Using approximation to relate
computational classes over the reals

Manuel Campagnolo! Kerry Ojakian?

TDM/ISA, Technical University of Lisbon and SQIG/IT Lisbon
mlc@math.isa.utl.pt

2SQIG/IT Lisbon and IST, Technical University of Lisbon
ojakian@math.ist.utl.pt

MCU, 12 September 2007

o Introduction

e Framework

e Results
@ Real Recursive Functions
@ Polynomial differential equations

0 Conclusion

Introduction

Motivation

Is f: R — R computable?

Introduction

Motivation

Is f: R — R computable?

Several notions of computability for real functions:

@ Turing machine approach: Computable Analysis
@ Continuous time analog models

@ BSS machines

° ..

Introduction

Motivation

C(R) = “Analog”

Analog models considered in this talk:

@ Polynomial Differential Equations
@ Real Recursive Functions

Introduction

Motivation

@ Church-Turing type thesis for computation on the reals:

@ There are many distinct models of computation on the
reals: Computable Analysis, Real recursive Functions,
General Purpose Analog Computer, Neural Networks,
Dynamic Systems,...

@ How are the models distinct?

o What kind of modifications make them equal?

@ Applications in discrete complexity theory.

o Can separation questions (e.g. P versus NP) be reduced to
relevant questions in Analysis?

o Can we transfer those questions into relevant questions in
Analysis?

@ See work by Costa and Mycka (2006, 2007) in this
direction.

Framework
©0000

Computable Analysis

@ f(x) € C(R):
There is a computable function F*(n) with an
oracle for the real number x such that
[f(x) — F*(n)| <1/n.

Framework
©0000

Computable Analysis

@ f(x) € C(R):
There is a computable function F*(n) with an
oracle for the real number x such that
[f(x) — F*(n)| <1/n.

@ E(R): like C(R), replacing computable by elementary
computable.

Framework
0@000

Approximation and Completion

Goal. C(R) = A(LIM), broken into 2 steps:
@ (Approximation) C(R) ~
@ (Completion) C(R) = A(LIM).

Framework
00000

Approximation Relation

A =5 Biff

For every f(X) € A and every a(X,y) € € there is
f*(x,y) € B such that |f(x) — f*(X,y)| < a(X,y).

A~ Biff A=S Band B <5 A.

v

Lemma (transitivity)
Let € be an error class. If A =5 B and B =% C then A <% C.

Framework
0000

Completion Operation

Definition
LIM is the operation:

@ Input: f(X,t)
@ Output: F(X) = lim;—f(X, t), if the limit exists and
F <1/t f, for positive ¢

Framework
ooooe

Definition
If OP is an operation and F a set of functions, then F(OP) is:

F U {OP(f) | f e F}

Thus F(LIM) is a “completion” of F.

Framework
ooooe

Definition
If OP is an operation and F a set of functions, then F(OP) is:

F U {OP(f) | f e F}

Thus F(LIM) is a “completion” of F.

Note. LIM is a weak kind of limit operation:
@ C(R) = C(R)(LIM);
o E(R) = E(R)(LIM).

Results
0000000

Real Recursive Functions

Function Algebras

Definition

Suppose B is a set of functions (i.e. the basic functions) and O
is a set of operations. Then FA[B; O] is the smallest set of
functions containing 5 and closed under O.

Results
0000000

Real Recursive Functions

Function Algebras

Definition

Suppose B is a set of functions (i.e. the basic functions) and O
is a set of operations. Then FA[B; O] is the smallest set of
functions containing 5 and closed under O.

Basic Functions:

@ Constant functions: 0,1, —1,«

@ Projection functions “P” (example: P(x, y) = x)
{ 0, x<0;

° 0(x) = x3. x>0.

Results
0@00000

Real Recursive Functions

The Operations

Definition (COMP)
Input: f,g;Output: h =g o f.

Results
0@00000

Real Recursive Functions

The Operations

Definition (COMP)
Input: f,g;Output: h =g o f.

Definition (LI)

0 N —
@ Input: Functions: g'(x), f (y, X).
@ Output: hy(y, x) where (hy, ..., hp) is the solution to the
IVP:

—
h
(0,

=]

(v.%) W (y.%)
)= g (x) (initial conditions)

I

=S

Results
[e]e] lele]ele]

Real Recursive Functions

Examples:

clxy)=xty g(;;(g);; fr=[11]
o f(X,y) = xy (gil);,(?(?y:) i N f'=1[y x]
| £(0) = (0,1) il f
° (smy,COS}/) ayf(}/) - (COS}/,—SinY) I: f;] B |: _2f1 :l

Results
[e]e]e] Jelele]

Real Recursive Functions

Elementary Computability.

Let £ abbreviate FA[0, 1, —1, 7, 6, P; comp, LI].
Let £* abbreviate FA[0, 1, —1, P; comp, LI].

Results
[e]e]e] Jelele]

Real Recursive Functions

Elementary Computability.

Let £ abbreviate FA[0, 1, —1, 7, 6, P; comp, LI].
Let £* abbreviate FA[0, 1, —1, P; comp, LI].

@ (Approximation) E(R) ~ L ~ L?
@ (Completion) E(R) = L(LIM) = L£*(LIM)

Results
[e]e]e] Jelele]

Real Recursive Functions

Elementary Computability.

Let £ abbreviate FA[0, 1, —1, 7, 6, P; comp, LI].
Let £* abbreviate FA[0, 1, —1, P; comp, LI].

@ (Approximation) E(R) ~ L ~ L?
@ (Completion) E(R) = L(LIM) = L£*(LIM)

@ (Alternative Completion) E(R) = L(dLIM)
(similar to Bournez and Hainry 2004)

dLIM is the operation:

@ Input: f(t,X)
@ Output: F(X) = limsoof(t, X), if | 3f| < 1/2" for t > 1.

Results
[e]e]ele] lele]

Real Recursive Functions

Sketch of the proof of E(R) ~ £

TM models Function algebras

E(N) - FAy

Results
[e]e]ele] lele]

Real Recursive Functions

Sketch of the proof of E(R) ~ £

TM models Function algebras
E(N) = FAN
~< ~<
YAl YAl
E(Q) = FAg(disctn)

Results
[e]e]ele] lele]

Real Recursive Functions

Sketch of the proof of E(R) ~ £

TM models Function algebras
E(N) = FAN
~< ~<
YAl YAl
E(Q) = FAg(disctn)

2 if f has modulus 2
E(R) FAg(ctn)

Results
[e]e]ele] lele]

Real Recursive Functions

Sketch of the proof of E(R) ~ £

TM models Function algebras
E(N) = FAN
YAl YAl
E(Q) = FAg(disctn)
p iffhasmodulus
E(R) FAg(ctn)

&Q
L

Results
[e]e]ele] lele]

Real Recursive Functions

Sketch of the proof of E(R) ~ £

TM models Function algebras
E(N) = FAN
YAl YAl
E(Q) = FAg(disctn)
p iffhasmodulus

E(R) FAg(ctn)
%
L

(Campagnolo and Ojakian, Arch Math Logic, to appear)

Results
00000e0

Real Recursive Functions

Sketch of the proof of £ ~ £

Recall that £ = FA[0,1, -1, 7,0, P;comp, LI]
and £* = FA[0,1,—1, P; comp, LI].

Goal: eliminate the non-analytic function 6

Results
00000e0

Real Recursive Functions

Sketch of the proof of £ ~ £

Recall that £ = FA[0,1, -1, 7,0, P;comp, LI]
and £* = FA[0,1,—1, P; comp, LI].

Goal: eliminate the non-analytic function 6

Show:
@ 0, =L*
@ comp, LI < £

Results
00000e0

Real Recursive Functions

Sketch of the proof of £ ~ £

Recall that £ = FA[0,1, -1, 7,0, P;comp, LI]
and £* = FA[0,1,—1, P; comp, LI].

Goal: eliminate the non-analytic function 6

Show:
@ 0, =L*
@ comp, LI < £

General idea: using approximation and transitivity we can break
down the proof of E(R) ~ £* into simpler pieces.

Results
000000

Real Recursive Functions

Computability.

Theorem (similar to Bournez and Hainry, 2005, 2006)
@ (Approximation) C(R) ~ FA[0, 1,6, P, comp, CLI, UMU|
@ (Completion)

C(R) = FA[0,1,0, P, comp, CLI, UMU|(LIM)
= FA[0, 1,6, P. comp, CLI, UMU|(dLIM)

Polynomial differential equations

Definition

Note: The solutions of 'y’ = p (', t)) with initial condition
¥ (0) = ¥, are exactly the functions generated by Shannon’s
General Purpose Analog Computer (Graca and Costa, 2003).

Definition
Let Pl be the operation:
@ Input: n — 1 polynomials: p (y, t), a polynomial g(x), and
numbers a4, ...,an_1 € R.
° Output y1(t, x) where (y4, ..., yn) is the solution of IVP:
SY =P(V.) ¥(0) = (a1, an1,4(x))

Definition

For X C R, let GPACx be the set of functions generated by PI
using polynomials with coefficients from X and initial conditions

from X.

Polynomial differential equations

Result

Let CR be the set of computable reals.

Theorem (Bournez, Campagnolo, Graca and Hainry, 2007)

@ (Approximation) C(R) ~ GPACcr
@ (Completion) C(R) = GPACcr (e — LIM)

Question. Is this true for GPACq or even GPAC g 1,17

Conclusion
[le]

Summary

@ Computable Analysis can be caracterized with analog
models.

@ The connections can be organized using approximation
and completion.

@ New useful techniques: transitivity, eliminating non-analytic
functions, lifting.

Conclusion
oe

Directions for research

@ Find simpler characterizations.

@ Use the same techniques to characterize complexity
classes lower than the elementary.

@ Explore other kinds of “completion”.

@ Are there characterizations of Computable Analysis, which
naturally capture all of its functions, without a completion
operation?

Conclusion
oe

Directions for research

@ Find simpler characterizations.

@ Use the same techniques to characterize complexity
classes lower than the elementary.

@ Explore other kinds of “completion”.

@ Are there characterizations of Computable Analysis, which
naturally capture all of its functions, without a completion
operation?

Thanks!

	Introduction
	Framework
	

	Results
	Real Recursive Functions
	Polynomial differential equations

	Conclusion
	

	Appendix

