinatorial explosion)

— structural examples can be seen as coming from semantic
information (Tellier 98)

— unifying variables can be seen as state and/or transition merges in
the corresponding MRA (Tellier 06)

Learning CG by generalization

The BP (Buskowsky-Penn) algorithm : the very idea

Cg

Learning CG by generalization

Grammar specified by introducing variables

Learning CG by generalization

Subclass in which we search for the target

Learning CG by generalization

Resulting grammar after unification

Outline

o o & W N

. Introduction : historical motivations

The learnability according to Gold
Categorial Grammars and their properties
Learning CG by generalization

Learning CG by specialization

Conclusion

Learning CG by specialization

Algorithm (Moreau 04)

— target class : rigid CG, available data : strings

— algorithm :
1. associate a distinct unique variable with each word

2. for each sentence do
— try to parse the sentence (CYK-like algorithm)
— induce constraints on the variables

3. output : (disjunctions of) set(s) of constraints, each set
corresponding with a (set of) rigid grammar(s)

Learning CG by specialization

Algorithm (Moreau 04)

— input data : The set D = {John runs, a man runs fast}
— associate a distinct unique variable with each word :
A = {(John, xz1), (runs, xz5), (a, x3), (Man, x4), (fast, z5)}
— for every rigid CG @, there exists a substitution from A to G
— A specifies the set of every rigid CGs
— A can also be represented by a MRA = (RApy, RARy)

Learning CG by specialization

Algorithm (Moreau 04)

— the only two possible ways to parse “John runs”

/\ /\

1 = S/xp rp =x1\5
John runs John runs
— to parse “a man runs fast” :
— theoretically : 5 % 23 = 40 distinct possible ways

— but some couples of constraints are not compatible with the
class of rigid grammars

— mainly operates state splits on the MRA
— main problem with this algo : combinatorial explosion

— to limit it : initial knowledge in the form of known assignments

Learning CG by specialization

Learning From Typed Examples (Dudau, Tellier & Tommasi 01)

— cognitive hypothesis : lexical semantics is learned before syntax

— formalization : words are given with their (Montagovian) semantic
type

— types derive from categories by a homomorphism

— recall : h(T) =e, h(S) =1t, h(CN) = (e, t) and
h(A/B) = h(B\A) = (h(B), h(A))

— input data : typed sentences are of the form

John runs d Mman runs fast

e (&) || (&), {(e, 1), 1)) (et) (e, t) ((e1),(e1))

Learning CG by specialization

Learning From Typed Examples (Dudau, Tellier & Tommasi 01)

target class : the set of CGs such that every distinct category
assigned to the same word gives a distinct type

\V/<U,Cl>, <’U,CQ> S G, Cl # 02 — h(C]_) # h(cz)
Theorem (Dudau, Tellier & Tommasi 03) : for every
CF-language, there exists G, h satisfying this condition

learning algorithm (Dudau, Tellier & Tommasi 01)

1. introduce variables to represent the class

2. for each sentence
— try to parse the sentence (CYK-like)

— induce constraints on the variables

3. output : (disjunctions) of set(s) of contraint(s), each being
represented by a least general grammar

Learning CG by specialization

Learning From Typed Examples (Dudau, Tellier & Tommasi 01)

step 1 : introduce variables to represent the class : a distinct one whose
possible values are / or \ in front of every subtype

John runs

e x1(e,t)

a man runs fast

xo(x3(e,ty, xa(xs(e, t),t)) xgle,t) x1{e,t) x7{xge,t),zgle,t))

Learning CG by specialization

step 2 :

for each sentence, try to parse and induce constraints

FA I xq =\
e x1 (e, t)
John runs
t
FA T4 =/
5 = T9
x4 (r5 (e, t),t) xg (e, t)
FA ©xp = BA x7 =\
r3 = Tq rg =— L1
ro(r3(e,t), x4 (r5e, t),1)) rg (e, t) z1 (e, t) xr7(rge, t), xg e, t))

Learning CG by specialization

Sum-up

combination of state splits (z1 = \) and state merges (x3 = zg)
types contain in themselves where splits are possible

not every (complex) state can be merged : only those that are
unifiable in the sense of (Coste & alii 2004)

types reduce the combinatorial explosion of possible splits and
help to converge to the correct solution quicker

the starting point is either a lower ound or an upper bound of the
target (linked to it by a morphism)

vocabulary Moreau’s initial target category pre-treated type
assigment
John x1 T e
a o (S/(T\S))/CN | zo(x3(e,t),xz4(x5(e,t),1))
man T3 CN zg (e, t)
runs T4 T\S zq (e, t)

Learning CG by specialization

Learning from Typed Examples : the very idea

Learning CG by specialization

Learning from Typed Examples : introduce variables

Learning CG by specialization

Constraint learned : z; =\

John runs

\(e, 1)

man runs
zo(r3(e,t), x4 (x5 e, 1), 1)) zg (e, t) \(e, t)

Learning CG by specialization

Constraint learned : zo0 = /, 3 = x¢

Learning CG by specialization

Constraint learned : x4 =/, ©5 = 21 =\

Learning CG by specialization

Output : the least general grammar in the set

Learning CG by specialization

Sum-up
— learnability from typed data “in the limit" assured in the new
subclass
— good properties of the new subclass
— types can be considered as lexical semantic information

— the set of possible grammars decreases while the resulting
grammar(s) generalize(s)
——> strategy coherent with natural language learning

— a prototype has been implemented and tested on real data

Outline

o o & W N

. Introduction : historical motivations

The learnability according to Gold
Categorial Grammars and their properties
Learning CG by generalization

Learning CG by specialization

Conclusion

Conclusion

General critics on the approach

Gold’s criterion too rudimentary

strong cognitive asumptions about symbolic internal
representations (not realistic)

formal approaches are too sensistive to “noises” (errors,
mistakes...)

mainly theoretical results (algorithms not tractable)

Main achievements

connexion established between various domains, pluridisciplinarity
formalizes the conditions of possibility of learning

semantics considered as providing structures
— for generalization : in the form of structural examples
— for specialization : in the form of structural lexical types

	Outline
	Introduction: historical motivations
	Outline
	The learnability according to Gold
	The learnability according to Gold
	The learnability according to Gold
	The learnability according to Gold
	The learnability according to Gold
	Outline
	Categorial Grammars and their properties
	Categorial Grammars and their properties
	Categorial Grammars and their properties
	Categorial Grammars and their properties
	Categorial Grammars and their properties
	Categorial Grammars and their properties
	Categorial Grammars and their properties
	Outline
	Learning CG by generalization
	Learning CG by generalization
	Learning CG by generalization
	Learning CG by generalization
	Learning CG by generalization
	Learning CG by generalization
	Learning CG by generalization
	Learning CG by generalization
	Learning CG by generalization
	Learning CG by generalization
	Outline
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Learning CG by specialization
	Outline
	Conclusion

