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Higman’s Lemma

Lemma (Higman’s Lemma)

If X is any set of words formed from a
finite alphabet, it is possible to find a finite
subset X0 of X such that, given a word w
in X , it is possible to find w0 in X0 such
that the letters of w0 occur in w in their
right order, though not necessarily
consecutively.

G. Higman
(1917–)
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Haines’ Theorem

Theorem

Let L ⊆ A∗ be an arbitrary language, then both
sets

Down(L) = { v ∈ A∗ | ∃w ∈ L s.t. v ≤ w }
Up(L) = { v ∈ A∗ | ∃w ∈ L s.t. w ≤ v },

where ≤ denotes the scattered subword relation,
are regular.

L. H. Haines
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Higman’s Lemma Rephrased—The Finite Basis Property

Theorem (Higman)

Let L be an arbitrary language. Then there exist words wi ∈ L with
1 ≤ i ≤ n, for some natural number n which depends only on L,
such that

Up(L) =
⋃

1≤i≤n

Up({wi}).

Finite Basis Property. The words w1,w2, . . . ,wn are called a basis
of L if and only if all words are minimal, where a word w ∈ L is
minimal in L if and only if there is no v ∈ L with v ≤ w and
v 6= w .
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Examples

Example

Let A = {0, 1}. Then

λ, 0, 1, 00, 01, 10, 11, 001, 011, 100,

101, 111, 0011, 1011, 1001, 10011 ≤ 10011

and 10011 ≤ 10011, 010011, 100011, 100101, 100110, . . .

Let L′ = (01)∗10 over the alphabet A. Then

Down(L′) = ((0 + λ)(1 + λ))∗(1 + λ)(0 + λ)

= (0 + 1)∗ because w ≤ (01)|w |10

Up(L′) = (A∗0A∗1A∗)∗A∗1A∗0A∗ = 0∗1+0+(0 + 1)∗.
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Some Easy Properties

Lemma

Let L ⊆ A∗ be an arbitrary language, then the following statements
hold:

1 Language L is empty if and only if Down(L) is empty.

2 Language L is finite if and only if the set Down(L) is finite.

3 Language L is empty if and only if Up(L) is empty.

4 Language L contains the empty word λ iff Up(L) = A∗.

Comment. Higman-Haines sets for languages accepted by Turing
machines cannot be effectively constructed ( Π2-completeness in
case of down-set problem and ∆2-completeness w.r.t. Turing
reductions for the up-set problem)
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Is it Effectively Constructible or Not?

Theorem

Let D be a family of automata or grammars.

1 If for all M ∈ D a finite automaton accepting Down(L(M))
can effectively be constructed, then there is a recursive
function f : N → N such that size f (|M|) is sufficient for a
finite automaton to accept Down(L(M)). The statement
holds for the up-set as well.

2 If there exists a recursive function f : N → N such that for all
M ∈ D size f (|M|) is sufficient for a finite automaton to
accept

Down(L(M)),

then infiniteness is
semi-decidable for D.

Up(L(M)),

then emptiness is
semi-decidable for D.
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Well-Known Language Families

Theorem

Let D be a family of automata or grammars which represents the

1 regular, linear context-free, or context-free languages, then
given M ∈ D there is an effective procedure to construct a
finite automaton that accepts Down(L(M)).

2 recursively enumerable, recursive, context-sensitive, growing
context-sensitive, or Church-Rosser languages, then given
M ∈ D there is no effective procedure to construct a finite
automagon that accepts Down(L(M)).

The statements hold for the up-set as well.

Proof. Combine previous theorems and consider infiniteness and
emptiness problem for the language families.
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Summary of Results

Down-Set.

Lower bound Upper bound

NFA n n

DFA 2Ω(
√

n log n) 2n

LIN 2Ω(n) O

(√
2n2+ (3n+6)

2
log n−(4+log e)n

)
CFL 2Ω(n) O(n2

√
2n log n)

Up-Set.

Lower bound Upper bound

NFA n n

DFA 2Ω(
√

n log n) 2n

LIN 2Ω(n) O(
√

2(n+2) log n)

CFL 2Ω(n) O(
√

n22n log n)

Comment. Results refer to NFA-acceptance except for DFA entries.
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Regular Languages—Finite Automata

Problem. Given a finite automaton M. Determine automaton M ′

such that it accepts Down(L(M)) (Up(L(M)), resp.).

Constructions (Optimizations are Possible).

1 Down-set:

replaced by

λ

2 Up-set:

replaced by

a ∈ A

Measure (Size). Number of states of a finite automaton.
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Regular Languages—Nondeterministic Finite Automata

Theorem

Let M be a nondeterministic finite automaton of size n. Then
size n is sufficient and necessary in the worst case for a
nondeterministic finite automaton M ′ to accept Down(L(M)).
The finite automaton M ′ can be effectively constructed.

The statement remains valid for the up-set as well.

Proof. Upper bounds are immediate by construction. Lower bound
for down- and up-sets follow from the language Ln = {an−1}.

Observe, that the longest word in Down(Ln) and the shortest
shortest word in Up(Ln) is of length n − 1.
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Regular Languages—Deterministic Finite Automata

Theorem

1 Let M be a deterministic finite automaton of size n. Then
size 2n is sufficient for a deterministic finite automaton M ′ to
accept Down(L(M)). The finite automaton M ′ can be
effectively constructed.

2 For every n, there exists a language Ln over and n + 2 letter
alphabet, which is accepted by a deterministic finite
automaton of size n2, such that size 2n log n is necessary for
any deterministic finite automaton M ′ accepting Down(Ln).

The statements remain valid for the up-set as well.
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Proof. Upper bounds follow by powerset construction and the
aftermentioned observations.

For the lower bound we argue as follows: Let A = {a1, a2, . . . , an}
and #, $ 6∈ A. Consider the languages Ln ⊆ (A ∪ {#, $})∗ defined
as

Ln = {#j$w ∈ #∗$A∗ | i = j mod n and |w |ai+1 ≤ n }.

Language Ln. For each ai one
needs n + 1 states. For the
#-prefix n states are used.
This results in

n(n + 1) + n + 1

states for Ln.

Language Down(Ln). One
has to keep track of all ai ’s
simultaneously (counting up
to n). This results in

nn + 2

states for Down(Ln).
H. Gruber and M. Holzer and M. Kutrib Higman-Haines Sets: Effective Constructions
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Down-Sets of Context-Free Languages

Theorem

1 Let G be a context-free grammar of size n. Then size
O(n2

√
2n log n) is sufficient for a nondeterministic finite

automaton M ′ to accept Down(L(G )). The finite
automaton M ′ can effectively be constructed.

2 For every n, there is a language Ln over a unary alphabet
generated by a context-free grammar of size 3n + 2, such that
size 2Ω(n) is necessary for any nondeterministic finite
automaton M ′ accepting Down(L(G )).

Sketch of Proof. For the upper bound consider context-free
grammar G = (N,T ,P,S). Iteratively replace the nonterminals on
the right hand-side of G by appropriate down-sets obtaining a
sequence of grammars G0,G1, . . . Gb n

2
c.
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For A ∈ N set VA = (N \ {A}) ∪ T . Define the extended
context-free grammar

GA = ({A},VA,PA,A)

with PA = {A → M | (A → M) ∈ P}, where M in (A → M) ∈ P
refers to the finite automaton of the right-hand side of the
production. For GA one obtains a finite automaton MA for
Down(L(GA)) as follows:

Observe, that GA has only one nonterminal.

Distinguish two cases:

1 The production set given by L(M) is linear, i.e.,
L(M) ⊆ V ∗

A{A, λ}V ∗
A, or

2 the production set given by L(M) is nonlinear.

H. Gruber and M. Holzer and M. Kutrib Higman-Haines Sets: Effective Constructions
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For the two cases we proceed as follows:
1 Language L(M) is linear: Construct

L(MA) = Down(L(MP)∗ ·L(MT ) · L(MS)∗) = Down(L(GA)),

where

L(MP) = { x ∈ V ∗
A | xAz ∈ L(M) for some z ∈ (VA ∪ {A})∗ }

L(MS) = { z ∈ V ∗
A | xAz ∈ L(M) for some x ∈ (VA ∪ {A})∗ }

and
L(MT ) = L(M) ∩ V ∗

A.

2 Language L(M) is nonlinear: Similar as above (use of an infix
set required).

Finally solve recurrence (number of alphabet transitions)

|Gk |t ≤ 4 · (|Gk−1|t)2,
for 1 ≤ k < bn

2c, describing the substitution step in the kth
iteration to construct Gk from Gk−1.

H. Gruber and M. Holzer and M. Kutrib Higman-Haines Sets: Effective Constructions
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For Hk = log |Gk |t one obtains

Hk ≤ 2 · Hk−1 + 2,

which results in
|Gb n

2c|t ≤ 2
√

2n log n,

because |G0|t ≤ n and the final step blows up the solution be a
factor of four.

Lower bound follows by the context-free grammar

G = ({A1,A2, . . . ,An+1}, {a},P,A1)

with the productions

Ai → Ai+1Ai+1, for 1 ≤ i ≤ n, and An+1 → a

generating the finite unary language Ln = {a2n}.
H. Gruber and M. Holzer and M. Kutrib Higman-Haines Sets: Effective Constructions
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Up-Sets of Context-Free Languages

Algorithm 1 Determine Basis B of a language L(G )

1: i = 0; B0 = ∅
2: repeat
3: Bi+1 = Bi ∪ {w} for the shortest word w in L(G ) \Up(Bi )
4: i = i + 1
5: until (L(G ) \Up(Bi )) 6= ∅
6: B = Bi

Theorem

Let G be a context-free grammar of size n. Then a
nondeterministic finite automaton M ′ of size O(

√
n22n log n) is

sufficient to accept Up(L(G )). The finite automaton M ′ can
effectively be constructed.

Comment. Lower bound as in the case of the down-set problem.
H. Gruber and M. Holzer and M. Kutrib Higman-Haines Sets: Effective Constructions
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Up- and Down-Sets of Linear Context-Free Languages

Theorem

1 Let G be a linear context-free grammar of size n. Then a
nondeterministic finite automaton M ′

of size

O

(√
2n2+ (3n+6)

2
log n−(4+log e)n

)
is sufficient to accept
Down(L(G )).

of size O(
√

2(n+2) log n) is
sufficient to accept
Up(L(G )).

The finite automaton M ′ can effectively be constructed.

2 For every n, there is a language Ln over a binary alphabet
generated by a linear context-free grammar of size 12n − 2,
such that size 2Ω(n) is necessary for any nondeterministic finite
automaton accepting Down(L(G )) or Up(L(G )).
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Discussion

Higman-Haines Sets.

Continuation of our work on Higman-Haines sets

Constructability issues of Higman-Haines for:

regular languages (det. and nondet. finite automata),
linear context-free languages,
context-free languages.

Future work.

Better bounds for linear context-free and context-free
languages

Other well-quasi orders (Parikh order, etc.)

. . .
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