Using approximation to relate computational classes over the reals

Manuel Campagnolo ${ }^{1}$ Kerry Ojakian²
${ }^{1}$ DM/ISA, Technical University of Lisbon and SQIG/IT Lisbon mlc@math.isa.utl.pt
${ }^{2}$ SQIG/IT Lisbon and IST, Technical University of Lisbon ojakian@math.ist.utl.pt

MCU, 12 September 2007

Outline

(1) Introduction
(2) Framework
(3) Results

- Real Recursive Functions
- Polynomial differential equations

4 Conclusion

Motivation

Is $f: \mathbb{R} \rightarrow \mathbb{R}$ computable?

Motivation

Is $f: \mathbb{R} \rightarrow \mathbb{R}$ computable?

Several notions of computability for real functions:

- Turing machine approach: Computable Analysis
- Continuous time analog models
- BSS machines
- ...

Motivation

$$
\mathbf{C}(\mathbb{R})=\text { "Analog" }
$$

Analog models considered in this talk:

- Polynomial Differential Equations
- Real Recursive Functions

Motivation

- Church-Turing type thesis for computation on the reals:
- There are many distinct models of computation on the reals: Computable Analysis, Real recursive Functions, General Purpose Analog Computer, Neural Networks, Dynamic Systems,...
- How are the models distinct?
- What kind of modifications make them equal?
- Applications in discrete complexity theory.
- Can separation questions (e.g. P versus NP) be reduced to relevant questions in Analysis?
- Can we transfer those questions into relevant questions in Analysis?
- See work by Costa and Mycka $(2006,2007)$ in this direction.

Computable Analysis

Definition

- $f(x) \in \mathbf{C}(\mathbb{R})$:

There is a computable function $F^{x}(n)$ with an oracle for the real number x such that $\left|f(x)-F^{x}(n)\right| \leq 1 / n$.

Computable Analysis

Definition

- $f(x) \in \mathbf{C}(\mathbb{R})$:

There is a computable function $F^{x}(n)$ with an oracle for the real number x such that $\left|f(x)-F^{x}(n)\right| \leq 1 / n$.

- $\mathbf{E}(\mathbb{R})$: like $\mathbf{C}(\mathbb{R})$, replacing computable by elementary computable.

Approximation and Completion

Goal. $\mathbf{C}(\mathbb{R})=A($ LIM $)$, broken into 2 steps:

- (Approximation) $\mathbf{C}(\mathbb{R}) \approx A$.
- (Completion) $\mathbf{C}(\mathbb{R})=\mathrm{A}(\mathrm{LIM})$.

Approximation Relation

Definition

$\mathcal{A} \preceq_{+}^{\varepsilon} \mathcal{B}$ iff
For every $f(\bar{x}) \in \mathcal{A}$ and every $\alpha(\bar{x}, \bar{y}) \in \varepsilon$ there is $f^{*}(\bar{x}, \bar{y}) \in \mathcal{B}$ such that $\left|f(\bar{x})-f^{*}(\bar{x}, \bar{y})\right| \leq \alpha(\bar{x}, \bar{y})$.
$\mathcal{A} \approx^{\varepsilon} \mathcal{B}$ iff $\mathcal{A} \preceq_{+}^{\varepsilon} \mathcal{B}$ and $\mathcal{B} \preceq_{+}^{\varepsilon} \mathcal{A}$.

Lemma (transitivity)

Let ε be an error class. If $\mathcal{A} \preceq_{+}^{\varepsilon} \mathcal{B}$ and $\mathcal{B} \preceq_{+}^{\varepsilon} \mathcal{C}$ then $\mathcal{A} \preceq_{+}^{\varepsilon} \mathcal{C}$.

Completion Operation

Definition

LIM is the operation:

- Input: $f(\bar{x}, t)$
- Output: $F(\bar{x})=\lim _{t \rightarrow \infty} f(\bar{x}, t)$, if the limit exists and $F \preceq^{1 / t} f$, for positive t

Definition

If OP is an operation and \mathcal{F} a set of functions, then $\mathcal{F}(\mathrm{OP})$ is:

$$
\mathcal{F} \cup\{\mathrm{OP}(f) \mid f \in \mathcal{F}\}
$$

Thus $\mathcal{F}(\mathrm{LIM})$ is a "completion" of \mathcal{F}.

Definition

If OP is an operation and \mathcal{F} a set of functions, then $\mathcal{F}(\mathrm{OP})$ is:

$$
\mathcal{F} \cup\{\mathrm{OP}(f) \mid f \in \mathcal{F}\}
$$

Thus \mathcal{F} (LIM) is a "completion" of \mathcal{F}.

Note. LIM is a weak kind of limit operation:

- $\mathbf{C}(\mathbb{R})=\mathbf{C}(\mathbb{R})($ LIM $)$;
- $\mathbf{E}(\mathbb{R})=\mathbf{E}(\mathbb{R})(\mathrm{LIM})$.

Function Algebras

Definition

Suppose \mathcal{B} is a set of functions (i.e. the basic functions) and \mathcal{O} is a set of operations. Then $\operatorname{FA}[\mathcal{B} ; \mathcal{O}]$ is the smallest set of functions containing \mathcal{B} and closed under \mathcal{O}.

Function Algebras

Definition

Suppose \mathcal{B} is a set of functions (i.e. the basic functions) and \mathcal{O} is a set of operations. Then $\operatorname{FA}[\mathcal{B} ; \mathcal{O}]$ is the smallest set of functions containing \mathcal{B} and closed under \mathcal{O}.

Basic Functions:

- Constant functions: $0,1,-1, \pi$
- Projection functions "P" (example: $\mathrm{P}(x, y)=x$)
- $\theta(x)= \begin{cases}0, & x<0 ; \\ x^{3}, & x \geq 0 .\end{cases}$

Real Recursive Functions

The Operations

Definition (COMP)

Input: $\overrightarrow{\mathbf{f}}, \overrightarrow{\mathbf{g}}$; Output: $\overrightarrow{\mathbf{h}}=\overrightarrow{\mathbf{g}} \circ \overrightarrow{\mathbf{f}}$.

The Operations

Definition (COMP)

Input: $\overrightarrow{\mathbf{f}}, \overrightarrow{\mathbf{g}}$; Output: $\overrightarrow{\mathbf{h}}=\overrightarrow{\mathbf{g}} \circ \overrightarrow{\mathbf{f}}$.

Definition (LI)

- Input: Functions: $\overrightarrow{\mathbf{g}}(\bar{x}), \overrightarrow{\mathbf{f}}(y, \bar{x})$.
- Output: $h_{1}(y, \bar{x})$ where $\left(h_{1}, \ldots, h_{n}\right)$ is the solution to the IVP:

$$
\begin{aligned}
& \frac{\partial}{\partial y} \overrightarrow{\mathbf{h}}=\overrightarrow{\mathbf{f}}(y, \bar{x}) \overrightarrow{\mathbf{h}}(y, \bar{x}) \\
& \overrightarrow{\mathbf{h}}(0, \bar{x})=\overrightarrow{\mathbf{g}}(\bar{x}) \quad \text { (initial conditions) }
\end{aligned}
$$

Examples:
$\begin{array}{ll}\text { - } f(x, y)=x+y & f(x, 0)=x \\ \partial_{y} f(x, y)=1\end{array} \quad f^{\prime}=\left[\begin{array}{ll}1 & 1\end{array}\right]$
$\begin{array}{ll}\text { - } f(x, y)=x y & f(x, 0)=0 \\ \partial_{y} f(x, y)=x\end{array}$

$$
f^{\prime}=[y x]
$$

- $(\sin y, \cos y)$

$$
\begin{aligned}
& f(0)=(0,1) \\
& \partial_{y} f(y)=(\cos y,-\sin y)
\end{aligned} \quad\left[\begin{array}{c}
f_{1}^{\prime} \\
f_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
f_{2} \\
-f_{1}
\end{array}\right]
$$

Real Recursive Functions

Elementary Computability.

Let \mathcal{L} abbreviate $\mathrm{FA}[0,1,-1, \pi, \theta, \mathrm{P} ;$ comp, LI].
Let $\mathcal{L}^{\text {a }}$ abbreviate $\mathrm{FA}[0,1,-1, \mathrm{P}$; comp, LI].

Real Recursive Functions

Elementary Computability.

Let \mathcal{L} abbreviate $\mathrm{FA}[0,1,-1, \pi, \theta, \mathrm{P} ;$ comp, LI].
Let $\mathcal{L}^{\text {a }}$ abbreviate FA[0, $1,-1, \mathrm{P} ;$ comp, LI].

Theorem

- (Approximation) $\mathbf{E}(\mathbb{R}) \approx \mathcal{L} \approx \mathcal{L}^{\text {a }}$
- (Completion) $\mathbf{E}(\mathbb{R})=\mathcal{L}(L I M)=\mathcal{L}^{\text {a }}($ LIM $)$

Elementary Computability.

Let \mathcal{L} abbreviate $\mathrm{FA}[0,1,-1, \pi, \theta, \mathrm{P} ;$ comp, LI].
Let $\mathcal{L}^{\text {a }}$ abbreviate $\mathrm{FA}[0,1,-1, \mathrm{P} ;$ comp, LI].

Theorem

- (Approximation) $\mathbf{E}(\mathbb{R}) \approx \mathcal{L} \approx \mathcal{L}^{\text {a }}$
- (Completion) $\mathbf{E}(\mathbb{R})=\mathcal{L}(L I M)=\mathcal{L}^{\text {a }}($ LIM $)$
- (Alternative Completion) $\mathbf{E}(\mathbb{R})=\mathcal{L}($ dLIM $)$ (similar to Bournez and Hainry 2004)

Definition

dLIM is the operation:

- Input: $f(t, \bar{x})$
- Output: $F(\bar{x})=\lim _{t \rightarrow \infty} f(t, \bar{x})$, if $\left|\frac{\partial}{\partial t} f\right| \leq 1 / 2^{t}$ for $t \geq 1$.

Real Recursive Functions

Sketch of the proof of $\mathrm{E}(\mathbb{R}) \approx \mathcal{L}$

TM models
Function algebras
$\mathbf{E}(\mathbb{N}) \quad=\quad \quad \mathrm{FA}_{\mathbb{N}}$

Real Recursive Functions

Sketch of the proof of $\mathrm{E}(\mathbb{R}) \approx \mathcal{L}$

TM models

Function algebras

Real Recursive Functions

Sketch of the proof of $\mathrm{E}(\mathbb{R}) \approx \mathcal{L}$

TM models

Function algebras
if f has modulus
$E(\mathbb{R})$
$\mathrm{FA}_{\mathbb{N}}$
$\widehat{\gamma}$ 人
$\mathrm{FA}_{\mathbb{Q}}$ (disctn)
$=$
?
$\mathrm{FA}_{\mathbb{Q}}(\mathrm{ctn})$

Real Recursive Functions

Sketch of the proof of $\mathrm{E}(\mathbb{R}) \approx \mathcal{L}$

TM models

Function algebras
$\mathrm{FA}_{\mathbb{N}}$
$\widehat{\gamma}$ 人
$\mathrm{FA}_{\mathbb{Q}}$ (disctn)
22
$\mathrm{FA}_{\mathbb{Q}}(\mathrm{ctn})$
2
\mathcal{L}

Real Recursive Functions

Sketch of the proof of $\mathrm{E}(\mathbb{R}) \approx \mathcal{L}$

TM models
Function algebras

$\mathbf{E}(\mathbb{N})$	=	$\mathrm{FA}_{\mathbb{N}}$
$\overline{\text { Y }}$ 人		$\widehat{\mathrm{r}}$ 人
$\mathrm{E}(\mathbb{Q})$	=	$\mathrm{FA}_{\mathbb{Q}}$ (disc
$\mathbf{E}(\mathbb{R})^{22}$	if f has modulus	$\stackrel{22}{F A}_{A_{\mathbb{Q}}(\mathrm{ctn})}$
		$\stackrel{\imath 2}{\mathcal{L}}$

(Campagnolo and Ojakian, Arch Math Logic, to appear)

Real Recursive Functions

Sketch of the proof of $\mathcal{L} \approx \mathcal{L}^{\mathrm{a}}$

Recall that $\mathcal{L}=\mathrm{FA}[0,1,-1, \pi, \theta, \mathrm{P} ;$ comp, LI$]$ and $\mathcal{L}^{a}=\mathrm{FA}[0,1,-1, \mathrm{P} ;$ comp, LI].

Goal: eliminate the non-analytic function θ

Real Recursive Functions

Sketch of the proof of $\mathcal{L} \approx \mathcal{L}^{\mathrm{a}}$

Recall that $\mathcal{L}=\mathrm{FA}[0,1,-1, \pi, \theta, \mathrm{P} ;$ comp, LI$]$ and $\mathcal{L}^{a}=\mathrm{FA}[0,1,-1, \mathrm{P} ;$ comp, LI $]$.

Goal: eliminate the non-analytic function θ
Show:

- $\theta, \pi \preceq \mathcal{L}^{\mathrm{a}}$
- comp, LI $\preceq \mathcal{L}^{\mathrm{a}}$

Real Recursive Functions

Sketch of the proof of $\mathcal{L} \approx \mathcal{L}^{\mathrm{a}}$

Recall that $\mathcal{L}=\mathrm{FA}[0,1,-1, \pi, \theta, \mathrm{P} ;$ comp, LI$]$ and $\mathcal{L}^{\mathrm{a}}=\mathrm{FA}[0,1,-1, \mathrm{P} ;$ comp, LI $]$.

Goal: eliminate the non-analytic function θ
Show:

- $\theta, \pi \preceq \mathcal{L}^{\mathrm{a}}$
- comp, LI $\preceq \mathcal{L}^{\mathrm{a}}$

General idea: using approximation and transitivity we can break down the proof of $\mathbf{E}(\mathbb{R}) \approx \mathcal{L}^{\text {a }}$ into simpler pieces.

Computability.

Theorem (similar to Bournez and Hainry, 2005, 2006)

- (Approximation) $\mathbf{C}(\mathbb{R}) \approx F A[0,1, \theta, P ;$ comp, CLI, UMU $]$
- (Completion)

$$
\begin{aligned}
\mathbf{C}(\mathbb{R}) & =F A[0,1, \theta, P ; c o m p, C L I, U M U](L I M) \\
& =F A[0,1, \theta, P ; c o m p, C L I, U M U](d L I M)
\end{aligned}
$$

Definition

Note: The solutions of $\left.\overrightarrow{\mathbf{y}}^{\prime}=\overrightarrow{\mathbf{p}}(\overrightarrow{\boldsymbol{y}}, t)\right)$ with initial condition $\overrightarrow{\mathbf{y}}(0)=\overrightarrow{\mathbf{y}}_{0}$ are exactly the functions generated by Shannon's General Purpose Analog Computer (Graça and Costa, 2003).

Definition

Let PI be the operation:

- Input: $n-1$ polynomials: $\overrightarrow{\mathbf{p}}(y, t)$, a polynomial $q(x)$, and numbers $\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{R}$.
- Output: $y_{1}(t, x)$ where $\left(y_{1}, \ldots, y_{n}\right)$ is the solution of IVP: $\frac{\partial}{\partial t} \overrightarrow{\mathbf{y}}=\overrightarrow{\mathbf{p}}(\overrightarrow{\mathbf{y}}, t) \overrightarrow{\mathbf{y}}(0)=\left(\alpha_{1}, \ldots, \alpha_{n-1}, q(x)\right)$

Definition

For $X \subseteq \mathbb{R}$, let GPAC_{X} be the set of functions generated by PI using polynomials with coefficients from X and initial conditions from X.

Result

Let $\mathcal{C} \mathcal{R}$ be the set of computable reals.

Theorem (Bournez, Campagnolo, Graça and Hainry, 2007)

- (Approximation) $\mathbf{C}(\mathbb{R}) \approx G P A C_{\mathcal{C R}}$
- (Completion) $\mathbf{C}(\mathbb{R})=\operatorname{GPAC}_{\mathcal{C R}}(\varepsilon-\operatorname{LIM})$

Question. Is this true for $\operatorname{GPAC}_{\mathbb{Q}}$ or even $\operatorname{GPAC}_{\{0,1,-1\}}$?

Summary

- Computable Analysis can be caracterized with analog models.
- The connections can be organized using approximation and completion.
- New useful techniques: transitivity, eliminating non-analytic functions, lifting.

Directions for research

- Find simpler characterizations.
- Use the same techniques to characterize complexity classes lower than the elementary.
- Explore other kinds of "completion".
- Are there characterizations of Computable Analysis, which naturally capture all of its functions, without a completion operation?

Directions for research

- Find simpler characterizations.
- Use the same techniques to characterize complexity classes lower than the elementary.
- Explore other kinds of "completion".
- Are there characterizations of Computable Analysis, which naturally capture all of its functions, without a completion operation?

Thanks!

