Query Completeness of Skolem Machine Computations

Marc Bezem John Fisher

GL as a fragment of FOL

Geometric formula: $C \Rightarrow D$, where $C = A_1 \land ... \land A_n$ ($n \ge 0$, Ai atoms) and $D = E_1 \lor ... \lor E_m$ ($m \ge 0$), where each $E_j = (\sum x_1 ... x_k) C_j$ ($k \ge 0$ may vary with j, each C_j a conjunction of atoms, \sum for `exist´).

Geometric theory = set of geometric formulas

Examples

- Skolem (1920): lattices and projective geometry
- Horn clauses and CNF (resolution)
- Generating natural numbers:

true \Rightarrow nat(0)

 $nat(x) \Longrightarrow (\sum y) (nat(y) \land s(x,y))$

• General form: A1 \land ... \land An => (($\sum \mathbf{x}$) A11 \land ... \land A1i) \lor ... \lor (($\sum \mathbf{y}$) Ak1 \land ... \land Akj)

Machine Model

- Older than Turing Machine (not the only one ...)
- Skolem's `Erzeugungsprinzipien' (1920), production rules, geometric formulas as instructions of a `Skolem Machine'
- State: set (of sets) of closed atoms
- Inference procedure as computation: forward chaining + case distinction + introduction of `witnesses´ (new?)
- Essentially non-deterministic (not by V, but since different axioms may be applied)

Universality

- Horn Clause Logic: <u>reg2horn.gl</u>
- Geometric Logic: <u>reg2gl.gl</u>
- Geometric Logic, only constants: <u>reg2gl0.gl</u>

Geometric Logic for Automated Reasoning in First-Order Logic

- More expressive than CNF
- FOL to GL: no Skolemization needed
- Good for Interactive Theorem Proving
- Some success at CASC

Query completeness

true => $p \lor (\sum x) q(x)$ p => r r => falseq(y) => false

Is $r \lor (\sum x) q(x)$ a logical consequence? Tape1: p,r,false Tape2: q(a),false Yes!

Finite-model completeness

true => $p \vee (\sum x) q(x)$ $p \Rightarrow r$ $r \Rightarrow false$ $r \wedge q(y) \Longrightarrow$ false Is $r \vee (\sum x) (r \wedge q(x))$ a logical consequence? Tape1: p,r,false Tape2: q(a) saturated! A *finite* countermodel $\{q(a)\}$ is found.

Infinite models are not found

true => s(0,1) $s(x,y) => (\sum z) s(y,z)$ s(x,x) => false

Is (∑ x) s(x,x) a logical consequene?
The infinite countermodel {s(0,1),s(1,2),...}
is not found.

The End