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Introdu
tion : histori
al motivations

Learnability of natural languages and other things� in the 1960ies : 
ontroversies about natural language a
quisition� �behaviorists� 
onsider the mind as a bla
k box : learningresults from 
onditionning (stimulus-response)� Chomsky argues about the poverty of the (linguisti
) stimulus� he 
on
ludes there exists an innate human 
apability to a
quireformal grammars� �rst resear
hs in the domain of indu
tive inferen
e : how is itpossible to 
ontinue a sequen
e like 0, 2, 4, 6... ? (Solomono�,Kolmogorov...)

=⇒ need to formalize the notion of learnability
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The learnability a

ording to Gold

General requirements for NL learning� inputs : synta
ti
ally 
orre
t senten
es (and in
orre
t ones ?)belonging to a language� target : a formal grammar generating this language� learnability 
on
erns 
lasses of grammars and not a single one� a 
lass is learnable if there exists a learning algorithm to identifyany of its members� the learning pro
ess is a never-ending one :
e1 e2 e3 e4 e5 ...
↓ ↓ ↓ ↓ ↓ ...

G1 G2 G3 G4 G5 ...



The learnability a

ording to Gold

Learnability �in the limit� from positive examples model (Gold 67)� G : a 
lass (set) of grammars� L(G) denotes the language of strings/stru
tures of G ∈ G� the learner algorithm φ learns G if :� ∀G ∈ G� ∀{ei}i∈N with L(G) = {ei}i∈N

∃G′ ∈ G with L(G′) = L(G)

∃n0 ∈ N : ∀n > n0 φ({e1, . . . , en}) = G′ ∈ G� G is learnable in the limit if there exists φ that learns G� if no su
h algorithm exists, G is not learnable



The learnability a

ording to Gold

First results� with positive and negative examples : every re
ursively enumerable
lass is learnable with a stupid enumeration algorithm� with positive examples only : if a 
lass generates every �nitelanguage plus at least an in�nite one, it is not learnable� example : let Σ = {a}� the set of every �nite language on Σ is L� the target 
lass is L ∪ {a∗}� let a sequen
e of examples : aaa, a, aaaaaaaaaaa, a, aa,...� if the algorithm 
hooses the generator of a �nite language, itwill never �nd a∗� if the algorithm 
hooses a∗, it may overgeneralize but will neverre
eive a 
ounterexample

=⇒ L∪ {a∗} is not learnable from positive examples



The learnability a

ording to Gold

Problems and heritage of Gold's de�nition� a 
lass 
an be proved learnable without expli
itely providing alearning algorithm (a default enumerating one is enough)� no 
omplexity 
riterion is required for the learning pro
ess� dire
t 
onsequen
e of the �rst result : none of the 
lass in theChomsky hierar
hy is learnable from positive examples� negle
ted for a time, Gold's de�nition revived in the 80ies� interesting new results in
lude :� the de�nition of learnable 
lasses of grammars transversal tothe Chomsky hierar
hy : Angluin 80, Kanazawa 98� the de�nition of original learning algorithms



The learnability a

ording to Gold

The main two possible strategies� available data : a set of positive examples, the target 
lass� learning by generalization :� build a least general grammar generating the examples� apply a generalization operator until it belongs to the target
lass� learning by spe
ialization :� the initial hypothesis spa
e is the whole target 
lass� use the examples to 
onstrain this spa
e until it is redu
edto one grammar
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Categorial Grammars and their properties

De�nition of a AB-Categorial Grammar� a �nite vo
abulary : Σ = {John, runs, fast, a, man}� a set of basi
 
ategories among whi
h is the axiom S :

B = {S, T, CN} (T for �term�, CN for �
ommon noun�)� the set of available 
ategories is the set of oriented fra
tion over
ategories : T\S, (S/(T\S))/CN...� a Categorial Grammar is set of asso
iations (word,
ategory) :

word 
ategoryJohn Truns T\Sfast (T\S)\(T\S)man CNa (S/(T\S))/CN



Categorial Grammars and their properties

Language of a AB-Categorial Grammar� Synta
ti
 rules are expressed by two s
hemes : ∀A, B ∈ Cat(B)� Forward Appli
ation FA : A/B B −→ A� Ba
kward Appli
ation BA : B B\A −→ A� a string of words is synta
ti
ally 
orre
t if a 
orrespondingsequen
e of 
ategories redu
es to S

Example

S

BA

TJohn T\Sruns
S

FA

S/(T\S)

FA

(S/(T\S))/CNa CNman
T\Sruns



Categorial Grammars and their properties

AB-Categorial Grammars are well adapted to natural languages(Oehrle, Ba
h & Wheeler 88) be
ause :� they are lexi
alized� they have a good expressivity : ǫ-free 
ontext-free languages(Bar-Hillel, Gaifman, Shamir 60)� they 
an be 
ompositionally linked with formal semanti
s(Montague 74, Moortgat 88) :� a morphism h transforms ea
h synta
ti
 
ategory into asemanti
 type� a translation fun
tion asso
iates to ea
h 
ouple (word,
ategory) a logi
al formula of the right type� ea
h synta
ti
 s
heme of rule is transformed into a semanti

omposition rule



Categorial Grammars and their properties� elementary types : t (type of truth values) and e (type of entities)� h(S) = t, h(T ) = e, h(CN) = 〈e, t〉 (one-pla
e predi
ate)� for any 
ategory A, B : h(A/B) = h(B\A) = 〈h(B), h(A)〉� ea
h 
ouple (word, 
ategorie) is translated into a logi
al formula

S

BA

TJohn T\Sruns



Categorial Grammars and their properties� elementary types : t (type of truth values) and e (type of entities)� h(S) = t, h(T ) = e, h(CN) = 〈e, t〉 (one-pla
e predi
ate)� for any 
ategory A, B : h(A/B) = h(B\A) = 〈h(B), h(A)〉� ea
h 
ouple (word, 
ategorie) is translated into a logi
al formula

S

BA

TJohn T\Sruns
run〈e,t〉(Johne)

BA

Johne
run〈e,t〉



Categorial Grammars and their properties� elementary types : t (type of truth values) and e (type of entities)� h(S) = t, h(T ) = e, h(CN) = 〈e, t〉 (one-pla
e predi
ate)� for any 
ategory A, B : h(A/B) = h(B\A) = 〈h(B), h(A)〉� ea
h 
ouple (word, 
ategorie) is translated into a logi
al formula

S

BA

TJohn T\Sruns
run〈e,t〉(Johne)

BA

Johne
run〈e,t〉

S

FA

S/(T\S)

FA

(S/(T\S))/CNa CNman

T\Sruns
∃x[man〈e,t〉(x) ∧ run〈e,t〉(x)]

FA

λQ〈e,t〉∃x[man〈e,t〉(x) ∧ Q(x)]

FA

λP 〈e,t〉λQ〈e,t〉∃x[P (x) ∧ Q(x)] man〈e,t〉

run〈e,t〉



Categorial Grammars and their properties

Links with Re
ursive Automata (Tellier06)� A RA is like a Finite State Automaton ex
ept that transitions 
anbe labelled by a state� Using a transition labelled by a state Q means produ
ing w ∈ L(Q)� There are two distin
t kinds of RA :� the RAFA-kind where the language L(Q) of a state Q is theset of strings from Q to the �nal state� Every unidire
t. FA CG is strongly equivalent with a RAFA� the RABA-kind where the language L(Q) of a state Q is theset of strings from the initial state to Q� Every unidire
t. BA CG is strongly equivalent with a RABA� Every CG is equivalent with a pair MRA = 〈RAFA, RAFA〉



T

S T\S F (T\S)\(T\S)

S/(T\S) CN

S/(T\S)

JohnT
T\Sruns (T\S)\(T\S)fasta

(S/(T\S))/CN

man CN
CN (T\S)\(T\S)

I T S

(S/(T\S))/CN T\S

manCN
T

John
T\S

runsruns T\Sa(S/(T\S)/CN

fast (T\S)\(T\S)

(T\S)\(T\S)
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Learning CG by generalization

The BP (Buskowsky-Penn) algorithm� target 
lass : rigid CG, available data : strutural examples

BA

John runs

FA

FA

a man
runs

� algorithm :1. introdu
e S at the root and a distin
t variable at ea
hargument node2. indu
e the other intermediate labels3. 
olle
t the variable(s) asso
iated with ea
h word4. try to unify them if there are several



Learning CG by generalization

The BP (Buskowsky-Penn) algorithmstep 1 : introdu
e S at the root and a distin
t variable at ea
hargument node
S

BA

x1John runs
S

FA

FA

a x2man

x3runs



Learning CG by generalization

The BP (Buskowsky-Penn) algorithmstep 2 : indu
e the other intermediate labels

S

BA

x1John x1\Sruns
S

FA

S/x3
FA

(S/x3)/x2a x2man

x3runs



Learning CG by generalization

The BP (Buskowsky-Penn) algorithmstep 3 : 
olle
t the variable(s) asso
iated with ea
h word

S

BA

x1John x1\Sruns
S

FA

S/x3
FA

(S/x3)/x2a x2man

x3runs

word 
ategoryJohn x1runs x1\S, x3man x2a (S/x3)/x2



Learning CG by generalization

The BP (Buskowsky-Penn) algorithmstep 4 : Try to unify them if there are several

S

BA

x1John x1\Sruns
S

FA

S/x3
FA

(S/x3)/x2a x2man

x3runs

word 
ategoryJohn x1runs x1\S = x3man x2a (S/(x1\S))/x2



Learning CG by generalization

General results� this algorithm learns the 
lass of rigid CGs from positivestru
tural examples (Kanazawa 96, 98)� it is linear in time, in
remental...� extensions are possible to learn� from strings (at the pri
e of a 
ombinatorial explosion)� the 
lass of CG assigning at most n 
ategory with ea
h word(at the pri
e of a 
ombinatorial explosion)� stru
tural examples 
an be seen as 
oming from semanti
information (Tellier 98)� unifying variables 
an be seen as state and/or transition merges inthe 
orresponding MRA (Tellier 06)



Learning CG by generalization

The BP (Buskowsky-Penn) algorithm : the very idea

BAJohn runs
FA

FAa manruns CG

⊥



Learning CG by generalization

Grammar spe
i�ed by introdu
ing variables

BAJohn runs
FA

FAa manruns G CG

⊥



Learning CG by generalization

Sub
lass in whi
h we sear
h for the target

BAJohn runs
FA

FAa manruns G CG

⊥



Learning CG by generalization

Resulting grammar after uni�
ation
BAJohn runs
FA

FAa manruns G CG

⊥

+
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Learning CG by spe
ialization

Algorithm (Moreau 04)� target 
lass : rigid CG, available data : strings� algorithm :1. asso
iate a distin
t unique variable with ea
h word2. for ea
h senten
e do� try to parse the senten
e (CYK-like algorithm)� indu
e 
onstraints on the variables3. output : (disjun
tions of) set(s) of 
onstraints, ea
h set
orresponding with a (set of) rigid grammar(s)



Learning CG by spe
ialization

Algorithm (Moreau 04)� input data : The set D = {John runs, a man runs fast}� asso
iate a distin
t unique variable with ea
h word :

A = {〈John, x1〉, 〈runs, x2〉, 〈a, x3〉, 〈man, x4〉, 〈fast, x5〉}� for every rigid CG G, there exists a substitution from A to G� A spe
i�es the set of every rigid CGs� A 
an also be represented by a MRA = 〈RAFA, RABA〉 :

x1 x2

F

x3 x5

x4

John runsaman fast x1 x2

I

x3 x5

x4

John runsaman fast



Learning CG by spe
ialization

Algorithm (Moreau 04)� the only two possible ways to parse �John runs� :

S

FA

x1 = S/x2John x2runs
S

BA

x1John x2 = x1\Sruns� to parse �a man runs fast� :� theoreti
ally : 5 ∗ 23 = 40 distin
t possible ways� but some 
ouples of 
onstraints are not 
ompatible with the
lass of rigid grammars� mainly operates state splits on the MRA� main problem with this algo : 
ombinatorial explosion� to limit it : initial knowledge in the form of known assignments



Learning CG by spe
ialization

Learning From Typed Examples (Dudau, Tellier &Tommasi 01)� 
ognitive hypothesis : lexi
al semanti
s is learned before syntax� formalization : words are given with their (Montagovian) semanti
type� types derive from 
ategories by a homomorphism� re
all : h(T ) = e, h(S) = t, h(CN) = 〈e, t〉 and

h(A/B) = h(B\A) = 〈h(B), h(A)〉� input data : typed senten
es are of the formJohn runs

e 〈e, t〉

a man runs fast

〈〈e, t〉, 〈〈e, t〉, t〉〉 〈e, t〉 〈e, t〉 〈〈e, t〉, 〈e, t〉〉



Learning CG by spe
ialization

Learning From Typed Examples (Dudau, Tellier &Tommasi 01)� target 
lass : the set of CGs su
h that every distin
t 
ategoryassigned to the same word gives a distin
t type� ∀〈v, C1〉, 〈v, C2〉 ∈ G, C1 6= C2 =⇒ h(C1) 6= h(C2)� Theorem (Dudau, Tellier & Tommasi 03) : for everyCF-language, there exists G, h satisfying this 
ondition� learning algorithm (Dudau, Tellier &Tommasi 01)1. introdu
e variables to represent the 
lass2. for ea
h senten
e� try to parse the senten
e (CYK-like)� indu
e 
onstraints on the variables3. output : (disjun
tions) of set(s) of 
ontraint(s), ea
h beingrepresented by a least general grammar



Learning CG by spe
ialization

Learning From Typed Examples (Dudau, Tellier &Tommasi 01)step 1 : introdu
e variables to represent the 
lass : a distin
t one whosepossible values are / or \ in front of every subtypeJohn runs
e x1〈e, t〉a man runs fast

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x6〈e, t〉 x1〈e, t〉 x7〈x8〈e, t〉, x9〈e, t〉〉



Learning CG by spe
ializationstep 2 : for ea
h senten
e, try to parse and indu
e 
onstraints

t

FA : x1 = \

eJohn x1〈e, t〉runs
t

FA : x4 = /

x5 = x9

x4〈x5〈e, t〉, t〉

FA : x2 = /

x3 = x6

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉a x6〈e, t〉man
x9〈e, t〉

BA : x7 = \

x8 = x1

x1〈e, t〉runs x7〈x8〈e, t〉, x9〈e, t〉〉fast



e\t e

t x5〈e, t〉 F (e\t)\x5〈e, t〉

t/x5〈e, t〉 x3〈e, t〉

t/(x5〈e, t〉)

Johne

x5〈e, t〉

e\t

runs

(e\t)\(x5〈e, t〉)fast

a(t/x5〈e, t〉)/x3〈e, t〉

man x3〈e, t〉

x3〈e, t〉 (e\t)\x5〈e, t〉

I e t

(t/(x5〈e, t〉))/x3〈e, t〉 e\t x5〈e, t〉

manx3〈e, t〉
e

John
e\t

runs

runse\ta(t/x5〈e, t〉)/x3〈e, t〉

fast (e\t)\(x5〈e, t〉)

(e\t)\x5〈e, t〉

fast



Learning CG by spe
ialization

Sum-up� 
ombination of state splits (x1 = \) and state merges (x3 = x6)� types 
ontain in themselves where splits are possible� not every (
omplex) state 
an be merged : only those that areuni�able in the sense of (Coste & alii 2004)� types redu
e the 
ombinatorial explosion of possible splits andhelp to 
onverge to the 
orre
t solution qui
ker� the starting point is either a lower ound or an upper bound of thetarget (linked to it by a morphism)vo
abulary Moreau's initial target 
ategory pre-treated typeassigmentJohn x1 T ea x2 (S/(T\S))/CN x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉man x3 CN x6〈e, t〉runs x4 T\S x1〈e, t〉



Learning CG by spe
ialization

Learning from Typed Examples : the very idea

John runs

e 〈e, t〉a man runs

〈〈e, t〉, 〈〈e, t〉, t〉〉 〈e, t〉 〈e, t〉



Learning CG by spe
ialization

Learning from Typed Examples : introdu
e variables

John runs

e x1〈e, t〉a man runs

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x6〈e, t〉 x1〈e, t〉



Learning CG by spe
ialization

Constraint learned : x1 = \

John runs

e \〈e, t〉a man runs

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x6〈e, t〉 \〈e, t〉



Learning CG by spe
ialization

Constraint learned : x2 = /, x3 = x6

John runs

e \〈e, t〉a man runs

/〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x3〈e, t〉 \〈e, t〉



Learning CG by spe
ialization

Constraint learned : x4 = /, x5 = x1 = \

John runs

e \〈e, t〉a man runs

/〈x3〈e, t〉, /〈/〈e, t〉, t〉〉 x3〈e, t〉 \〈e, t〉



Learning CG by spe
ialization

Output : the least general grammar in the set

John runs

e \〈e, t〉a man runs

/〈x3〈e, t〉, /〈/〈e, t〉, t〉〉 x3〈e, t〉 \〈e, t〉

+



Learning CG by spe
ialization

Sum-up� learnability from typed data �in the limit� assured in the newsub
lass� good properties of the new sub
lass� types 
an be 
onsidered as lexi
al semanti
 information� the set of possible grammars de
reases while the resultinggrammar(s) generalize(s)
=⇒ strategy 
oherent with natural language learning� a prototype has been implemented and tested on real data
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Con
lusion

General 
riti
s on the approa
h� Gold's 
riterion too rudimentary� strong 
ognitive asumptions about symboli
 internalrepresentations (not realisti
)� formal approa
hes are too sensistive to �noises� (errors,mistakes...)� mainly theoreti
al results (algorithms not tra
table)

Main a
hievements� 
onnexion established between various domains, pluridis
iplinarity� formalizes the 
onditions of possibility of learning� semanti
s 
onsidered as providing stru
tures� for generalization : in the form of stru
tural examples� for spe
ialization : in the form of stru
tural lexi
al types
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