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A new definition of CA by neighborhood function

induces countably many CA,

which have the same local function and different
neighborhoods.

By this, we begin the research of CA from a new point
of view.
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Cellular Automaton (S, Q, fn, ν)

1. S: discrete cellular space such as Z, Z2, hyperbolic grid ...

2. Q: set of states of a cell. Q = GF (q) where q = pk.

3. fn(x0, x1, ..., xn−1) : local function in n variables.

4. ν: injection from {0, 1, ..., n−1} to S, called the neighborhood
function.

A neighborhood function defines connection between variables
of fn and neighbors for CA: xi is connected to ν(i), 0 ≤ i ≤
n − 1.

range(ν) ≡ (ν(0), ν(1), ..., ν(n − 1)) is the neighborhood N
in the usual definition of CA (S, Q, f, N).
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Figure 1:Neighborhood function
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The global map Fν : C → C where C = QS is defined as usual:
for any c ∈ C and j ∈ S, c(j) is the state of cell j in c and we have

Fν(c)(j) = fn(c(j+ν(0)), c(j+ν(1)), ..., c(j+ν(n−1))). (1)

The local function fn is expressed by a polynomial over Q in n
variables (x0, x1, x2, ..., xn−1), see [3].

In case of tertiary function,

f3(x, y, z) = u0 + u1x + u2y + · · · + uix
hyjzk + · · ·

+ uq3−2x
q−1yq−1zq−2 + uq3−1x

q−1yq−1zq−1,

where ui ∈ Q, 0 ≤ i ≤ q3 − 1. (2)

In case of binary states Q = GF (2) = {0, 1},

f3(x, y, z) = u0+u1x+u2y+u3z+u4xy+u5xz+u6yz+u7xyz,

where ui ∈ {0, 1}, 0 ≤ i ≤ 7. (3)
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Figure 2:1-d CA withν(0) = −2, ν(1) = 0, ν(2) = 1

Changing the neighborhood / H.Nishio MCU20007, 10-13 September 2007 6/38



Countably many CA induced by changing the
neighborhood

Theorem 1 By changing the neighborhood function ν, infinitely many
different global CA functions Fν are induced from any single local
function f3(x, y, z) which is not constant.

Proof:
It is clear that to each non-constant function f3 at least one of the
following three cases applies.

Case 1) f3(a, b, c) ̸= f3(a, b, c′) for a, b, c ̸= c′ ∈ Q.

Case 2) f3(a, b, c) ̸= f3(a, b′, c) for a, b ̸= b′, c ∈ Q.

Case 3) f3(a, b, c) ̸= f3(a
′, b, c) for a ̸= a′, b, c ∈ Q.
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Case 1)
Consider CA and CA’ which have the same local function f3(x, y, z)
and different neighborhoods (−1, 0, 1 + k) and (−1, 0, 1 + k′) where
0 ≤ k < k′. Then, for configuration W = vabδcδ′c′w, where
W (0) = b, δ and δ′ are words of lengths k − 1 and k′ − k − 1
and v, w are semi-infinite words over Q, we have F (W )(0) =
f3(a, b, c) ̸= f3(a, b, c′) = F ′(W )(0). That is F (W ) ̸= F ′(W ).
In this way, countably many CA {(Z, Q, f3, (−1, 0, 1+k)), k ≥ 1}
are induced from a single local function f3.

−1 0 k k0

W v a b δ c δ0 c0 w

F (W ), F 0(W ) v0 f3 ζ ζ0 w0
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Case 2)
Consider CA and CA’ which have the same local function f3(x, y, z)
and different neighborhoods (−1, 2 + k, 1) and (−1, 2 + k′, 1), where
0 ≤ k < k′. Then, for configuration W = vadcδbδ′b′w, where
W (0) = d, δ and δ′ are words of lengths k − 1 and k′ − k − 1
and v, w are semi-infinite words over Q, we have F (W )(0) =
f3(a, b, c) ̸= f3(a, b′, c) = F ′(W )(0). That is F (W ) ̸= F ′(W ).
In this way, countably many CA {{(Z, Q, f3, (−1, 2 + k, 1)), k ≥
1} are induced from a single local function f3.

−1 0 1 k k0

W v a d c δ b δ0 b0 w

F (W ), F 0(W ) v0 f3 ζ ζ0 w0
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Case 3)
Consider CA and CA’ which have the same local function f3(x, y, z)
and different neighborhoods (−k − 1, 0, 1) and (−k′ − 1, 0, 1) where
0 ≤ k < k′. Then, for configuration W = va′δ′aδbcw, where
W (0) = b, δ and δ′ are words of lengths k − 1 and k′ − k − 1
and v, w are semi-infinite words over Q, we have F (W )(0) =
f3(a, b, c) ̸= f3(a

′, b, c) = F ′(W )(0). That is F (W ) ̸= F ′(W ).
In this way, countably many CA {(Z, Q, f3, (−1−k, 0, 1)), k ≥ 1)}
are induced from a single local function f3. ¥

k0 k 0 1
W v a0 δ0 a δ b c w

F (W ), F 0(W ) v0 ζ0 ζ f3 w0
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Elementary Cellular Automaton

• Elementary Local Function (ELF): f3(x, y, z) over GF (2).
There are 256 ELF by Equation(3).

• Elementary Neighborhood νE: range(νE) = (−1, 0, 1) or
ENB = (−1, 0, 1).

• Elementary Cellular Automaton (ECA): (Z, GF (2), f3, νE).
There are 256 ECA.

• Wolfram number vs. polynomial: Rule 90 = x + z over GF (2).

Corollary 1 There are countably many 2 states 3 neighbors CA dif-
ferent from ECA.
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Problems arising from this result

What kind of CA is induced from ELF by changing the neighbor-
hood?

For example,

Does an irreducible ECA become reducible by changing the neigh-
borhood?

Does a nonuniversal ECA become universal by changing the neigh-
borhood?

...etc.

Then, finally, what is the neighborhood?
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Equivalence of CA

When Z and Q are understood, we denote (Z, Q, fn, ν) simply by
(fn, ν).

Definition 1 Two CA (fn, ν) and (f ′
n′, ν′) are called equivalent, de-

noted by (fn, ν) ∼= (f ′
n′, ν′), if and only if their global maps are

equal.

Note that there is a local function which induces the same CA for
different neighborhood functions, while different local functions may
induce the same CA by changing the neighborhood function.

For example, (R85, (−1, 0, 1)) ∼= (R51, (−1, 1, 0)), where R85
and R51 are ELF in Wolfram number which give reversible ECA on
ENB, see proof of Theorem 7.
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Decidability of equivalence ∼=
Theorem 2 The equivalence ∼= of CA is decidable.

Proof: Consider two CA (fn, ν) and (f ′
n′, ν′) for the same set Q of

states. Let N = range(ν) ∪ range(ν′). We will consider finite
“subconfigurations” ℓ : N → Q.

Changing in c the states of cells outside the finite part N has no
influence in the computation of F (c)(0) or F ′(c)(0). Thus any sub-
configuration ℓ determines states F (c)(0) or F ′(c)(0) which we
denote G(ℓ) and G′(ℓ).

• Now assume, that the two CA are not equivalent: (fn, ν) ̸∼=
(f ′

n′, ν′), i.e. the corresponding global maps F and F ′ are not
the same. Then there is a configuration c such that F (c) ̸=
F ′(c). Since global maps commute with the shift, it is without
loss of generality to assume that F (c)(0) ̸= F ′(c)(0). Hence
in this case there is an ℓ = c|N such that G(ℓ) ̸= G′(ℓ).
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• On the other hand, when there exists an ℓ such that G(ℓ) ̸=
G′(ℓ), then obviously F and F ′ will be different for any config-
uration c satisfying c|N = ℓ and hence the CA are not equiva-
lent.

For deciding the equivalence it is therefore sufficient to check whether
for all ℓ : N → Q holds: G(ℓ) = G′(ℓ). If this is the case, the two
CA are equivalent, if not they are not. ¥
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The following easily proved proposition shows that for CA defined
by the neighborhood function ν, there is an equivalent CA’ having
the ordinary neighborhood of scope 2r + 1.

Proposition 1 For (fn, ν), let r = max{|ν(i)| | 0 ≤ i ≤ n −
1}. Then there is an equivalent (f ′

2r+1, ν′) such that range(ν′) =
(−r, −r + 1, ..., 0, ...., r − 1, r) and f ′

2r+1 takes the same value
as fn on range(ν), while variables xi are don’t care for i such that
ν′(i) /∈ range(ν).
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Neighborhood family

Definition 2 The neighborhood family F(fn) of fn is an infinite set
of global functions defined by

F(fn) =
∪

ν∈Nn

{(fn, ν)}, (4)

where Nn is the set of all injections ν : {0, . . . , n − 1} → Z.

Definition 3 A permutation π of range(ν) is denoted by π(ν) or
simply π when ν is known. The permutation family P(fn, ν) of
(fn, ν) is a finite set of global functions defined by

P(fn, ν) =

n!−1∪
i=0

{(fn, πi(ν))}. (5)
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Example: In case of n=3 there are 6 permutations of ENB.

π0 = (−1, 0, 1), π1 = (−1, 1, 0), π2 = (0, −1, 1),

π3 = (0, 1, −1), π4 = (1, −1, 0), π5 = (1, 0, −1).

Proposition 2 The set of CA {(fn, ν) | fn : n-ary function} is
closed under permutation of the neighborhood. That is

∪
fn

P(fn, ν) =

n!−1∪
i=0

{(fn, πi(ν))} =
∪
fn

{(fn, ν)}. (6)

Proof: Since a permutation of the neighborhood amounts to a per-
mutation of the variables of the local function with the neighborhood
being fixed to ν, for any fn there is a function gn and permutation
πi such that (fn, ν) ∼= (gn, πi(ν)) for some 1 ≤ i ≤ n! − 1. ¥
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Three properties of CA preserved from changing the neighborhood.

Proposition 3 fn(x1, ..., xn) is called totalistic if it is a function of∑n
i=1 xi. If fn is totalistic, then any (fn, ν) ∈ F(fn) is totalistic.

Proposition 4 An affine CA is defined by a local function

fn(x1, x2, ..., xn) = u0+u1x1+· · ·+unxn, where ui ∈ Q, 0 ≤ i ≤ n.

If fn is affine, then any (fn, ν) ∈ F(fn) is affine.

Proposition 5 A local function f : Qn → Q is called balancedif
|f−1(a)| = |Q|n−1, ∀a ∈ Q. A finite CA is called balanced if any
global configuration has the same number of preimages. In case of
finite CA, if (fn, ν) is balanced then (fn, π(ν)) is balanced for any
π.
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A property sensitive to permutation of the neighborhood.

Proposition 6 The number-conserving ECA is sensitive to permu-
tation.

Proof: The only number-conserving ECA are (R184, π0) and its
conjugate (R226, π0) [1]. It is seen that (R184, π2) ∼= (R172, π0)
which is not number-conserving. A similar relation holds for R226.
¥
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Reversibility of CA

There are 6 reversible ECA and 1800 reversible 3 states CA on
ENB, see page 436 of [5].

For 2 states CA, we have

Proposition 7 The set of (6) reversible ECA is closed under per-
mutation of neighborhoods.

Proof: There are 6 reversible ECA; R15, R51, R85, R170, R204,
R240 expressed by Wolfram numbers, see page 436 of [5]. Their
local functions are listed in Table 1. In the sequel such 6 functions
are called elementary reversible functions(ERF for short). Note that
R204 is the conjugate of R51, R240 is the conjugate of R15 and
R170 is the conjugate of R85.
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Table 1. Reversible CA with 2 states 3 neighbors

local configuration 000 001 010 011 100 101 110 111
R15 1 1 1 1 0 0 0 0
R51 1 1 0 0 1 1 0 0
R85 1 0 1 0 1 0 1 0

R170 0 1 0 1 0 1 0 1
R204 0 0 1 1 0 0 1 1
R240 0 0 0 0 1 1 1 1

For instance, from R51, by permuting ENB, we obtain R15 and R85.
Summing up, we see that
(R51, π1) ∼= (R85, π0), (R51, π2) ∼= (R15, π0)
(R51, π3) ∼= (R15, π0), (R51, π4) ∼= (R15, π0)
(R51, π5) ∼= (R51, π0).
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Similarly from R204 we obtain R170 and R240 by permutation. Note,
however, that R170 can not be obtained by permutation of R51, but
by complementation. In other word, P(R51, νE) ∩ P(R170, νE) =
∅. ¥
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In case of binary CA, reversibility is independent of the neighbor-
hood.

Proposition 8 Let fRELF be an ELF contained by Table 1. Then
(fRELF , ν) is reversible for any ν, in particular for ν ̸= ENB.

Proof: R15 = x+1, where variables y and z are don’t care, and CA
(R15, ENB) is essentially a right shift by 1 cell. Now, it is seen that
(R15, (−k, l, m)) is a right shift by k cells for any integers k, l, m,
which is a reversible CA. Since R51 = y + 1 and R85 = z + 1,
we have the same conclusion that they define reversible CAs for
any neighborhood functions. As for R170 = z, R204 = y and
R240 = x, we have the same conclusion. ¥
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Problem 1 Is there an irreversible ELF (a function not contained by
Table 1) such that (fELF , ν) becomes reversible, when ν ̸= ENB.
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In case of 3 states CA, a proposition like Proposition 8 does not
hold.

Proposition 9 There is a 3 states local function fR3 such that (fR3, ν)
is reversible if ν = ENB, but not if ν ̸= ENB.
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Proof: Among 333

3 states 3-ary local functions, 1800 give rise to
reversible CA on ENB [5]. However, for example, R[270361043509]
is proved not injective nor surjective on (−1, 0, 2).

Injectivity: R[270361043509] on neighborhood (−1, 0, 2) maps both
global configurations 010 and 0110 to 101. So, it is not injective.

Surjectivity: Clemens Lode [2], student of the University of Karl-
sruhe, wrote a Java program called catest105, based on the Sutner-
Tarjan algorithm, which tests injectivity and surjectivity of CA for ar-
bitrary neighborhoods. The program classifies R270361043509 as
not to be injective nor surjective on (−1, 1, 0), (−1, 0, 2) and on
other several neighborhoods. ¥
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Java Applet Program catest105 which tests injectivity
and surjectivity of 1-dimensional CA on different

neighborhoods
The following slides show the front page of catest105 with example
parameters and testing results for 3-ary CA Rule 270361043509
and 277206003607 (3 states) as well as Rule 90 (2 states) respec-
tively.

• The neighborhood size is given by a positive integer k and the
significant neighborhood size is a positive integer 1 ≤ h ≤ k.
Then we have a significant neighborhood N ⊆ {0, 1, ..., k−1}
of size h.

• By selecting a parameter all neiborhood permutations the pro-
gram tests CA on every significant neighborhood N of size h
contained by the scope k neighborhood {0, 1, .., k − 1}. For
instance, there are 12 significant neighborhoods of size 3 in the
scope 4 neighborhood.
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Figure 3:Front page of catest105
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Figure 4:Test of 270361043509
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Figure 5:Test of 277206003607
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Figure 6:Test of 90
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Conjecture 1 By use of catest105, we see that another 3 states re-
versible CA R277206003607 in [5] is reversible on all permutations
of ENB and on permutations of many other neighborhoods such as
(−1, 0, 2), (−1, 0, 3) and (−2, 0, 1). See the previous slide.

From this, we conjecture that R277206003607 is reversible for ar-
bitrary neighborhoods of size 3 in Z.
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Java Applet Simulator for 1-dimensional CA on different
neighborhoods

We are using a Java Applet simulator of 1-dimensional CA coded
by Christoph Scheben for the Institute of Informatics, University of
Karlsruhe [4].

It works for arbitrary local function, number of states, neighbor-
hood and initial configuration (including random configurations) up
to 1,000 cells with cyclic boundary and 1,000 time steps. The simu-
lator is the first of this kind —arbitrary neighborhoods.

The following figures are outputs of the simulator, where the local
function Rule 110 is fixed while the neighborhood is changed. Num-
ber of cells × time is 1000 × 1000 with cyclic boundary. The initial
configuration is random (p(0) = p(1) = 0.5) and the same for all
cases.
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Figure 7:Rule 110 with neighborhood(−1, 0, 1)=ENB
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Figure 8:Rule 110 with neighborhood(0, −1, 1)
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Thank you for your attention!

Many thanks are due to Thomas Worsch
for his cooperation throughout this research,

as well as to his students for coding Java Applet programs.
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