A simple P-complete problem and its representations by language equations

Alexander Okhotin

University of Turku and Academy of Finland

September 13, 2007

Alexander Okhotin

Simple P-complete problem and language equations September 13, 2007

13, 2007 1 / 16

• Family of devices.

- 一司

2 / 16

-

3

• Family of devices.

- Turing machines
- 2 Linear context-free grammars
- Trellis automata

- Family of devices.
- Family of languages.

- Turing machines
- Iinear context-free grammars
- Trellis automata

- Family of devices.
- Family of languages.

Turing machines:
 RE
 Linear context-free grammars:
 ⊊ NL
 Trellis automata:
 ⊊ P

- Family of devices.
- Family of languages.
- Hardest set.

Turing machines:
 RE
 Linear context-free grammars:
 ⊊ NL
 Trellis automata:
 ⊊ P

- Family of devices.
- Family of languages.
- Hardest set.

Turing machines:

RE-complete

- ② Linear context-free grammars: NL-complete
- Trellis automata:

- Family of devices.
- Family of languages.
- Hardest set.
- Its representation.

Turing machines:

RE-complete

- ② Linear context-free grammars: NL-complete
- Trellis automata:

- Family of devices.
- Family of languages.
- Hardest set.
- Its representation.
- Succinctness.

Turing machines:

RE-complete

- Iinear context-free grammars: NL-complete
- Trellis automata:

- Family of devices.
- Family of languages.
- Hardest set.
- Its representation.
- Succinctness.

Motivation:

Turing machines:

RE-complete

- ② Linear context-free grammars: NL-complete
- Trellis automata:

- Family of devices.
- Family of languages.
- Hardest set.
- Its representation.
- Succinctness.

Motivation:

• Understanding important models.

Turing machines:

RE-complete

- ② Linear context-free grammars: NL-complete
- Trellis automata:

- Family of devices.
- Family of languages.
- Hardest set.
- Its representation.
- Succinctness.

Motivation:

- Understanding important models.
- Pædagogic value.

Turing machines:

RE-complete

- ② Linear context-free grammars: NL-complete
- Trellis automata:

- Family of devices.
- Family of languages.
- Hardest set.
- Its representation.
- Succinctness.

Motivation:

- Understanding important models.
- Pædagogic value.

Problem

Find small Boolean grammars for P-complete sets.

Turing machines:

RE-complete

- ② Linear context-free grammars: NL-complete
- Trellis automata:

Context-free grammars: Rules of the form

 $A \to \alpha$

"If w is generated by α , then w is generated by A".

3 / 16

Context-free grammars: Rules of the form

 $A \to \alpha$

"If w is generated by α, then w is generated by A". ✓ Multiple rules for A: disjunction.

Context-free grammars: Rules of the form

 $A \to \alpha$

"If w is generated by α, then w is generated by A".
✓ Multiple rules for A: disjunction.
Conjunctive grammars (Okhotin, 2000) Rules of the form

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m$

"If w is generated by each α_i , then w is generated by A".

Context-free grammars: Rules of the form

 $A \to \alpha$

"If w is generated by α, then w is generated by A". ✓ Multiple rules for A: disjunction. Conjunctive grammars (Okhotin, 2000) Rules of the form

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m$

"If w is generated by each α_i , then w is generated by A". Boolean grammars (Okhotin, 2003) Rules of the form

$$\mathsf{A} \to \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n$$

"If w is generated by each α_i and by none of β_j , then w is generated by A".

Alexander Okhotin

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n$, with $A \in N$, $\alpha_i, \beta_i \in (\Sigma \cup N)^*$

3

4 / 16

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n$, with $A \in N$, $\alpha_i, \beta_i \in (\Sigma \cup N)^*$

• Language equations for G:

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n \in P} \left[\bigcap_{i=1}^m \alpha_i \cap \bigcap_{j=1}^n \overline{\beta_j} \right]$$
(*)

- 3

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n$, with $A \in N$, $\alpha_i, \beta_i \in (\Sigma \cup N)^*$

• Language equations for G:

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n \in P} \left[\bigcap_{i=1}^m \alpha_i \cap \bigcap_{j=1}^n \overline{\beta_j} \right]$$
(*)

• A solution: a vector of languages $(\ldots, L_C, \ldots)_{C \in N}$.

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n$, with $A \in N$, $\alpha_i, \beta_i \in (\Sigma \cup N)^*$

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n \in P} \left[\bigcap_{i=1}^m \alpha_i \cap \bigcap_{j=1}^n \overline{\beta_j} \right]$$
(*)

- A solution: a vector of languages $(\ldots, L_C, \ldots)_{C \in N}$.
- Semantics of *strongly unique solution*:

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n$, with $A \in N$, $\alpha_i, \beta_i \in (\Sigma \cup N)^*$

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n \in P} \left[\bigcap_{i=1}^m \alpha_i \cap \bigcap_{j=1}^n \overline{\beta_j} \right]$$
(*)

- A solution: a vector of languages $(\ldots, L_C, \ldots)_{C \in N}$.
- Semantics of strongly unique solution:
 - Assume (*) has a unique solution $(\ldots, L_C, \ldots)_{C \in N}$.

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n$, with $A \in N$, $\alpha_i, \beta_i \in (\Sigma \cup N)^*$

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n \in P} \left[\bigcap_{i=1}^m \alpha_i \cap \bigcap_{j=1}^n \overline{\beta_j} \right]$$
(*)

- A solution: a vector of languages $(\ldots, L_C, \ldots)_{C \in N}$.
- Semantics of strongly unique solution:
 - Assume (*) has a unique solution $(\ldots, L_C, \ldots)_{C \in N}$.
 - Furthermore, for each finite subword-closed M ⊂ Σ*, the solution modulo M is unique.

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n$, with $A \in N$, $\alpha_i, \beta_i \in (\Sigma \cup N)^*$

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n \in P} \left[\bigcap_{i=1}^m \alpha_i \cap \bigcap_{j=1}^n \overline{\beta_j} \right]$$
(*)

- A solution: a vector of languages $(\ldots, L_C, \ldots)_{C \in N}$.
- Semantics of strongly unique solution:
 - Assume (*) has a unique solution $(\ldots, L_C, \ldots)_{C \in N}$.
 - Furthermore, for each finite subword-closed M ⊂ Σ*, the solution modulo M is unique.
 - Then $L_G(C) := L_C$ for all $C \in N$, and $L(G) := L_G(S)$.

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n$, with $A \in N$, $\alpha_i, \beta_i \in (\Sigma \cup N)^*$

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \& \neg \beta_1 \& \dots \& \neg \beta_n \in P} \left[\bigcap_{i=1}^m \alpha_i \cap \bigcap_{j=1}^n \overline{\beta_j} \right]$$
(*)

- A solution: a vector of languages $(\ldots, L_C, \ldots)_{C \in N}$.
- Semantics of strongly unique solution:
 - Assume (*) has a unique solution $(\ldots, L_C, \ldots)_{C \in N}$.
 - Furthermore, for each finite subword-closed M ⊂ Σ*, the solution modulo M is unique.
 - Then $L_G(C) := L_C$ for all $C \in N$, and $L(G) := L_G(S)$.
- Another semantics: Kountouriotis et al. (DLT 2006).

• Generate $\{a^n b^n c^n \mid n \ge 0\}$, $\{ww \mid w \in \{a, b\}^*\}$, $\{a^{2^n} \mid n \ge 0\}$, etc.

Example

- $S \rightarrow AB\& \neg DC$
- $A \rightarrow aA \mid \varepsilon$
- $B \rightarrow bBc \mid \varepsilon$
- $C \rightarrow cC \mid \varepsilon$
- $D \rightarrow aDb \mid \varepsilon$

★ 3 ★ 3

• Generate $\{a^n b^n c^n \mid n \ge 0\}$, $\{ww \mid w \in \{a, b\}^*\}$, $\{a^{2^n} \mid n \ge 0\}$, etc.

Example		
$S \rightarrow AB\& \neg DC$	$S = AB \cap \overline{DC}$	
$A \rightarrow aA \mid \varepsilon$	$A = \{a\}A \cup \{\varepsilon\}$	
$B \rightarrow bBc \mid arepsilon$	$B = \{b\}B\{c\} \cup \{\varepsilon\}$	
$C \rightarrow cC \mid \varepsilon$	$C = \{c\} C \cup \{\varepsilon\}$	
D $ ightarrow$ aDb $arepsilon$	$D = \{a\}D\{b\}\cup\{\varepsilon\}$	

• Generate $\{a^n b^n c^n \mid n \ge 0\}$, $\{ww \mid w \in \{a, b\}^*\}$, $\{a^{2^n} \mid n \ge 0\}$, etc.

Example		
$S \rightarrow AB\& \neg DC$	$S = AB \cap \overline{DC}$	$\{a^i b^i c^j \mid i \neq j\}$
$A \rightarrow aA \mid \varepsilon$	$A = \{a\}A \cup \{\varepsilon\}$	a*
$B \rightarrow bBc \mid \varepsilon$	$B = \{b\}B\{c\} \cup \{\varepsilon\}$	$\{b^j c^j \mid j \ge 0\}$
$C \rightarrow cC \mid \varepsilon$	$C = \{c\} C \cup \{\varepsilon\}$	<i>c</i> *
$D \rightarrow aDb \mid \varepsilon$	$D = \{a\}D\{b\}\cup\{\varepsilon\}$	$\{a^i b^i \mid i \geqslant 0\}$

4 E b

• Generate $\{a^n b^n c^n \mid n \ge 0\}$, $\{ww \mid w \in \{a, b\}^*\}$, $\{a^{2^n} \mid n \ge 0\}$, etc.

Example		
$S \rightarrow AB\& \neg DC$	$S = AB \cap \overline{DC}$	$\{a^i b^i c^j \mid i \neq j\}$
$A \rightarrow aA \mid arepsilon$	$A = \{a\}A \cup \{\varepsilon\}$	a*
$B \rightarrow bBc \mid \varepsilon$	$B = \{b\}B\{c\}\cup\{\varepsilon\}$	$\{b^jc^j \mid j \geqslant 0\}$
$C \rightarrow cC \mid \varepsilon$	$C = \{c\} C \cup \{\varepsilon\}$	с*
$D \rightarrow aDb \mid arepsilon$	$D = \{a\}D\{b\}\cup\{\varepsilon\}$	$\{a^ib^i\mid i\geqslant 0\}$

• Languages contained in $DTIME(n^3) \cap DSPACE(n)$.

• Generate $\{a^n b^n c^n \mid n \ge 0\}$, $\{ww \mid w \in \{a, b\}^*\}$, $\{a^{2^n} \mid n \ge 0\}$, etc.

Example				
$S \rightarrow$	AB&¬DC	<i>S</i> =	$AB \cap \overline{DC}$	$\{a^i b^i c^j \mid i \neq j\}$
$A \rightarrow$	$aA \mid \varepsilon$	A =	$\{a\}A\cup\{arepsilon\}$	a*
$B \rightarrow$	$bBc \mid \varepsilon$	B =	$\{b\}B\{c\}\cup\{\varepsilon\}$	$\{b^j c^j \mid j \ge 0\}$
$C \rightarrow$	cC ε	<i>C</i> =	$\{c\}C\cup\{\varepsilon\}$	<i>c</i> *
$D \rightarrow$	$aDb \mid \varepsilon$	D =	$\{a\}D\{b\}\cup\{\varepsilon\}$	$\{a^i b^i \mid i \ge 0\}$

- Languages contained in $DTIME(n^3) \cap DSPACE(n)$.
- Practical parsing methods: recursive descent, generalized LR.

• Generate $\{a^n b^n c^n \mid n \ge 0\}$, $\{ww \mid w \in \{a, b\}^*\}$, $\{a^{2^n} \mid n \ge 0\}$, etc.

Example				
$S \rightarrow$	AB&¬DC	<i>S</i> =	$AB \cap \overline{DC}$	$\{a^i b^i c^j \mid i \neq j\}$
$A \rightarrow$	$aA \mid \varepsilon$	A =	$\{a\}A\cup\{arepsilon\}$	a*
$B \rightarrow$	$bBc \mid \varepsilon$	B =	$\{b\}B\{c\}\cup\{\varepsilon\}$	$\{b^j c^j \mid j \ge 0\}$
$C \rightarrow$	cC ε	<i>C</i> =	$\{c\} \mathcal{C} \cup \{\varepsilon\}$	<i>c</i> *
$D \rightarrow$	$aDb \mid \varepsilon$	D =	$\{a\}D\{b\}\cup\{\varepsilon\}$	$\{a^i b^i \mid i \ge 0\}$

- Languages contained in $DTIME(n^3) \cap DSPACE(n)$.
- Practical parsing methods: recursive descent, generalized LR.
- ✓ Completion of the context-free grammars.

(one-way real-time cellular automata)

Definition

A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:

(one-way real-time cellular automata)

Definition

A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:

• Σ : input alphabet;

(one-way real-time cellular automata)

Definition

- A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:
 - Σ: input alphabet;
 - Q: finite set of states;

(one-way real-time cellular automata)

Definition

- A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:
 - Σ: input alphabet;
 - Q: finite set of states;
 - $I: \Sigma \rightarrow Q$ sets initial states;

 $\begin{array}{ccc} O I & O I & I O \\ a_1 & a_2 \end{array} \quad I & (a_n) \end{array}$

6 / 16

(one-way real-time cellular automata)

Definition

- A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:
 - Σ: input alphabet;
 - Q: finite set of states;
 - $I: \Sigma \rightarrow Q$ sets initial states;

6 / 16
(one-way real-time cellular automata)

Definition

- A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:
 - Σ: input alphabet;
 - Q: finite set of states;
 - $I: \Sigma \rightarrow Q$ sets initial states;
 - $\delta: Q \times Q \rightarrow Q$, transition function;

(one-way real-time cellular automata)

Definition

- A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:
 - Σ: input alphabet;
 - Q: finite set of states;
 - $I: \Sigma \rightarrow Q$ sets initial states;
 - $\delta: Q \times Q \rightarrow Q$, transition function;

(one-way real-time cellular automata)

Definition

- A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:
 - Σ: input alphabet;
 - Q: finite set of states;
 - $I: \Sigma \rightarrow Q$ sets initial states;
 - $\delta: Q \times Q \rightarrow Q$, transition function;

(one-way real-time cellular automata)

Definition

A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:

- Σ: input alphabet;
- Q: finite set of states;
- $I: \Sigma \rightarrow Q$ sets initial states;
- $\delta: Q \times Q \rightarrow Q$, transition function;
- $F \subseteq Q$: final states.

(one-way real-time cellular automata)

Definition

A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:

- Σ: input alphabet;
- Q: finite set of states;
- $I: \Sigma \rightarrow Q$ sets initial states;
- $\delta: Q \times Q \rightarrow Q$, transition function;
- $F \subseteq Q$: final states.

• Equivalent to linear conjunctive grammars.

(one-way real-time cellular automata)

Definition

A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:

- Σ: input alphabet;
- Q: finite set of states;
- $I: \Sigma \rightarrow Q$ sets initial states;
- $\delta: Q \times Q \rightarrow Q$, transition function;
- $F \subseteq Q$: final states.

E 5 4 E 5

• Equivalent to linear conjunctive grammars.

• Closed under \cup,\cap,\sim , not closed under concatenation and star.

(one-way real-time cellular automata)

Definition

A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:

- Σ: input alphabet;
- Q: finite set of states;
- $I: \Sigma \rightarrow Q$ sets initial states;
- $\delta: Q \times Q \rightarrow Q$, transition function;
- $F \subseteq Q$: final states.

- Equivalent to linear conjunctive grammars.
- $\bullet\,$ Closed under \cup,\cap,\sim , not closed under concatenation and star.
- Can recognize $\{wcw\}$, $\{a^nb^nc^n\}$, $\{a^nb^{2^n}\}$, VALC.

Alexander Okhotin

Ibarra, Kim (1984): trellis automata recognize P-complete languages.

7 / 16

Ibarra, Kim (1984): trellis automata recognize P-complete languages.Simulate VALC(M).

Ibarra, Kim (1984): trellis automata recognize P-complete languages.

- Simulate VALC(*M*).
- No construction given; obviously large.

Ibarra, Kim (1984): trellis automata recognize P-complete languages.

- Simulate VALC(*M*).
- No construction given; obviously large.

Okhotin (2003): specifying Circuit Value Problem.

Ibarra, Kim (1984): trellis automata recognize P-complete languages.

- Simulate VALC(*M*).
- No construction given; obviously large.

Okhotin (2003): specifying Circuit Value Problem.

• TA: 45 states, 9 symbols.

Ibarra, Kim (1984): trellis automata recognize P-complete languages.

- Simulate VALC(*M*).
- No construction given; obviously large.

Okhotin (2003): specifying Circuit Value Problem.

- TA: 45 states, 9 symbols.
- Lin.Conj. grammar: $\leqslant 45^2 \cdot 9^2 + 1 = 164026$ rules.

Ibarra, Kim (1984): trellis automata recognize P-complete languages.

- Simulate VALC(*M*).
- No construction given; obviously large.

Okhotin (2003): specifying Circuit Value Problem.

- TA: 45 states, 9 symbols.
- Lin.Conj. grammar: $\leqslant 45^2 \cdot 9^2 + 1 = 164026$ rules.
- Conj. grammar: $\leqslant 45^2 + 9 + 1 = 2035$ rules.

Ibarra, Kim (1984): trellis automata recognize P-complete languages.

- Simulate VALC(*M*).
- No construction given; obviously large.

Okhotin (2003): specifying Circuit Value Problem.

- TA: 45 states, 9 symbols.
- \bullet Lin.Conj. grammar: $\leqslant 45^2 \cdot 9^2 + 1 = 164026$ rules.
- Conj. grammar: $\leqslant 45^2 + 9 + 1 = 2035$ rules.

Problem

Construct smaller descriptions.

Circuit Value Problem (Ladner, 1975)

Given a Boolean circuit with gates $\{\lor, \land, \neg\}$ and a vector of input values, determine whether it evaluates to true.

Circuit Value Problem (Ladner, 1975)

Given a Boolean circuit with gates $\{\lor, \land, \neg\}$ and a vector of input values, determine whether it evaluates to true.

Monotone Circuit Value Problem (Goldschlager, 1977)

Given a Boolean circuit with gates $\{\lor, \land\}, \quad \langle \ldots \rangle$

Circuit Value Problem (Ladner, 1975)

Given a Boolean circuit with gates $\{\lor, \land, \neg\}$ and a vector of input values, determine whether it evaluates to true.

Monotone Circuit Value Problem (Goldschlager, 1977)

Given a Boolean circuit with gates $\{\lor, \land\}, \quad \langle \ldots \rangle$

Planar Circuit Value Problem (Goldschlager, 1977)

Given a planar Boolean circuit with gates $\{\lor, \land, \neg\}$, $\langle \ldots \rangle$

A B F A B F

8 / 16

Circuit Value Problem (Ladner, 1975)

Given a Boolean circuit with gates $\{\lor, \land, \neg\}$ and a vector of input values, determine whether it evaluates to true.

Monotone Circuit Value Problem (Goldschlager, 1977)

Given a Boolean circuit with gates $\{\lor, \land\}, \quad \langle \ldots \rangle$

Planar Circuit Value Problem (Goldschlager, 1977)

Given a planar Boolean circuit with gates $\{\lor, \land, \neg\}, \quad \langle \ldots \rangle$

• More P-complete variants.

R. Greenlaw, H. Hoover, W. Ruzzo, Limits to parallel computation: *P*-completeness theory, 1995.

- 3

- 4 同 6 4 日 6 4 日 6

Circuit Value Problem (Ladner, 1975)

Given a Boolean circuit with gates $\{\lor, \land, \neg\}$ and a vector of input values, determine whether it evaluates to true.

Monotone Circuit Value Problem (Goldschlager, 1977)

Given a Boolean circuit with gates $\{\lor, \land\}, \quad \langle \ldots \rangle$

Planar Circuit Value Problem (Goldschlager, 1977)

Given a planar Boolean circuit with gates $\{\lor, \land, \neg\}, \quad \langle \ldots \rangle$

• More P-complete variants.

R. Greenlaw, H. Hoover, W. Ruzzo, Limits to parallel computation: *P*-completeness theory, 1995.

✓ A new variant of CVP.

• No inputs, root: $C_0 = true$.

3. 3

- 一司

- No inputs, root: $C_0 = true$.
- One type of gate:

$$x \downarrow y = \neg (x \lor y)$$

- 一司

- ∢ ≣ →

3

- No inputs, root: $C_0 = true$.
- One type of gate:

 $x \downarrow y = \neg(x \lor y)$

• Each gate:

$$C_i = C_{i-1} \downarrow C_{j_i}$$

∃ ► < ∃ ►</p>

3

- 一司

- No inputs, root: $C_0 = true$.
- One type of gate:

 $x \downarrow y = \neg(x \lor y)$

• Each gate:

$$C_i = C_{i-1} \downarrow C_{j_i}$$

- No inputs, root: $C_0 = true$.
- One type of gate:

 $x \downarrow y = \neg(x \lor y)$

• Each gate:

$$C_i = C_{i-1} \downarrow C_{j_i}$$

- No inputs, root: $C_0 = true$.
- One type of gate:

 $x \downarrow y = \neg(x \lor y)$

• Each gate:

$$C_i = C_{i-1} \downarrow C_{j_i}$$

Theorem

Sequential NOR CVP is P-complete.

Reducing CVP to Sequential NOR CVP $C_0 \bullet$ $C_j \bullet$

• Simulating negation.

-

• Simulating negation.

• Simulating negation.

 $C_0 \bullet$ $C_j \bullet$ $C_k \bullet$ $C_{i-1} \bullet$

- Simulating negation.
- Simulating conjunction.

- Simulating negation.
- Simulating conjunction.

- Simulating negation.
- Simulating conjunction.

- Simulating negation.
- Simulating conjunction.

- Simulating negation.
- Simulating conjunction.

Yes-instances as a formal language

• Alphabet {*a*, *b*}

3

Yes-instances as a formal language

- Alphabet {*a*, *b*}
- Gate $C_i = C_{i-1} \downarrow C_{j_i}$ represented by $a^{i-j_i-1}b$.

3
Yes-instances as a formal language

- Alphabet {*a*, *b*}
- Gate $C_i = C_{i-1} \downarrow C_{j_i}$ represented by $a^{i-j_i-1}b$.
- Circuit represented by $C_n \ldots C_2 C_1$.

Yes-instances as a formal language

- Alphabet {*a*, *b*}
- Gate $C_i = C_{i-1} \downarrow C_{j_i}$ represented by $a^{i-j_i-1}b$.
- Circuit represented by $C_n \ldots C_2 C_1$.

$$\begin{aligned} \left\{ a^{n-j_n-1}b \dots a^{2-j_2-1}ba^{1-j_1-1}b \mid n \geqslant 0 \text{ and } \exists y_0, y_1, \dots, y_n : \\ y_0 = y_n = 1 \text{ and} \\ \forall i, \ 0 \leqslant j_i < i \text{ and } y_i = \neg(y_{i-1} \lor y_{j_i}) \end{aligned} \end{aligned}$$

• ε is a circuit that has value 1.

- ε is a circuit that has value 1.
- *a^mbw* has value 1 if and only if

- ε is a circuit that has value 1.
- *a^mbw* has value 1 if and only if
 - **1** w is **not** a circuit that has value 1.

- ε is a circuit that has value 1.
- *a^mbw* has value 1 if and only if
 - w is not a circuit that has value 1.

2 $w = (a^*b)^m u$, where u is not a circuit that has value 1.

- ε is a circuit that has value 1.
- *a^mbw* has value 1 if and only if
 - **1** *w* is **not** a circuit that has value 1.
 - 2 $w = (a^*b)^m u$, where u is not a circuit that has value 1.

- ε is a circuit that has value 1.
- *a^mbw* has value 1 if and only if
 - **1** w is **not** a circuit that has value 1.
 - 2 $w = (a^*b)^m u$, where u is not a circuit that has value 1.

- ε is a circuit that has value 1.
- *a^mbw* has value 1 if and only if
 - **1** w is **not** a circuit that has value 1.
 - 2 $w = (a^*b)^m u$, where u is not a circuit that has value 1.

- ε is a circuit that has value 1.
- *a^mbw* has value 1 if and only if
 - **1** w is **not** a circuit that has value 1.
 - 2 $w = (a^*b)^m u$, where u is not a circuit that has value 1.

• LinCFL L_0 defined by $\{S \rightarrow aSAb, S \rightarrow b, A \rightarrow aA, A \rightarrow \varepsilon\}$.

- ε is a circuit that has value 1.
- *a^mbw* has value 1 if and only if
 - **1** *w* is **not** a circuit that has value 1.
 - 2 $w = (a^*b)^m u$, where u is not a circuit that has value 1.

LinCFL L₀ defined by {S → aSAb, S → b, A → aA, A → ε}.
LinCFL L₁ = L₀ ∪ a*b.

- ε is a circuit that has value 1.
- *a^mbw* has value 1 if and only if
 - w is not a circuit that has value 1.
 - 2 $w = (a^*b)^m u$, where u is not a circuit that has value 1.

LinCFL L₀ defined by {S → aSAb, S → b, A → aA, A → ε}.
LinCFL L₁ = L₀ ∪ a*b.

Theorem

Equations $X = \overline{a^*bX} \cap \overline{L_0X}$ and $X = \overline{L_1X}$ have P-complete solutions.

- ε is a circuit that has value 1.
- *a^mbw* has value 1 if and only if
 - w is not a circuit that has value 1.
 - 2 $w = (a^*b)^m u$, where u is not a circuit that has value 1.

LinCFL L₀ defined by {S → aSAb, S → b, A → aA, A → ε}.
LinCFL L₁ = L₀ ∪ a*b.

Theorem

Equations $X = \overline{a^* b X} \cap \overline{L_0 X}$ and $X = \overline{L_1 X}$ have P-complete solutions.

• Can express both LinCFGs and equations.

• Can express both LinCFGs and equations.

Boolean grammar for Sequential NOR CVP

$$S \rightarrow \neg AbS\&\neg CS$$

- $\begin{array}{rrrr} A & \rightarrow & aA \mid \varepsilon \\ C & \rightarrow & aCAb \mid b \end{array}$

• Can express both LinCFGs and equations.

Boolean grammar for Sequential NOR CVP

$$S \rightarrow \neg AbS\&\neg CS$$

- $A \rightarrow aA \mid \varepsilon$
- $C \rightarrow aCAb \mid b$

LL(1) Boolean grammar for Sequential NOR CVP

$$S \rightarrow E\& \neg AbS\& \neg CS$$

- $A \rightarrow aA \mid \varepsilon$
- $C \rightarrow aCAb \mid b$
- $E \rightarrow aE \mid bE \mid \varepsilon$

• Can express both LinCFGs and equations.

Boolean grammar for Sequential NOR CVP

$$S \rightarrow \neg AbS\&\neg CS$$

- $A \rightarrow aA \mid \varepsilon$
- $C \rightarrow aCAb \mid b$

LL(1) Boolean grammar for Sequential NOR CVP

$$S \rightarrow E\& \neg AbS\& \neg CS$$

- $A \rightarrow aA \mid \varepsilon$
- $C \rightarrow aCAb \mid b$
- $E \rightarrow aE \mid bE \mid \varepsilon$

• Recursive descent parser.

• Can express both LinCFGs and equations.

Boolean grammar for Sequential NOR CVP

$$S \rightarrow \neg AbS\&\neg CS$$

- $A \rightarrow aA \mid \varepsilon$
- $C \rightarrow aCAb \mid b$

LL(1) Boolean grammar for Sequential NOR CVP

$$S \rightarrow E\& \neg AbS\& \neg CS$$

$$A \rightarrow aA \mid \varepsilon$$

- $C \rightarrow aCAb \mid b$
- $E \rightarrow aE \mid bE \mid \varepsilon$
 - Recursive descent parser.
 - Time O(n) using memoization.

Alexander Okhotin

• No explicit negation to express $\neg(x \lor y)$.

- No explicit negation to express $\neg(x \lor y)$.
- Two variables for *true* and *false* circuits.

- No explicit negation to express $\neg(x \lor y)$.
- Two variables for *true* and *false* circuits.

Conjunctive grammar for Sequential NOR CVP

$$T \rightarrow AbF\&CF \mid \varepsilon$$

$$F \rightarrow AbT \mid CT$$

$$A \rightarrow aA \mid arepsilon$$

 $C \rightarrow aCAb \mid b$

- No explicit negation to express $\neg(x \lor y)$.
- Two variables for *true* and *false* circuits.

Conjunctive grammar for Sequential NOR CVP

$$T \rightarrow AbF\&CF \mid \varepsilon$$

$$F \rightarrow AbT \mid CT$$

$$A \rightarrow aA \mid \varepsilon$$

$$C \rightarrow aCAb \mid b$$

Problem

```
Any LL(k) conjunctive grammars?
```

Problem

Construct small trellis automata for P-complete sets.

Problem

Construct small trellis automata for P-complete sets.

• 45 states, 9 symbols (Okhotin, 2003).

Problem

Construct small trellis automata for P-complete sets.

• 45 states, 9 symbols (Okhotin, 2003).

Problem

Construct small linear conjunctive grammars.

Problem

Construct small trellis automata for P-complete sets.

• 45 states, 9 symbols (Okhotin, 2003).

Problem

Construct small linear conjunctive grammars.

• Not much fewer than 164026 rules (Okhotin, 2003).

• Any LL(k) conjunctive grammars for P-complete sets?

3 x 3

- Any LL(k) conjunctive grammars for P-complete sets?
- In Small linear conjunctive grammars?

- Any LL(k) conjunctive grammars for P-complete sets?
- Small linear conjunctive grammars?
- Small trellis automata?

- Any LL(k) conjunctive grammars for P-complete sets?
- Small linear conjunctive grammars?
- Small trellis automata?

- Any LL(k) conjunctive grammars for P-complete sets?
- Small linear conjunctive grammars?
- Small trellis automata?

More questions on conjunctive and Boolean grammars.

• A list of 9 problems (Okhotin, BEATCS Feb. 2007)

- Any LL(k) conjunctive grammars for P-complete sets?
- Small linear conjunctive grammars?
- Small trellis automata?

- A list of 9 problems (Okhotin, BEATCS Feb. 2007)
- Award of \$240 Canadian per problem.

- Any LL(k) conjunctive grammars for P-complete sets?
- Small linear conjunctive grammars?
- Small trellis automata?

- A list of 9 problems (Okhotin, BEATCS Feb. 2007)
- Award of \$240 Canadian per problem.
- One problem solved (Jeż, DLT 2007).

- Any LL(k) conjunctive grammars for P-complete sets?
- Small linear conjunctive grammars?
- Small trellis automata?

- A list of 9 problems (Okhotin, BEATCS Feb. 2007)
- Award of \$240 Canadian per problem.
- One problem solved (Jeż, DLT 2007).
- 8 remain open.