Algebraic versions of “P=NP ?”

Pascal Koiran
Laboratoire de I’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon

MCU 2007, Orléans, Septembre 2007.

Valiant'smoddl : VP = VNPg ?

— Complexity of a polynomial f measured by number L(f)
of arithmetic operations (+,-,x) needed to evaluate f :

L(f) = size of smallest arithmetic circuit computing f.
— (fn) € VP if number of variables, deg(f,) and L(f,,)
are polynomially bounded. For instance, (X2")& VP.

~ (fa) € VNPIf f,(z) = Zgn@, 7)

for some (g,,) € VP
(sum ranges over all boolean values of).
A typical VNP family : the permanent.

per(X) = Z HXia(z')-

cesS,, 1=1

It is VNP-complete if char(K) # 2.

VP and VNP are almost the only classes studied
In Valiant’s framework.

Sharp contrast with the “complexity theory zoo” of discrete classes
(> 400 classes at www.complexityzoo.com).

Some exceptions :

— VQP : deg(f,,) polynomially bounded
and L(f,) < nPOIYUogn)

— Malod (2003) has studied versions of VP and VNP
without bound on deg(f,,) : VPnp, VNP4 ;
and constant-free classes : VP, VNPY, VP, VNP, .

nb

— We will define a class VPSPACE (or VPAR ?) which contains VNP,,;.

Blum-Shub-Smale model : P = NPy ?

Circuit-based presentation due to Poizat
(similar to von zur Gathen’s arithmetic-boolean circuits).

Computation model is richer : in addition to 4+, —, x gates,
circuits may use = and (if & ordered) < gates.
Selection gates :

yifz =0
s(x,y,z) = _
zifx =1
We may assume that x € {0, 1}.
For instance, s(x,y,2) = xz + (1 — x)y.
Focus on decision problems.

Complexity classes

— Aproblem: X C K>~ ={]J ., K"
— X I1sPg ifforall x € K™,

re X e Oy(ry,...0n,a1,...,a;) =1

with C',, constructed in polynomial time by a Turing machine.

— X ISNPg ifforall z € K™,

reX e Iye KM (z,y)eY

A typical NPr-complete problem :

decide whether a polynomial of degree 4 in n variables has a real root.
Best algorithms to this day are of complexity exponential in n.

Decision is easy If evaluation is easy

VPAR : Families of polynomials computed by uniform arithmetic circuits
of polynomial depth.

Theorem [Koiran-Périfel, STACS 2007] :
Uniform VP,,;, = Uniform VPAR = Pr = NPr = PARR.

Several versions (6 ?) of this theorem,
depending on uniformity conditions and the role of constants.

Decision trees

JreRazx? +br+c=07?

a=07

A
Internal nodes labeled by arbitrary polynomials.
Complexity = tree depth.

Model is unrealistic :
the complexity of polynomial evaluation should be taken into account!

Circuits versus trees

Circuit with T test (=, <) or selection gates — tree of depth 7.

Can NPy problems be solved by decision trees of polynomial depth ?
If not, Pr 7& NPp !

Similar questions for various structures M, for instance,
M = ((C7 _|_7 — X, :)7 (Ra —|_7 I S)) (Ra +7 T :)7 {07 1}

Do NP,, problems have polynomial depth decision trees?
For M = {0, 1}, theanswer is...

Labels of internal nodes are of the form “x; = 07?”.

Do NP,, problems have polynomial depth decision trees?
For M = {0,1}, Yes.

5131:07

Do NP,, problems have polynomial depth decision trees?
For M = (R, +, —, =), the answer is...

Internal nodes are of the form :

arx1+ -+ a,x, +b=07

Do NP,, problems have polynomial depth decision trees?
For M = (R, +,—,=), No.

Twenty Questions :
INPUT : zq,...,2,.
QUESTION : z; € {0,1,2,...,2" — 1} ?

Twenty Questions is in NP, : guess y € {0,1}",
check that z; = Z;‘:l 271y

A canonical path argument shows that its decision tree complexity is 2.
Therefore, Py; # NP, (Meer).

Conjecture (Shub-Smale) : Twenty Questions isnotin Pc o _ —).

Do NP,, problems have polynomial depth decision trees?
For M = (R, +, —, <), theanswer is...

Internal nodes are of the form :

aixy + -+ a,xr, +b>07

Remark : Twenty Questions isin P, by binary search.

Do NP,, problems have polynomial depth decision trees?
For M = (R, +, —, <), Yes.

Proof based on algorithms for point location in arrangements of hyperplanes.

R, S lie in the same 2-dimensional cell.
| P, Q] is a 1-dimensional cell.
{P} and {Q@} are O-dimensional cells.

Decision treesfor NPz . _ <) problems : the construction

1. NP, € PAR,, : problems solvable in parallel polynomial time
(by uniform circuits of possibly exponential size).

2. For inputs in R", any PAR, problem is a union of cells
of an arrangement of ont hyperplanes.

3. In this arrangement, point location can be performed in depth n (1)
(Meiser, Meyer auf der Heide). Now, just label the leaves correctly.

Coroallary [Fournier-Koiran] : if P = NP then Py, = NPj,.

Proof sketch : with access to an NP oracle,
one can effectively “run” the tree on any input z € R”
(i.e., construct the path followed by 2 from the root to a leaf).

Do NP,, problems have polynomial depth decision trees?
For M = (C, 4+, —, x, =), theanswer is...

Internal nodes are of the form
P(Zlfl,...,il?n) = 07

where P is an arbitrary polynomial.

Do NP,, problems have polynomial depth decision trees?
For M = (C,+, —, x,=), Yes.

Not the topic of this talk...

Do NP,, problems have polynomial depth decision trees?
For M = (R, +, —, x, <), the answer is...

Internal nodes are of the form

P(Zlfl,...,il?n) > 07

where P is an arbitrary polynomial.

Do NP,, problems have polynomial depth decision trees?
For M = (R, +, —, x, <), Yes.

1. NPr C PARy : problems solvable in parallel polynomial time
(by uniform circuits of possibly exponential size).

. For inputs in R™, any PARR problem is a union of cells
)

of an arrangement of gn®t hypersurfaces of degree on

Fix polynomials P, ..., P;.

Two points x and y are in the same cell if sign(P;(x)) = sign(P;(y))
foralli =1,...,s.

Here, sign(a) € {—1,0,1}.

. In this arrangement, point location can be performed in depth n©(1),
Now, just label the leaves correctly.

Point location in arrangements of real hypersurfaces

Theorem [Grigoriev] : Point location can be done in depth O(log N),
where N is the number of nonempty cells.

Remark : N < (sd)°™ where d = max;—; , deg(P;).
Hence log N = n©W),

Consider inputs x with P;(x) # 0 for all .
Nodes are of the form “[[. . P;(z) > 07", where F is as follows.

Divide and Conquer Lemma.:

Let X = {1,...,s}and Fy,..., Fy nonempty subsets of X.

There exists F* C X such that N/3 < |[{F,; |F N F,|even }| <2N/3.
Apply to sets F,. defined by conditions of the form :

j€F, < Pi(x) <O.

Then [[.cr Pi(z) > 0 < |F N Fy| even.

|mproved version of divide and conquer lemma

Theorem [Charbit, Jeandel, Koiran, Périfel, Thomassé] :

The range [4, 2] can be replaced by [— a, & + o] where a = VN /2.

Remark : One must have a = Q(v/ N /(log N)'/4).

Probabilistic proof : for a random subset F, let
Y; =1if |[F N F;| iseven, and Y; = —1 otherwise.

Need to show that there exists ' such that Y2 < N, where Y = 37 'Y},
This follows from E[Y?] = N :

ZY2+2ZYY

1<J
but E[Y;?] = 1 and for i # j, by pairwise independence :
E[Y;Y;] = E[Yi|E[Y;] = 0.

Thiscan beturned into a deter ministic logspace algorithm.

A remark on derandomization

From Motwani, Naor and Naor 1994 :

“A natural approach towards de-randomizing algorithms is to find a
method for searching the associated sample €2 for a good point w with
respect to a given input instance 1. Given such a point w, the algorithm
A(I,w) is now a deterministic algorithm and it is guaranteed to find a

correct solution. The problem faced in searching the sample space is that
It is generally exponential in size. The result of Adleman showing that
RP C P/poly implies that the sample space €2 associated with a
randomized algorithm always contains a polynomial-sized subspace
which has a good point for each possible input instance. However, this
result is highly non-constructive and it appears that it cannot be used to
actually de-randomize algorithms.”

Adleman strikes back

Given s and NV, our deterministic logspace algorithm constructs a list
of s N?(N + 1)% subsets of X = {1, ..., s} such that for any input

<

VN N VN
2 = 2

5 < |{F.; |[FNF,| even}| —

holds for some element F' of the list.

The deterministic algorithm then performs an exhaustive search
In this list.

Effective point location :
Taking the complexity of polynomials into account

For a problem A € PARg, hypersurfaces of the arrangement are defined
by polynomials P; in uniform VPAR :

Families of polynomials computed by uniform arithmetic circuits
of polynomial depth.

Nodes of the tree of the form “] [._ . P;(z) > 0?” where I’ € PSPACE :
In Uniform VPAR.

Labels of leaves can be computed in PSPACE.

Theorem [Koiran-Périfel] : If VPAR families have polynomial size
circuits, then PARy problems have polynomial size circuits.

Can VPAR families have polynomial size circuits?

— Very strong hypothesis.
— Admits several versions (6 ?), depending on uniformity conditions
and role of constants.

With (polynomially) nonuniform circuits,
and Valiant’s convention for constants :

(i) VPAR = VP,

0

(i) VP = VNP and PSPACE C P/poly.

VPAR = VP,,;, = PSPACE C P/poly assumes GRH
(seems necessary to handle arbitrary constants).

Can werefute [VP = VNP and PSPACE C P/poly] ?

To prove that —=(A A B), one does not always have to prove —A or —B.
For instance, we know that LOGSPACE = P or P £ PSPACE.

It was shown by Birgisser that (under GRH),

VP = VNP =- NP C NC/poly (problems recognized by polynomial size
boolean circuits of polylogarithmic depth).

Hence, assuming GRH, the hypothesis implies that PSPACE C NC/poly.

Most uniform version of this hypothesis

Uniform VPAR® = Uniform VP, = P-uniform NC = PSPACE.

Proof is in two steps. Hypothesis implies :

(i) P =PSPACE.

(if) P-uniform NC = 5 P.

Proof of (ii) based on € P-completeness of GHAMILTONIAN PATHS.
Note that tHAMILTONIAN PATHS is of the form

>, 1l ewn
o: n—cycle i#end(o)
where (a;;) is the graph’s adjacency matrix.

Remark : It is known that LOGSPACE-uniform NC = PSPACE.

VPSPACE

Theorem :

A polynomial family f,, € Z[X, ..., X, is in P-uniform VPARY iff :
(i) p(n) is polynomially bounded.

(i) deg(f,) is exponentially bounded.

(it1) The bit size of the coefficients of f,, is exponentially bounded.

(iv) The map (1", @) — a,_ & IS PSPACE computable, where

X)) =) anzX .
This characterization is useful in the proof that

'VP = VNP and PSPACE C P/poly] = VPAR = VP,,;.

A natural example of aVPAR family

Resultants of multivariate polynomial systems form a VPAR family.

Proof sketch :

(i) The Macaulay matrix is an exponential size matrix whose non-zero
entries are coefficients of the polynomial system.

(i) Determinants can be computed by arithmetic circuits
of polylogarithmic depth.

Outcome of this work

— Focus put back on evaluation problems :
to show that certain decision problems (in NPy, or PARR) are hard,
one must first be able to show that certain evaluation problems

(in VPAR) are hard.
— Suggestion of new lower bound problems :
various versions of “VP,,;, = VPAR ?”,
— Other natural (complete ?) polynomial families in VPAR ?

