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Introduction L. De Mol

Introduction

• Tag systems – a quick tour

• Outline proof of the solvability of the halting and reachability prob-

lem for a specific class of tag systems:

a. General structure and method

b. Some basic techniques and cases

• Discussion: Some open questions
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Definition of Tag systems

• Invented by Emil Leon Post in 1921 and shown to be Turing complete (uni-

versal) in 1961 by Minsky

• A tag system T, consists of a finite alphabetΣ= {a0, a1, ..., aµ−1} ofµ symbols,

a deletion number v ∈ N and a finite set of µ words, w0, w1, ..., wµ−1 over

the alphabet, including the empty word ε. Each of these words corresponds

with one of the letters from the alphabet as follows:

a0 → a0,1a0,2...a0,n0

... ... ...

aµ−1 → aµ−1,1aµ−1,2...aµ−1,nµ−1

where each ai , j ∈ Σ,0 ≤ i < µ. Given an initial string A0, the tag system

tags the word associated with the leftmost letter of A0 at the end of A0, and

deletes the first v symbols of A0.
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Further definitions and notational conventions

Definition 1 The halting problem for tag systems is the problem to determine for a given

tag system and any initial string A0 whether the tag system will halt.

Definition 2 The reachability problem for tag systems is the problem to determine for a

given tag system T, a fixed initial string A0 and any arbitrary string A over the alphabet Σ,

whether T will ever produce A when started with A0.

Definition 3 Let T be a tag system with a deletion number v with µ symbols and words

w0, w1, ..., wµ−1. Then:

a. We shall write li to indicate the length of a word wi , lmax and lmin denote the length of

the lengthiest word wi rsp. the length of the shortest word w j of T , 0 ≤ i , j <µ.

b. #ai denotes the total sum of the number of ai ’s in w0, ...wµ−1.

c. ẋ rsp. x indicate an odd rsp. an even number.

d. Given a string A = a1a2...alA
, we will say that A is entered with shift x, when the tag

system erases its first x symbols, the first symbol scanned in A being ax+1.
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Some basic results

• Post 1921 Proof that halting and reachability problem for tag systems with v = 1 or

µ = 1 or v = µ = 2 are solvable. Never published, but the proof for the case v = µ = 2

involved “considerable labor”

• Minsky 1961 Any Turing machine can be represented in a tag system with v = 6, and

thus tag systems are recursively unsolvable.

• Minsky and Cocke, 1961 Any Turing machine can be represented in a tag system with

v = 2

• Wang 1963

a. Proof solvability halting and reachability problem for tag systems with v = 1

b. For any tag system T, if lmax ≤ v or lmi n ≥ v, then its halting and reachability

problem are recursively solvable.

⇒ Bothµ and v can be regarded as decidability criteria for tag systems.
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Three classes of Behaviour

• Example of Periodicity: v = 3,1 → 1101,0 → 00,S0 = 001101

001101

10100

001101

• Example of Halt: v = 3,1 → 1101,0 → 00,S0 = 001001

001001

001 → ε

• Example of Unbounded growth: v = 2,1 → 101,0 → 11,S0 = 001101

110111

0111101

1110111

10111101

111101101

1101101101

⇒ Proving that any tag system with v = µ = 2 will halt, become periodic or show un-

bounded growth for arbitrary initial conditions in a finite number of steps, results in

proof solvability halting and reachability problem for this class.
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How to prove the solvability of a class of tag systems TS(µ, v)? Two

problems.

1. Two times infinity:

• For each tag system, an infinite number of initial conditions

• An infinite number of tag systems

2. The words can have arbitrary lengths
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Three basic cases, more subcases (and subsubcases)...

• Wang 1963 ⇒ Only consider cases with l0 < 2, l1 > 2 (symmetrical

case is equivalent) ⇒ Three basic cases: w0 = ε, w0 = 1, w0 = 0

• Further differentiation through parameters: l1, parity of l1, #1, parity

of number of 0’s separating consecutive 1’s in w1 ⇒parameters allow

for the determination of certain threshold values which divide each

case in a finite class of TS that always halt or become periodic and

an infinite class that always shows either unbounded growth, halt or

periodicity.
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Examples explaining the parameters
Parameter 1: l1

• w1 = 000, w0 = 1 ⇒ periodicity or halt

• w1 = 0000000000, w0 = 1 ⇒ unbounded growth

Parameter 2: Parity of l1

• w1 = 1010, w0 = ε ⇒ unbounded growth or halt depending on parity length initial

condition

• w1 = 10100, w0 = ε⇒ periodicity

Parameter 3: #1

• w1 = 101, w0 = 0 ⇒ periodicity

• w1 = 10101, w0 = 0 ⇒ unbounded growth

Parameter 4: Parity of #0 separating 1’s in w1

• w1 = 1001, w0 = ε⇒ periodicity

• w1 = 100010, w0 = ε⇒ unbounded growth
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The table method
Given a tag system T with deletion number v, words w0, ..., wµ−1 and alphabetΣ= {a0, ..., aµ−1

then:

Step 1 For each of the words, write down all the strings that can be produced by entering it

with different shifts 0, 1,..., v - 1. If any of the strings produced in this way has already

been written down or is equal to the empty string ε, it is marked.

Step 2 For each of the strings left unmarked, write down all the strings that can be pro-

duced by entering it with different shifts 0, 1,..., v - 1. If any of the strings produced in

this way has already been written down or is equal to the empty string ε, it is marked.

Step 3 If all strings produced in the previous step have been marked, stop, if not, goto step

2.

⇒ Basic tool to prove solvability of halting and reachability problem for a given tag sys-

tem. If it halts, the solution immediately follows, if not, it is still possible to deduce

certain structural properties that lead to the result.
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Examples of some cases proven through the table method.
Case I.2. w0 = ε, #1 = 1, l1 ≡ 0 mod 2, w1 = 0ẋ1 10y1

w0 w1

S0 ε ε

S1 ε w1X

Case II.2. w0 = 1,#1 = 2, l1 = 3. There are three different tag systems to be taken into

account here.

Table 2: Case 0 → 1,1 → 100

w0 w1 w1w0 w0w1

S0 w1 w1w0 w1w0X w1w0X
S1 HALT w0X w0w1 w1w0X
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Table 3: Case w0 = 1, w1 = 010

w0 w1 w0w0

S0 w1 w0w0 w1X
S1 w1 w1X w1X

Table 4: Case w0 = 1, w1 = 001

w0 w1 w0w1 w1w0

S0 w1 w0w1 w1w0 w0w1X
S1 w1 w0X w0w1X w0w1X
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More difficult subcases for case III (w0 = 0)
SubSubcase 3.3.2.1. #1 = 2, l1 ≡ 0 mod 2, w1 = t11ẋ11ṡ1

From w1:

Shift 1 : A sequence of 0’s X
Shift 0 :

A1 = t2w1 bẋ1/2cw1s2 (1)

From (1) we get:

• If ṡ1 +bẋ1/2c+ t1 even then:

Shift a :

t3 A10n1 X (2)

Shift b :

t30n1 A1 X (3)

• If ẋ1 +bẋ1/2c+ t1 odd then:

Shift a :

A2 = t4 A1 bẋ1/4cA1s3 (4)

Shift b : A sequence of 0’s X
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From (4):

• ẋ1 + s2 +bẋ1/2c+ t2 + t1 is even

Shift a:

t5 A20n2 X (5)

Shift b:

t50n2 A2 X (6)

• ẋ1 + s2 +bẋ1/2c+ t2 + t1 is odd

Shift a :

A3 = t6 A2b(x1 −1)/8cA2s4 (7)

Shift b :

A sequence of 0’s X
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Two Possibilities

• ∃n : length ṡ1+s2+s3+...+sn+b(x1−1)/2nc+tn+...+t2+t1, separating two consecutive

An−1 in An (n ∈N, A0 = w1) is even ⇒ Periodicity

• ∃n : length ṡ1+s2+s3+...+sn+b(x1−1)/2nc+tn+...+t2+t1, separating two consecutive

An−1 in An (n ∈N, A0 = w1) is odd ⇒ Unbounded growth or halt

⇒ It can be determined in a finite number of steps for any tag systems from this class

whether there exists an n such that ṡ1 + s2 + s3 + ...+ sn +b(x1 −1)/2nc+ tn + ...+ t2 + t1 will

ever become even:

Lemma 1 For any tag system from the class 3.3.2.1. it can be proven that there is always an

n, n ∈N such that for any i ≥ n the sequence of 0’s ṡ1 + s2 + s3 + ...+ si +b(x1 −1)/2i c+ ti +
...+ t2 + t1 between a pair of Ai−1 in Ai is of the same length as ṡ1 + s2 + s3 + ...+ sn +b(x1 −
1)/2nc+ tn + ...+ t2 + t1.
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Proof. To prove the lemma, consider again the sequence:

A2 = t41s1 + s2 +b x

4
c+ t2 + t11s3 (8)

Since for any tag system from this class, any sequence of 0’s ultimately converges to ε,

while for every iteration, each si rsp. ti is converted to si+1 rsp. ti+1, the tag system will

ultimately produce a sequence:

An = Xn−1s1 + s2 + s3 + . . .+ sn +b x

2n c+ tn + . . . t3 + t2 + t1Yn−1 (9)

from (8) such that sn = b x
2n c = tn = ε, with Xn−1 rsp. Yn−1 equal to An−1 minus its right-

most rsp. leftmost sequence of 0’s. This string can be rewritten as:

An = Xn−1s1 + s2 + s3 + . . .+ sn−1 + tn−1 . . . t3 + t2 + t1Yn−1 (10)

If the tag system now scans An it produces:

An+1 = Xn s1 + s2 + s3 + . . .+ sn−1 + sn ++b x

2n c+ tn + tn−1 . . . t3 + t2 + t1Yn (11)

However, since tn = sn = ε, (10) = (11) and we have thus proven the lemma. ¤
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Discussion: Some open questions.

• Possibilities for finding a shorter more elegant proof?

• Applicability of the methods of the proof for other classes of tag sys-

tems, e.g. TS(3,2) or TS(2, 3)?

• What about other decision problem? Does the result exclude univer-

sality for this class?
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