Complexity of Self-Assembling Tilings

Florent Becker

January 12, 2009

Your next twenty minutes

(1) Self-assembly
(2) Temperature 1
(3) Temperature 2 and higher

Introduction and Context

- DNA computing
- Growth of a complex pattern from simple parts
- expressing algorithms in a new formalism
- Finite shapes: Turing
- Tilings of the whole plane: ?

Definition

- A set of colored squares (Wang tiles).

Definition

- A set of colored squares (Wang tiles).
- The colors are given an integer strength (glues). Two identical glues form a bond whose strength is that of the glues.

Definition

- A set of colored squares (Wang tiles).
- The colors are given an integer strength (glues). Two identical glues form a bond whose strength is that of the glues.
- We draw tiles from the tile-set and try to add them.

Example

Definition

- A set of colored squares (Wang tiles).
- The colors are given an integer strength (glues). Two identical glues form a bond whose strength is that of the glues.
- We draw tiles from the tile-set and try to add them.
- A tile is added to a pattern if the sum of the new bonds is greater than 2 .

Example

Definition

- A set of colored squares (Wang tiles).
- The colors are given an integer strength (glues). Two identical glues form a bond whose strength is that of the glues.
- We draw tiles from the tile-set and try to add them.
- A tile is added to a pattern if the sum of the new bonds is greater than 2.
- Starting with a single tile, the seed.

Productions and Dynamic

- Adding a tile $=$ transition
- Pattern we get by transitions = production

An example: a Sierpinsky Triangle (Temperature 2)

An example: a Sierpinsky Triangle (Temperature 2)

As a Cellular Automaton

- Getting a Wang tiling as the limit of a CA.
- Explicit convergence.

As a Cellular Automaton

- Getting a Wang tiling as the limit of a CA.
- Explicit convergence.
- Convergence time.

As a Cellular Automaton

- Getting a Wang tiling as the limit of a CA.
- Explicit convergence.
- Convergence time.
- If convergence time $=0$, no intermediary states, $C A=$ self-assembly.

Infallible assembly and limits

Definition (Infallible assembly)

A self-assembling system is infallible if for any $z \in \mathbb{Z}^{2}$, from any production p, there is a sequence of productions which covers z.

Definition

We say that an infallible system assembles a set of tilings T if there is a tilewise projection from the sets of all limits of sequences which covers \mathbb{Z}^{2} to T.

- We want to (eventually) cover the whole plane
- We might need several shades of each color

What tilings are self-assemblable?

Tile Equivalence

- Most trivial tilings: periodic tiling, "random" tiling.
- Really different from a Kolmogorov angle.

Tile Equivalence

- Most trivial tilings: periodic tiling, "random" tiling.
- Really different from a Kolmogorov angle.
- Common point: no information transmission.

Tile Equivalence

- Most trivial tilings: periodic tiling, "random" tiling.
- Really different from a Kolmogorov angle.
- Common point: no information transmission.
- Two tiles are equivalent if substituting one for the other only changes the immediate neighbors.

Tile Equivalence

- Most trivial tilings: periodic tiling, "random" tiling.
- Really different from a Kolmogorov angle.
- Common point: no information transmission.
- Two tiles are equivalent if substituting one for the other only changes the immediate neighbors.
- Random tilings are uniform under equivalence.

Only Trivial Tilings can be Assembled

Theorem
Let T be a set of tilings assembled by an infallible temperature 1 system. Then T only has one (periodic) pattern under equivalence.

Idea: temperature 1 self-assembly works like a finite automaton.

Proof Sketch

- In the determinist case, every tile only depends on one neighbor.
- Finite automaton compatible with \mathbb{Z}^{2} (states $=$ tiles, transition = adjacencies).
- One periodic pattern.

Proof Sketch

- In the determinist case, every tile only depends on one neighbor.
- Finite automaton compatible with \mathbb{Z}^{2} (states $=$ tiles, transition = adjacencies).
- One periodic pattern.
- General case: non-deterministic finite automaton.

Determinisation/minimisation

$=$ take equivalence on tiles.

Robinson's Tiling is Assemblable

- To show the undecidability of tiling problems, one uses Robinson's patterns
- Quasi-periodic \Rightarrow computation everywhere, uniformly
- The base pattern can be self-assembled
- We can use quasi-periodic patterns to get complexity bounds

More details on that

More details on that

Tiling Complexity

- Complexity of a set of patterns = complexity of the language of extracted squares
- What if we start assembling in a region with "easy" squares?
- Unavoidable complexity $=$ complexity \circ quasi-periodicity
- Note: quasi-periodic set of tilings: a pattern that appears in one of the tilings appears in every big enough square of each of the tilings.

Temperature 2 complexity

Theorem

Let T be a quasi-periodic set of tilings that is assembled by a temperature 2. Then the complexity of deciding if a given $n \times n$ square appears in the tilings is NEXPTIME $(q(n))$.

Proof sketch

- In order to decide if a $n \times n$ square appears near the seed in the tilings of T, try to assemble it.
- How long can that assembly take?

Proof sketch

- In order to decide if a $n \times n$ square appears near the seed in the tilings of T, try to assemble it.
- How long can that assembly take?
- Just before you assemble a $n \times n$ square, you have a band of width n.
- This band has length at most $2^{O(n)}$, otherwise it would be periodic.

Proof sketch

- In order to decide if a $n \times n$ square appears near the seed in the tilings of T, try to assemble it.
- How long can that assembly take?
- Just before you assemble a $n \times n$ square, you have a band of width n.
- This band has length at most $2^{O(n)}$, otherwise it would be periodic.
- In order to decide if a $n \times n$ square appears in a limit of the system, try all ways to tile a $2^{O(q(n))} \times q(n)$ band, and see if that square appears.

Higher temperature (general case)

- Largest shape before all information on a $n \times n$ square is available: any graph of treewidth n.
- What does this mean in terms of complexity?

Conclusion

- Self-assembly $=$ less powerful model than Turing: a model of complexity?
- At temperature 2 (and more?), complexity bounds
- Are they tight?
- Are there other restrictions (communication schemes?)

