Study of Limits of Solvability in Tag Systems

Liesbeth De Mol

elizabeth.demol@ugent.be

Centre for Logic and Philosophy of Science

Universiteit Gent, Belgium

Introduction

- Tag systems a quick tour
- Outline proof of the solvability of the halting and reachability problem for a specific class of tag systems:
 - **a.** General structure and method
 - **b.** Some basic techniques and cases
- Discussion: Some open questions

Definition of Tag systems

- Invented by Emil Leon Post in 1921 and shown to be Turing complete (universal) in 1961 by Minsky
- A tag system T, consists of a finite alphabet Σ = {a₀, a₁, ..., a_{µ-1}} of µ symbols, a deletion number v ∈ N and a finite set of µ words, w₀, w₁, ..., w_{µ-1} over the alphabet, including the empty word ε. Each of these words corresponds with one of the letters from the alphabet as follows:

$$a_0 \rightarrow a_{0,1} a_{0,2} \dots a_{0,n_0}$$

...
 $a_{\mu-1} \rightarrow a_{\mu-1,1} a_{\mu-1,2} \dots a_{\mu-1,n_{\mu-1}}$

where each $a_{i,j} \in \Sigma, 0 \le i < \mu$. Given an initial string A_0 , the tag system tags the word associated with the leftmost letter of A_0 at the end of A_0 , and deletes the first *v* symbols of A_0 .

Further definitions and notational conventions

Definition 1 The halting problem for tag systems is the problem to determine for a given tag system and any initial string A_0 whether the tag system will halt.

Definition 2 The reachability problem for tag systems is the problem to determine for a given tag system *T*, a fixed initial string A_0 and any arbitrary string *A* over the alphabet Σ , whether *T* will ever produce *A* when started with A_0 .

Definition 3 Let T be a tag system with a deletion number v with μ symbols and words $w_0, w_1, ..., w_{\mu-1}$. Then:

- **a.** We shall write l_i to indicate the length of a word w_i , l_{max} and l_{min} denote the length of the length iest word w_i rsp. the length of the shortest word w_j of T, $0 \le i, j < \mu$.
- **b.** $#a_i$ denotes the total sum of the number of a_i 's in $w_0, ..., w_{\mu-1}$.
- **c.** *x rsp. x indicate an odd rsp. an even number.*
- **d.** Given a string $A = a_1 a_2 \dots a_{l_A}$, we will say that A is entered with shift x, when the tag system erases its first x symbols, the first symbol scanned in A being a_{x+1} .

Some basic results

- Post 1921 Proof that halting and reachability problem for tag systems with *v* = 1 or μ = 1 or *v* = μ = 2 are solvable. Never published, but the proof for the case *v* = μ = 2 involved "*considerable labor*"
- **Minsky 1961** Any Turing machine can be represented in a tag system with *v* = 6, and thus tag systems are recursively unsolvable.
- Minsky and Cocke, 1961 Any Turing machine can be represented in a tag system with v = 2
- Wang 1963
 - **a.** Proof solvability halting and reachability problem for tag systems with v = 1
 - **b.** For any tag system T, if $l_{max} \le v$ or $l_{min} \ge v$, then its halting and reachability problem are recursively solvable.

\Rightarrow Both μ and ν can be regarded as decidability criteria for tag systems.

Three classes of Behaviour

- Example of Periodicity: v = 3, 1 → 1101, 0 → 00, S₀ = 001101
 001101
 10100
 001101
- Example of Halt: v = 3, 1 → 1101, 0 → 00, S₀ = 001001
 001001
 001 → ε
- Example of Unbounded growth: v = 2, 1 → 101, 0 → 11, S₀ = 001101
 110111
 0111101
 1110111
 10111101
 1101101
 1101101
- \Rightarrow Proving that any tag system with $v = \mu = 2$ will halt, become periodic or show unbounded growth for arbitrary initial conditions in a finite number of steps, results in proof solvability halting and reachability problem for this class.

How to prove the solvability of a class of tag systems $TS(\mu, \nu)$? Two problems.

- 1. Two times infinity:
 - For each tag system, an infinite number of initial conditions
 - An infinite number of tag systems
- 2. The words can have arbitrary lengths

Three basic cases, more subcases (and subsubcases)...

- Wang 1963 \Rightarrow Only consider cases with $l_0 < 2$, $l_1 > 2$ (symmetrical case is equivalent) \Rightarrow Three basic cases: $w_0 = \epsilon$, $w_0 = 1$, $w_0 = 0$
- Further differentiation through parameters: *l*₁, parity of *l*₁, #1, parity of number of 0's separating consecutive 1's in *w*₁ ⇒ parameters allow for the determination of certain threshold values which divide each case in a finite class of TS that always halt or become periodic and an infinite class that always shows either unbounded growth, halt or periodicity.

Examples explaining the parameters Parameter 1: *l*₁

- $w_1 = 000, w_0 = 1 \Rightarrow$ periodicity or halt
- $w_1 = 000000000, w_0 = 1 \Rightarrow$ unbounded growth

Parameter 2: Parity of l_1

- $w_1 = 1010, w_0 = \epsilon \Rightarrow$ unbounded growth or halt depending on parity length initial condition
- $w_1 = 10100, w_0 = \epsilon \Rightarrow$ periodicity

Parameter 3: #1

- $w_1 = 101, w_0 = 0 \Rightarrow$ periodicity
- $w_1 = 10101$, $w_0 = 0 \Rightarrow$ unbounded growth

Parameter 4: Parity of #0 separating 1's in w_1

- $w_1 = 1001, w_0 = \epsilon \Rightarrow$ periodicity
- $w_1 = 100010$, $w_0 = \epsilon \Rightarrow$ unbounded growth

The table method

Given a tag system T with deletion number v, words $w_0, ..., w_{\mu-1}$ and alphabet $\Sigma = \{a_0, ..., a_{\mu-1} \}$ then:

- Step 1 For each of the words, write down all the strings that can be produced by entering it with different shifts 0, 1,..., v 1. If any of the strings produced in this way has already been written down or is equal to the empty string *c*, it is marked.
- **Step 2** For each of the strings left unmarked, write down all the strings that can be produced by entering it with different shifts 0, 1,..., v 1. If any of the strings produced in this way has already been written down or is equal to the empty string *ε*, it is marked.
- Step 3 If all strings produced in the previous step have been marked, stop, if not, goto step 2.

 \Rightarrow Basic tool to prove solvability of halting and reachability problem for a given tag system. If it halts, the solution immediately follows, if not, it is still possible to deduce certain structural properties that lead to the result.

Examples of some cases proven through the table method.

Case I.2. $w_0 = \epsilon$, #1 = 1, $l_1 \equiv 0 \mod 2$, $w_1 = 0^{\dot{x_1}} 10^{y_1}$

	w_0	w_1
<i>S</i> ₀	e	е
S_1	ϵ	$w_1 \checkmark$

Case II.2. $w_0 = 1, \#1 = 2, l_1 = 3$. There are three different tag systems to be taken into account here.

Table 2: Case $0 \rightarrow 1, 1 \rightarrow 100$

	w_0	w_1	$w_1 w_0$	$w_0 w_1$
S ₀	w_1	$w_1 w_0$	$w_1 w_0 \checkmark$	$w_1 w_0 \checkmark$
S_1	HALT	$w_0 \checkmark$	$w_0 w_1$	$w_1 w_0 \checkmark$

Table 3: Case $w_0 = 1, w_1 = 010$

	w_0	w_1	$w_0 w_0$
<i>S</i> ₀	w_1	$w_0 w_0$	$w_1\checkmark$
S_1	w_1	$w_1\checkmark$	$w_1\checkmark$

Table 4: Case $w_0 = 1, w_1 = 001$

	w_0	w_1	$w_0 w_1$	$w_1 w_0$
<i>S</i> ₀	w_1	$w_0 w_1$	$w_1 w_0$	$w_0 w_1 \checkmark$
<i>S</i> ₁	w_1	$w_0 \checkmark$	$w_0 w_1 \checkmark$	$w_0 w_1 \checkmark$

More difficult subcases for case III ($w_0 = 0$)

SubSubcase 3.3.2.1. #1 = 2, $l_1 \equiv 0 \mod 2$, $w_1 = t_1 1 \dot{x_1} 1 \dot{s_1}$

From w_1 :

Shift 1 :	A sequence of 0's \checkmark	
Shift 0 :	$A_1 = t_2 w_1 \lfloor \dot{x_1} / 2 \rfloor w_1 s_2$	(1)
From (1) we get:		
• If $\dot{s_1} + \lfloor \dot{x_1}/2 \rfloor + t_1$ even then: Shift a :		
	$t_3A_10^{n_1}\checkmark$	(2)
Shift b :	n^{n_1}	
	$t_3 0^{n_1} A_1 \checkmark$	(3)
• If $\dot{x_1} + \lfloor \dot{x_1} / 2 \rfloor + t_1$ odd then:		
Shift a :		
	$A_2 = t_4 A_1 \lfloor \dot{x_1} / 4 \rfloor A_1 s_3$	(4)
Shift b :	A sequence of 0's \checkmark	

From (4):

• $\dot{x_1} + s_2 + \lfloor \dot{x_1}/2 \rfloor + t_2 + t_1$ is even Shift a:

$$t_5 A_2 0^{n_2} \checkmark \tag{5}$$

Shift b:

$$t_5 0^{n_2} A_2 \checkmark \tag{6}$$

•
$$\dot{x_1} + s_2 + \lfloor \dot{x_1}/2 \rfloor + t_2 + t_1$$
 is odd
Shift a :
 $A_3 = t_6 A_2 \lfloor (x_1 - 1)/8 \rfloor A_2 s_4$

Shift b :

A sequence of 0's \checkmark

(7)

Two Possibilities

- $\exists n : \text{length } \dot{s_1} + s_2 + s_3 + ... + s_n + \lfloor (x_1 1)/2^n \rfloor + t_n + ... + t_2 + t_1$, separating two consecutive $A_{n-1} \text{ in } A_n \ (n \in \mathbb{N}, A_0 = w_1) \text{ is even} \Rightarrow \text{Periodicity}$
- $\exists n : \text{length } \dot{s_1} + s_2 + s_3 + ... + s_n + \lfloor (x_1 1)/2^n \rfloor + t_n + ... + t_2 + t_1$, separating two consecutive $A_{n-1} \text{ in } A_n \ (n \in \mathbb{N}, A_0 = w_1) \text{ is odd} \Rightarrow \text{Unbounded growth or halt}$

⇒ It can be determined in a finite number of steps for any tag systems from this class whether there exists an *n* such that $\dot{s_1} + s_2 + s_3 + ... + s_n + \lfloor (x_1 - 1)/2^n \rfloor + t_n + ... + t_2 + t_1$ will ever become even:

Lemma 1 For any tag system from the class 3.3.2.1. it can be proven that there is always an $n, n \in \mathbb{N}$ such that for any $i \ge n$ the sequence of 0's $\dot{s_1} + s_2 + s_3 + ... + s_i + \lfloor (x_1 - 1)/2^i \rfloor + t_i + ... + t_2 + t_1$ between a pair of A_{i-1} in A_i is of the same length as $\dot{s_1} + s_2 + s_3 + ... + s_n + \lfloor (x_1 - 1)/2^i \rfloor + t_n + ... + t_2 + t_1$.

Proof. To prove the lemma, consider again the sequence:

$$A_2 = t_4 \mathbf{1} s_1 + s_2 + \lfloor \frac{x}{4} \rfloor + t_2 + t_1 \mathbf{1} s_3$$
(8)

Since for any tag system from this class, any sequence of 0's ultimately converges to ϵ , while for every iteration, each s_i rsp. t_i is converted to s_{i+1} rsp. t_{i+1} , the tag system will ultimately produce a sequence:

$$A_n = X_{n-1}s_1 + s_2 + s_3 + \dots + s_n + \lfloor \frac{x}{2^n} \rfloor + t_n + \dots + t_3 + t_2 + t_1 Y_{n-1}$$
(9)

from (8) such that $s_n = \lfloor \frac{x}{2^n} \rfloor = t_n = \epsilon$, with X_{n-1} rsp. Y_{n-1} equal to A_{n-1} minus its right-most rsp. leftmost sequence of 0's. This string can be rewritten as:

$$A_n = X_{n-1}s_1 + s_2 + s_3 + \ldots + s_{n-1} + t_{n-1} \ldots t_3 + t_2 + t_1 Y_{n-1}$$
(10)

If the tag system now scans A_n it produces:

$$A_{n+1} = X_n s_1 + s_2 + s_3 + \dots + s_{n-1} + s_n + \lfloor \frac{x}{2^n} \rfloor + t_n + t_{n-1} \dots t_3 + t_2 + t_1 Y_n$$
(11)

However, since $t_n = s_n = \epsilon$, (10) = (11) and we have thus proven the lemma.

Discussion: Some open questions.

- Possibilities for finding a shorter more elegant proof?
- Applicability of the methods of the proof for other classes of tag systems, e.g. TS(3,2) or TS(2, 3)?
- What about other decision problem? Does the result exclude universality for this class?