Algebraic versions of " $\mathrm{P}=\mathrm{NP}$?"

Pascal Koiran
Laboratoire de l'Informatique du Parallélisme
Ecole Normale Supérieure de Lyon

MCU 2007, Orléans, Septembre 2007.

Valiant's model : $\mathrm{VP}_{K}=\mathrm{VNP}_{K}$?

- Complexity of a polynomial f measured by number $L(f)$ of arithmetic operations $(+,-, \times)$ needed to evaluate f :
$\mathrm{L}(\mathrm{f})=$ size of smallest arithmetic circuit computing f.
$-\left(f_{n}\right) \in$ VP if number of variables, $\operatorname{deg}\left(f_{n}\right)$ and $L\left(f_{n}\right)$ are polynomially bounded. For instance, $\left(X^{2^{n}}\right) \notin \mathrm{VP}$.
$-\left(f_{n}\right) \in \mathrm{VNP}$ if $f_{n}(\bar{x})=\sum_{\bar{y}} g_{n}(\bar{x}, \bar{y})$
for some $\left(g_{n}\right) \in \mathrm{VP}$
(sum ranges over all boolean values of \bar{y}).
A typical VNP family : the permanent.

$$
\operatorname{per}(X)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} X_{i \sigma(i)}
$$

It is VNP-complete if $\operatorname{char}(K) \neq 2$.

VP and VNP are almost the only classes studied in Valiant's framework.

Sharp contrast with the "complexity theory zoo" of discrete classes (> 400 classes at www.complexityzoo.com).

Some exceptions :

- VQP : $\operatorname{deg}\left(f_{n}\right)$ polynomially bounded and $L\left(f_{n}\right) \leq n^{\text {poly }(\log n)}$.
- Malod (2003) has studied versions of VP and VNP without bound on $\operatorname{deg}\left(f_{n}\right): \mathrm{VP}_{n b}, \mathrm{VNP}_{n b}$; and constant-free classes : $\mathrm{VP}^{0}, \mathrm{VNP}^{0}, \mathrm{VP}_{n b}^{0}, \mathrm{VNP}_{n b}^{0}$.
- We will define a class VPSPACE (or VPAR ?) which contains VNP $n b$.

Blum-Shub-Smale model : $\mathrm{P}_{K}=\mathrm{NP}_{K}$?

Circuit-based presentation due to Poizat
(similar to von zur Gathen's arithmetic-boolean circuits).

- Computation model is richer : in addition to,,$+- \times$ gates, circuits may use $=$ and (if K ordered) \leq gates .
Selection gates :

$$
s(x, y, z)=\left\{\begin{array}{l}
y \text { if } x=0 \\
z \text { if } x=1
\end{array}\right.
$$

We may assume that $x \in\{0,1\}$.
For instance, $s(x, y, z)=x z+(1-x) y$.

- Focus on decision problems.

Complexity classes

- A problem : $X \subseteq K^{\infty}=\bigcup_{n \geq 1} K^{n}$.
- X is P_{K} if for all $x \in K^{n}$,

$$
x \in X \Leftrightarrow C_{n}\left(x_{1}, \ldots x_{n}, a_{1}, \ldots, a_{k}\right)=1
$$

with C_{n} constructed in polynomial time by a Turing machine.

- X is NP_{K} if for all $x \in K^{n}$,

$$
x \in X \Leftrightarrow \exists y \in K^{p(n)}\langle x, y\rangle \in Y
$$

with $Y \in \mathrm{P}_{K}$.
A typical $\mathrm{NP}_{\mathbb{R}}$-complete problem :
decide whether a polynomial of degree 4 in n variables has a real root. Best algorithms to this day are of complexity exponential in n.

Decision is easy if evaluation is easy

VPAR : Families of polynomials computed by uniform arithmetic circuits of polynomial depth.

Theorem [Koiran-Périfel, STACS 2007] :
Uniform $\mathrm{VP}_{n b}=$ Uniform VPAR $\Rightarrow \mathrm{P}_{\mathbb{R}}=\mathrm{NP}_{\mathbb{R}}=\mathrm{PAR}_{\mathbb{R}}$.
Several versions (6 ?) of this theorem, depending on uniformity conditions and the role of constants.

Decision trees

$$
\exists x \in \mathbb{R} a x^{2}+b x+c=0 ?
$$

Internal nodes labeled by arbitrary polynomials.
Complexity \equiv tree depth.
Model is unrealistic :
the complexity of polynomial evaluation should be taken into account !

Circuits versus trees

Circuit with T test $(=, \leq)$ or selection gates \rightarrow tree of depth T.
Can $\mathrm{NP}_{\mathbb{R}}$ problems be solved by decision trees of polynomial depth?
If not, $\mathrm{P}_{\mathbb{R}} \neq \mathrm{NP}_{\mathbb{R}}$!
Similar questions for various structures M, for instance, $M=(\mathbb{C},+,-, \times,=),(\mathbb{R},+,-, \leq),(\mathbb{R},+,-,=),\{0,1\}$.

Do NP_{M} problems have polynomial depth decision trees ?
For $M=\{0,1\}$, the answer is...
Labels of internal nodes are of the form " $x_{i}=0$?".

Do NP_{M} problems have polynomial depth decision trees?
For $M=\{0,1\}$, Yes.

Do NP_{M} problems have polynomial depth decision trees? For $M=(\mathbb{R},+,-,=)$, the answer is...

Internal nodes are of the form :

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}+b=0 ?
$$

Do NP_{M} problems have polynomial depth decision trees ? For $M=(\mathbb{R},+,-=), \mathbf{N o}$.

Twenty Questions :
INPUT : x_{1}, \ldots, x_{n}.
QUESTION : $x_{1} \in\left\{0,1,2, \ldots, 2^{n}-1\right\}$?
Twenty Questions is in NP_{M} : guess $y \in\{0,1\}^{n}$, check that $x_{1}=\sum_{j=1}^{n} 2^{j-1} y_{j}$.
A canonical path argument shows that its decision tree complexity is 2^{n}. Therefore, $\mathrm{P}_{M} \neq \mathrm{NP}_{M}$ (Meer).
Conjecture (Shub-Smale) : Twenty Questions is not in $\mathrm{P}_{(\mathbb{C},+,-, \times,=)}$.

Do NP_{M} problems have polynomial depth decision trees ? For $M=(\mathbb{R},+,-, \leq)$, the answer is...

Internal nodes are of the form :

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}+b \geq 0 ?
$$

Remark : Twenty Questions is in P_{M} by binary search.

Do NP_{M} problems have polynomial depth decision trees?
For $M=(\mathbb{R},+,-, \leq)$, Yes.
Proof based on algorithms for point location in arrangements of hyperplanes.

R, S lie in the same 2 -dimensional cell.
$] P, Q[$ is a 1 -dimensional cell.
$\{P\}$ and $\{Q\}$ are 0 -dimensional cells.

Decision trees for $\mathrm{NP}_{(\mathbb{R},+,-, \leq)}$ problems : the construction

1. $\mathrm{NP}_{M} \subseteq \mathrm{PAR}_{M}$: problems solvable in parallel polynomial time (by uniform circuits of possibly exponential size).
2. For inputs in \mathbb{R}^{n}, any PAR_{M} problem is a union of cells of an arrangement of $2^{n^{O(1)}}$ hyperplanes.
3. In this arrangement, point location can be performed in depth $n^{O(1)}$ (Meiser, Meyer auf der Heide). Now, just label the leaves correctly.

Corollary [Fournier-Koiran] : if $\mathrm{P}=\mathrm{NP}$ then $\mathrm{P}_{M}=\mathrm{NP}_{M}$.
Proof sketch : with access to an NP oracle, one can effectively "run" the tree on any input $x \in \mathbb{R}^{n}$
(i.e., construct the path followed by x from the root to a leaf).

Do NP_{M} problems have polynomial depth decision trees? For $M=(\mathbb{C},+,-, \times,=)$, the answer is...

Internal nodes are of the form

$$
P\left(x_{1}, \ldots, x_{n}\right)=0 ?
$$

where P is an arbitrary polynomial.

Do NP_{M} problems have polynomial depth decision trees ? For $M=(\mathbb{C},+,-, \times,=)$, Yes.

Not the topic of this talk...

Do NP_{M} problems have polynomial depth decision trees? For $M=(\mathbb{R},+,-, \times, \leq)$, the answer is...

Internal nodes are of the form

$$
P\left(x_{1}, \ldots, x_{n}\right) \geq 0 ?
$$

where P is an arbitrary polynomial.

Do NP_{M} problems have polynomial depth decision trees?

$$
\text { For } M=(\mathbb{R},+,-, \times, \leq) \text {, Yes. }
$$

1. $\mathrm{NP}_{\mathbb{R}} \subseteq \mathrm{PAR}_{\mathbb{R}}$: problems solvable in parallel polynomial time (by uniform circuits of possibly exponential size).
2. For inputs in \mathbb{R}^{n}, any $\operatorname{PAR}_{\mathbb{R}}$ problem is a union of cells of an arrangement of $2^{n^{O(1)}}$ hypersurfaces of degree $2^{n^{O(1)}}$.

Fix polynomials P_{1}, \ldots, P_{s}.
Two points x and y are in the same cell if $\operatorname{sign}\left(P_{i}(x)\right)=\operatorname{sign}\left(P_{i}(y)\right)$ for all $i=1, \ldots, s$. Here, $\operatorname{sign}(a) \in\{-1,0,1\}$.
3. In this arrangement, point location can be performed in depth $n^{O(1)}$. Now, just label the leaves correctly.

Point location in arrangements of real hypersurfaces

Theorem [Grigoriev] : Point location can be done in depth $O(\log N)$, where N is the number of nonempty cells.

Remark : $N \leq(s d)^{O(n)}$ where $d=\max _{i=1, \ldots, s} \operatorname{deg}\left(P_{i}\right)$.
Hence $\log N=n^{O(1)}$.
Consider inputs x with $P_{i}(x) \neq 0$ for all i.
Nodes are of the form " $\prod_{j \in F} P_{j}(x)>0$?", where F is as follows.
Divide and Conquer Lemma :
Let $X=\{1, \ldots, s\}$ and F_{1}, \ldots, F_{N} nonempty subsets of X.
There exists $F \subseteq X$ such that $N / 3 \leq \mid\left\{F_{x} ;\left|F \cap F_{x}\right|\right.$ even $\} \mid \leq 2 N / 3$.
Apply to sets F_{x} defined by conditions of the form :

$$
j \in F_{x} \Leftrightarrow P_{j}(x)<0 .
$$

Then $\prod_{j \in F} P_{j}(x)>0 \Leftrightarrow\left|F \cap F_{x}\right|$ even.

Improved version of divide and conquer lemma

Theorem [Charbit, Jeandel, Koiran, Périfel, Thomassé] :
The range $\left[\frac{N}{3}, \frac{2 N}{3}\right]$ can be replaced by $\left[\frac{N}{2}-\alpha, \frac{N}{2}+\alpha\right]$ where $\alpha=\sqrt{N} / 2$.
Remark : One must have $\alpha=\Omega\left(\sqrt{N} /(\log N)^{1 / 4}\right)$.
Probabilistic proof : for a random subset F, let

$$
Y_{i}=1 \text { if }\left|F \cap F_{i}\right| \text { is even, and } Y_{i}=-1 \text { otherwise. }
$$

Need to show that there exists F such that $Y^{2} \leq N$, where $Y=\sum_{i=1}^{N} Y_{i}$. This follows from $E\left[Y^{2}\right]=N$:

$$
E\left[Y^{2}\right]=E\left[\sum_{i=1}^{N} Y_{i}^{2}+2 \sum_{i<j} Y_{i} Y_{j}\right]
$$

but $E\left[Y_{i}^{2}\right]=1$ and for $i \neq j$, by pairwise independence :

$$
E\left[Y_{i} Y_{j}\right]=E\left[Y_{i}\right] E\left[Y_{j}\right]=0
$$

This can be turned into a deterministic logspace algorithm.

A remark on derandomization

From Motwani, Naor and Naor 1994 :

"A natural approach towards de-randomizing algorithms is to find a method for searching the associated sample Ω for a good point w with respect to a given input instance I. Given such a point w, the algorithm $\mathcal{A}(I, w)$ is now a deterministic algorithm and it is guaranteed to find a correct solution. The problem faced in searching the sample space is that it is generally exponential in size. The result of Adleman showing that $R P \subseteq P /$ poly implies that the sample space Ω associated with a randomized algorithm always contains a polynomial-sized subspace which has a good point for each possible input instance. However, this result is highly non-constructive and it appears that it cannot be used to actually de-randomize algorithms."

Adleman strikes back

Given s and N, our deterministic logspace algorithm constructs a list of $s^{2} N^{2}(N+1)^{2}$ subsets of $X=\{1, \ldots, s\}$ such that for any input F_{1}, \ldots, F_{N} :

$$
\left.-\frac{\sqrt{N}}{2} \leq \mid\left\{F_{x} ;\left|F \cap F_{x}\right| \text { even }\right\} \right\rvert\,-\frac{N}{2} \leq \frac{\sqrt{N}}{2}
$$

holds for some element F of the list.
The deterministic algorithm then performs an exhaustive search in this list.

Effective point location :

Taking the complexity of polynomials into account
For a problem $A \in \mathrm{PAR}_{\mathbb{R}}$, hypersurfaces of the arrangement are defined by polynomials P_{i} in uniform VPAR :

Families of polynomials computed by uniform arithmetic circuits of polynomial depth.

Nodes of the tree of the form " $\prod_{i \in F} P_{i}(x)>0$?" where $F \in$ PSPACE : in Uniform VPAR.

Labels of leaves can be computed in PSPACE.
Theorem [Koiran-Périfel] : If VPAR families have polynomial size circuits, then $\mathrm{PAR}_{\mathbb{R}}$ problems have polynomial size circuits.

Can VPAR families have polynomial size circuits ?

- Very strong hypothesis.
- Admits several versions (6 ?), depending on uniformity conditions and role of constants.

With (polynomially) nonuniform circuits, and Valiant's convention for constants :
(i) $\mathrm{VPAR}=\mathrm{VP}_{n b}$.
i
(ii) $\mathrm{VP}=\mathrm{VNP}$ and $\mathrm{PSPACE} \subseteq \mathrm{P} /$ poly.
$\mathrm{VPAR}=\mathrm{VP}_{n b} \Rightarrow \mathrm{PSPACE} \subseteq \mathrm{P} /$ poly assumes GRH
(seems necessary to handle arbitrary constants).

Can we refute $[\mathrm{VP}=\mathrm{VNP}$ and $\mathrm{PSPACE} \subseteq \mathrm{P} /$ poly $]$?

To prove that $\neg(A \wedge B)$, one does not always have to prove $\neg A$ or $\neg B$.
For instance, we know that LOGSPACE $\neq \mathrm{P}$ or $\mathrm{P} \neq$ PSPACE.
It was shown by Bürgisser that (under GRH),
$\mathrm{VP}=\mathrm{VNP} \Rightarrow \mathrm{NP} \subseteq \mathrm{NC} /$ poly (problems recognized by polynomial size boolean circuits of polylogarithmic depth).

Hence, assuming GRH, the hypothesis implies that PSPACE \subseteq NC/poly.

Most uniform version of this hypothesis

$$
\text { Uniform }^{V_{P A R}}=\text { Uniform } \mathrm{VP}_{n b}^{0} \Rightarrow \text { P-uniform NC }=\text { PSPACE. }
$$

Proof is in two steps. Hypothesis implies :
(i) $\mathrm{P}=\mathrm{PSPACE}$.
(ii) P-uniform $\mathrm{NC}=\bigoplus \mathrm{P}$.

Proof of (ii) based on \bigoplus P-completeness of \bigoplus HAMILTONIAN PATHS.
Note that \sharp HAMILTONIAN PATHS is of the form

$$
\sum_{\sigma: n-\text { cycle } i \neq \operatorname{end}(\sigma)} a_{i \sigma(i)}
$$

where $\left(a_{i j}\right)$ is the graph's adjacency matrix.
Remark : It is known that LOGSPACE-uniform NC \neq PSPACE.

VPSPACE

Theorem :

A polynomial family $f_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{p(n)}\right]$ is in P-uniform VPAR^{0} iff :
(i) $p(n)$ is polynomially bounded.
(ii) $\operatorname{deg}\left(f_{n}\right)$ is exponentially bounded.
(iii) The bit size of the coefficients of f_{n} is exponentially bounded.
(iv) The map $\left(1^{n}, \bar{\alpha}\right) \mapsto a_{n, \bar{\alpha}}$ is PSPACE computable, where

$$
f_{n}(\bar{X})=\sum_{\bar{\alpha}} a_{n, \bar{\alpha}} \bar{X}^{\bar{\alpha}}
$$

This characterization is useful in the proof that

$$
[\mathrm{VP}=\mathrm{VNP} \text { and } \mathrm{PSPACE} \subseteq \mathrm{P} / \text { poly }] \Rightarrow \mathrm{VPAR}=\mathrm{VP}_{n b}
$$

A natural example of a VPAR family

Resultants of multivariate polynomial systems form a VPAR family.
Proof sketch :
(i) The Macaulay matrix is an exponential size matrix whose non-zero entries are coefficients of the polynomial system.
(ii) Determinants can be computed by arithmetic circuits of polylogarithmic depth.

Outcome of this work

- Focus put back on evaluation problems :
to show that certain decision problems (in $\mathrm{NP}_{\mathbb{R}}$, or $\mathrm{PAR}_{\mathbb{R}}$) are hard, one must first be able to show that certain evaluation problems (in VPAR) are hard.
- Suggestion of new lower bound problems :
various versions of "VP $n b=$ VPAR ?".
- Other natural (complete ?) polynomial families in VPAR ?

