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Turing machine approach: Computable Analysis
Continuous time analog models
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Motivation

C(R) = “Analog”

Analog models considered in this talk:

Polynomial Differential Equations
Real Recursive Functions
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Motivation

Church-Turing type thesis for computation on the reals:
There are many distinct models of computation on the
reals: Computable Analysis, Real recursive Functions,
General Purpose Analog Computer, Neural Networks,
Dynamic Systems,...
How are the models distinct?
What kind of modifications make them equal?

Applications in discrete complexity theory.
Can separation questions (e.g. P versus NP) be reduced to
relevant questions in Analysis?
Can we transfer those questions into relevant questions in
Analysis?
See work by Costa and Mycka (2006, 2007) in this
direction.
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Computable Analysis

Definition
f (x) ∈ C(R):

There is a computable function F x(n) with an
oracle for the real number x such that
|f (x)− F x(n)| ≤ 1/n.

E(R): like C(R), replacing computable by elementary
computable.



Introduction Framework Results Conclusion

Computable Analysis

Definition
f (x) ∈ C(R):

There is a computable function F x(n) with an
oracle for the real number x such that
|f (x)− F x(n)| ≤ 1/n.

E(R): like C(R), replacing computable by elementary
computable.



Introduction Framework Results Conclusion

Approximation and Completion

Goal. C(R) = A(LIM), broken into 2 steps:

(Approximation) C(R) ≈ A.
(Completion) C(R) = A(LIM).
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Approximation Relation

Definition
A �ε

+ B iff

For every f (x̄) ∈ A and every α(x̄ , ȳ) ∈ ε there is
f ∗(x̄ , ȳ) ∈ B such that |f (x̄)− f ∗(x̄ , ȳ)| ≤ α(x̄ , ȳ).

A ≈ε B iff A �ε
+ B and B �ε

+ A.

Lemma (transitivity)
Let ε be an error class. If A �ε

+ B and B �ε
+ C then A �ε

+ C.
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Completion Operation

Definition
LIM is the operation:

Input: f (x̄ , t)
Output: F (x̄) = limt→∞f (x̄ , t), if the limit exists and
F �1/t f , for positive t
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Definition
If OP is an operation and F a set of functions, then F(OP) is:

F ∪ {OP(f ) | f ∈ F}

Thus F(LIM) is a “completion” of F .

Note. LIM is a weak kind of limit operation:
C(R) = C(R)(LIM);
E(R) = E(R)(LIM).
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Real Recursive Functions

Function Algebras

Definition
Suppose B is a set of functions (i.e. the basic functions) and O
is a set of operations. Then FA[B;O] is the smallest set of
functions containing B and closed under O.

Basic Functions:
Constant functions: 0, 1,−1, π

Projection functions “P” (example: P(x , y) = x)

θ(x) =

{
0, x < 0;
x3, x ≥ 0.
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Real Recursive Functions

The Operations

Definition (COMP)

Input:
−→
f ,
−→g ; Output:

−→
h =

−→g ◦
−→
f .

Definition (LI)

Input: Functions: −→g (x̄),
−→
f (y , x̄).

Output: h1(y , x̄) where (h1, . . . , hn) is the solution to the
IVP:

∂
∂y
−→
h =

−→
f (y , x̄)

−→
h (y , x̄)

−→
h (0, x̄) =

−→g (x̄) (initial conditions)
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Real Recursive Functions

Examples:

• f (x , y) = x + y
f (x , 0) = x
∂y f (x , y) = 1

f ′ = [1 1]

• f (x , y) = xy
f (x , 0) = 0
∂y f (x , y) = x

f ′ = [y x ]

• (sin y , cos y)
f (0) = (0, 1)
∂y f (y) = (cos y ,− sin y)

[
f ′1
f ′2

]
=

[
f2
−f1

]
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Real Recursive Functions

Elementary Computability.

Let L abbreviate FA[0, 1,−1, π, θ, P; comp, LI].
Let La abbreviate FA[0, 1,−1, P; comp, LI].

Theorem
(Approximation) E(R) ≈ L ≈ La

(Completion) E(R) = L(LIM) = La(LIM)

(Alternative Completion) E(R) = L(dLIM)
(similar to Bournez and Hainry 2004)

Definition
dLIM is the operation:

Input: f (t , x̄)

Output: F (x̄) = limt→∞f (t , x̄), if | ∂
∂t f | ≤ 1/2t for t ≥ 1.
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Real Recursive Functions

Sketch of the proof of E(R) ≈ L

TM models Function algebras

E(N) = FAN

�
λ

� �
λ

�

E(Q) = FAQ(disctn)

≈ if f has modulus ≈

E(R) FAQ(ctn)

≈

L

(Campagnolo and Ojakian, Arch Math Logic, to appear)
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Real Recursive Functions

Sketch of the proof of L ≈ La

Recall that L = FA[0, 1,−1, π, θ, P; comp, LI]
and La = FA[0, 1,−1, P; comp, LI].

Goal: eliminate the non-analytic function θ

Show:
θ, π � La

comp, LI � La

General idea: using approximation and transitivity we can break
down the proof of E(R) ≈ La into simpler pieces.
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Real Recursive Functions

Computability.

Theorem (similar to Bournez and Hainry, 2005, 2006)
(Approximation) C(R) ≈ FA[0, 1, θ, P; comp, CLI, UMU]

(Completion)

C(R) = FA[0, 1, θ, P; comp, CLI, UMU](LIM)

= FA[0, 1, θ, P; comp, CLI, UMU](dLIM)
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Polynomial differential equations

Definition

Note: The solutions of −→y ′ =
−→p (

−→y , t)) with initial condition
−→y (0) =

−→y 0 are exactly the functions generated by Shannon’s
General Purpose Analog Computer (Graça and Costa, 2003).

Definition
Let PI be the operation:

Input: n − 1 polynomials: −→p (y , t), a polynomial q(x), and
numbers α1, . . . , αn−1 ∈ R.
Output: y1(t , x) where (y1, ..., yn) is the solution of IVP:
∂
∂t
−→y =

−→p (
−→y , t) −→y (0) = (α1, ..., αn−1, q(x))

Definition
For X ⊆ R, let GPACX be the set of functions generated by PI
using polynomials with coefficients from X and initial conditions
from X .
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Polynomial differential equations

Result

Let CR be the set of computable reals.

Theorem (Bournez, Campagnolo, Graça and Hainry, 2007)
(Approximation) C(R) ≈ GPACCR

(Completion) C(R) = GPACCR(ε− LIM)

Question. Is this true for GPACQ or even GPAC{0,1,−1}?
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Summary

Computable Analysis can be caracterized with analog
models.
The connections can be organized using approximation
and completion.
New useful techniques: transitivity, eliminating non-analytic
functions, lifting.



Introduction Framework Results Conclusion

Directions for research

Find simpler characterizations.
Use the same techniques to characterize complexity
classes lower than the elementary.
Explore other kinds of “completion”.
Are there characterizations of Computable Analysis, which
naturally capture all of its functions, without a completion
operation?

Thanks!
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