
Algebraic versions of “P=NP ?”
Pascal Koiran

Laboratoire de l’Informatique du Parallélisme

Ecole Normale Supérieure de Lyon

MCU 2007, Orléans, Septembre 2007.

1

Valiant’s model : VPK = VNPK ?

– Complexity of a polynomial f measured by number L(f)

of arithmetic operations (+,-,×) needed to evaluate f :

L(f) = size of smallest arithmetic circuit computing f .

– (fn) ∈ VP if number of variables, deg(fn) and L(fn)

are polynomially bounded. For instance, (X2n

)6∈VP.

– (fn) ∈ VNP if fn(x) =
∑

y

gn(x, y)

for some (gn) ∈ VP
(sum ranges over all boolean values of y).
A typical VNP family : the permanent.

per(X) =
∑

σ∈Sn

n
∏

i=1

Xiσ(i).

It is VNP-complete if char(K) 6= 2.

2

VP and VNP are almost the only classes studied

in Valiant’s framework.

Sharp contrast with the “complexity theory zoo” of discrete classes

(> 400 classes at www.complexityzoo.com).

Some exceptions :

– VQP : deg(fn) polynomially bounded

and L(fn) ≤ npoly(log n).

– Malod (2003) has studied versions of VP and VNP

without bound on deg(fn) : VPnb, VNPnb ;

and constant-free classes : VP0, VNP0, VP0
nb, VNP0

nb.

– We will define a class VPSPACE (or VPAR ?) which contains VNPnb.

3

Blum-Shub-Smale model : PK = NPK ?

Circuit-based presentation due to Poizat

(similar to von zur Gathen’s arithmetic-boolean circuits).

– Computation model is richer : in addition to +,−,× gates,

circuits may use = and (if K ordered) ≤ gates.

Selection gates :

s(x, y, z) =

y if x = 0

z if x = 1

We may assume that x ∈ {0, 1}.

For instance, s(x, y, z) = xz + (1 − x)y.

– Focus on decision problems.

4

Complexity classes

– A problem : X ⊆ K∞ =
⋃

n≥1 Kn.

– X is PK if for all x ∈ Kn,

x ∈ X ⇔ Cn(x1, . . . xn, a1, . . . , ak) = 1

with Cn constructed in polynomial time by a Turing machine.

– X is NPK if for all x ∈ Kn,

x ∈ X ⇔ ∃y ∈ Kp(n)〈x, y〉 ∈ Y

with Y ∈ PK .

A typical NPR-complete problem :

decide whether a polynomial of degree 4 in n variables has a real root.

Best algorithms to this day are of complexity exponential in n.

5

Decision is easy if evaluation is easy

VPAR : Families of polynomials computed by uniform arithmetic circuits

of polynomial depth.

Theorem [Koiran-Périfel, STACS 2007] :

Uniform VPnb = Uniform VPAR ⇒ PR = NPR = PARR.

Several versions (6 ?) of this theorem,

depending on uniformity conditions and the role of constants.

6

Decision trees

∃x ∈ R ax2 + bx + c = 0 ?

A R

c = 0 ?
A

b = 0 ?

A R

b2 − 4ac ≥ 0 ?

a = 0 ?

Internal nodes labeled by arbitrary polynomials.
Complexity ≡ tree depth.
Model is unrealistic :
the complexity of polynomial evaluation should be taken into account !

7

Circuits versus trees

Circuit with T test (=,≤) or selection gates → tree of depth T .

Can NPR problems be solved by decision trees of polynomial depth ?

If not, PR 6= NPR !

Similar questions for various structures M , for instance,

M = (C, +,−,×, =), (R, +,−,≤), (R, +,−, =), {0, 1}.

8

Do NPM problems have polynomial depth decision trees ?
For M = {0, 1}, the answer is...

Labels of internal nodes are of the form “xi = 0 ?”.

9

Do NPM problems have polynomial depth decision trees ?
For M = {0, 1}, Yes.

A R

x3 = 0 ?

R A

x3 = 0 ?

x2 = 0 ?

R A

x3 = 0 ?

A R

x3 = 0 ?

x2 = 0 ?

x1 = 0 ?

10

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,=), the answer is...

Internal nodes are of the form :

a1x1 + · · · + anxn + b = 0?

11

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,=), No.

Twenty Questions :

INPUT : x1, . . . , xn.

QUESTION : x1 ∈ {0, 1, 2, . . . , 2n − 1} ?

Twenty Questions is in NPM : guess y ∈ {0, 1}n,

check that x1 =
∑n

j=1 2j−1yj .

A canonical path argument shows that its decision tree complexity is 2n.

Therefore, PM 6= NPM (Meer).

Conjecture (Shub-Smale) : Twenty Questions is not in P(C,+,−,×,=).

12

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,≤), the answer is...

Internal nodes are of the form :

a1x1 + · · · + anxn + b ≥ 0?

Remark : Twenty Questions is in PM by binary search.

13

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,≤), Yes.

Proof based on algorithms for point location in arrangements of hyperplanes.

Q

P
R

S

R, S lie in the same 2-dimensional cell.

]P, Q[is a 1-dimensional cell.

{P} and {Q} are 0-dimensional cells.

14

Decision trees for NP(R,+,−,≤) problems : the construction

1. NPM ⊆ PARM : problems solvable in parallel polynomial time

(by uniform circuits of possibly exponential size).

2. For inputs in R
n, any PARM problem is a union of cells

of an arrangement of 2nO(1)

hyperplanes.

3. In this arrangement, point location can be performed in depth nO(1)

(Meiser, Meyer auf der Heide). Now, just label the leaves correctly.

Corollary [Fournier-Koiran] : if P = NP then PM = NPM .

Proof sketch : with access to an NP oracle,

one can effectively “run” the tree on any input x ∈ Rn

(i.e., construct the path followed by x from the root to a leaf).

15

Do NPM problems have polynomial depth decision trees ?
For M = (C,+,−,×,=), the answer is...

Internal nodes are of the form

P (x1, . . . , xn) = 0?

where P is an arbitrary polynomial.

16

Do NPM problems have polynomial depth decision trees ?
For M = (C,+,−,×,=), Yes.

Not the topic of this talk...

17

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,×,≤), the answer is...

Internal nodes are of the form

P (x1, . . . , xn) ≥ 0?

where P is an arbitrary polynomial.

18

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,×,≤), Yes.

1. NPR ⊆ PARR : problems solvable in parallel polynomial time

(by uniform circuits of possibly exponential size).

2. For inputs in Rn, any PARR problem is a union of cells

of an arrangement of 2nO(1)

hypersurfaces of degree 2nO(1)

.

Fix polynomials P1, . . . , Ps.

Two points x and y are in the same cell if sign(Pi(x)) = sign(Pi(y))

for all i = 1, . . . , s.

Here, sign(a) ∈ {−1, 0, 1}.

3. In this arrangement, point location can be performed in depth nO(1).

Now, just label the leaves correctly.

19

Point location in arrangements of real hypersurfaces

Theorem [Grigoriev] : Point location can be done in depth O(log N),

where N is the number of nonempty cells.

Remark : N ≤ (sd)O(n) where d = maxi=1,...,s deg(Pi).

Hence log N = nO(1).

Consider inputs x with Pi(x) 6= 0 for all i.

Nodes are of the form “
∏

j∈F Pj(x) > 0 ?”, where F is as follows.

Divide and Conquer Lemma :
Let X = {1, . . . , s} and F1, . . . , FN nonempty subsets of X .

There exists F ⊆ X such that N/3 ≤ |{Fx; |F ∩ Fx| even }| ≤ 2N/3.

Apply to sets Fx defined by conditions of the form :

j ∈ Fx ⇔ Pj(x) < 0.

Then
∏

j∈F Pj(x) > 0 ⇔ |F ∩ Fx| even.

20

Improved version of divide and conquer lemma

Theorem [Charbit, Jeandel, Koiran, Périfel, Thomassé] :
The range [N

3 , 2N
3] can be replaced by [N

2 −α, N
2 +α] where α =

√
N/2.

Remark : One must have α = Ω(
√

N/(log N)1/4).

Probabilistic proof : for a random subset F , let

Yi = 1 if |F ∩ Fi| is even, and Yi = −1 otherwise.

Need to show that there exists F such that Y 2 ≤ N , where Y =
∑N

i=1 Yi.
This follows from E[Y 2] = N :

E[Y 2] = E[
N

∑

i=1

Y 2
i + 2

∑

i<j

YiYj]

but E[Y 2
i] = 1 and for i 6= j, by pairwise independence :

E[YiYj] = E[Yi]E[Yj] = 0.

This can be turned into a deterministic logspace algorithm.

21

A remark on derandomization

From Motwani, Naor and Naor 1994 :

“A natural approach towards de-randomizing algorithms is to find a

method for searching the associated sample Ω for a good point w with

respect to a given input instance I . Given such a point w, the algorithm

A(I, w) is now a deterministic algorithm and it is guaranteed to find a

correct solution. The problem faced in searching the sample space is that

it is generally exponential in size. The result of Adleman showing that

RP ⊆ P/poly implies that the sample space Ω associated with a

randomized algorithm always contains a polynomial-sized subspace

which has a good point for each possible input instance. However, this

result is highly non-constructive and it appears that it cannot be used to

actually de-randomize algorithms.”

22

Adleman strikes back

Given s and N , our deterministic logspace algorithm constructs a list

of s2N2(N + 1)2 subsets of X = {1, . . . , s} such that for any input

F1, . . . , FN :

−
√

N

2
≤ |{Fx; |F ∩ Fx| even}| − N

2
≤

√
N

2
.

holds for some element F of the list.

The deterministic algorithm then performs an exhaustive search

in this list.

23

Effective point location :
Taking the complexity of polynomials into account

For a problem A ∈ PARR, hypersurfaces of the arrangement are defined

by polynomials Pi in uniform VPAR :

Families of polynomials computed by uniform arithmetic circuits
of polynomial depth.

Nodes of the tree of the form “
∏

i∈F Pi(x) > 0 ?” where F ∈ PSPACE :

in Uniform VPAR.

Labels of leaves can be computed in PSPACE.

Theorem [Koiran-Périfel] : If VPAR families have polynomial size

circuits, then PARR problems have polynomial size circuits.

24

Can VPAR families have polynomial size circuits ?

– Very strong hypothesis.

– Admits several versions (6 ?), depending on uniformity conditions

and role of constants.

With (polynomially) nonuniform circuits,

and Valiant’s convention for constants :

(i) VPAR = VPnb.

m
(ii) VP = VNP and PSPACE ⊆ P/poly.

VPAR = VPnb ⇒ PSPACE ⊆ P/poly assumes GRH

(seems necessary to handle arbitrary constants).

25

Can we refute [VP = VNP and PSPACE ⊆ P/poly] ?

To prove that ¬(A ∧ B), one does not always have to prove ¬A or ¬B.

For instance, we know that LOGSPACE 6= P or P 6= PSPACE.

It was shown by Bürgisser that (under GRH),

VP = VNP ⇒ NP ⊆ NC/poly (problems recognized by polynomial size

boolean circuits of polylogarithmic depth).

Hence, assuming GRH, the hypothesis implies that PSPACE ⊆ NC/poly.

26

Most uniform version of this hypothesis

Uniform VPAR0 = Uniform VP0
nb ⇒ P-uniform NC = PSPACE.

Proof is in two steps. Hypothesis implies :

(i) P = PSPACE.

(ii) P-uniform NC =
⊕

P.

Proof of (ii) based on
⊕

P-completeness of
⊕

HAMILTONIAN PATHS.

Note that]HAMILTONIAN PATHS is of the form
∑

σ: n−cycle

∏

i6=end(σ)

aiσ(i)

where (aij) is the graph’s adjacency matrix.

Remark : It is known that LOGSPACE-uniform NC 6= PSPACE.

27

VPSPACE

Theorem :
A polynomial family fn ∈ Z[X1, . . . , Xp(n)] is in P-uniform VPAR0 iff :

(i) p(n) is polynomially bounded.

(ii) deg(fn) is exponentially bounded.

(iii) The bit size of the coefficients of fn is exponentially bounded.

(iv) The map (1n, α) 7→ an,α is PSPACE computable, where

fn(X) =
∑

α

an,αX
α
.

This characterization is useful in the proof that

[VP = VNP and PSPACE ⊆ P/poly] ⇒ VPAR = VPnb.

28

A natural example of a VPAR family

Resultants of multivariate polynomial systems form a VPAR family.

Proof sketch :

(i) The Macaulay matrix is an exponential size matrix whose non-zero

entries are coefficients of the polynomial system.

(ii) Determinants can be computed by arithmetic circuits

of polylogarithmic depth.

29

Outcome of this work

– Focus put back on evaluation problems :

to show that certain decision problems (in NPR, or PARR) are hard,

one must first be able to show that certain evaluation problems

(in VPAR) are hard.

– Suggestion of new lower bound problems :

various versions of “VPnb = VPAR ?”.

– Other natural (complete ?) polynomial families in VPAR ?

30

