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Introduction Motivation

Motivation

There is a longstanding tradition of considering both discrete and
continuous models for natural phenomena

Leucippus and Democritus (ca. 400 BC) advocated that matter is not
infinitely divisible and is constituted by particles, the atoms.

In classical physics, time and space are idealized as continuous

According to the work of Planck (ca. 1900), there is a minimum
amount of time and space that can be measured.

While it is unclear whether real numbers have a physical
meaning, they are mathematically useful for a large number of
domains.
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Introduction Motivation

The digital paradigm

Church-Turing Thesis:

Every function computable according to the intuitive notion of
algorithm is computable by a Turing machine

Not to confound with the following stronger claim:

Whatever can be calculated by a reasonable physical device is
Turing computable.

So, what is the situation for analog computers?
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Introduction Motivation

Characteristics of analog computation

Usually agreed views in analog computation [Siegelmann]

Any physical system or dynamical behavior in nature can be perceived
as performing a computational process

These processes can be modeled by dynamical systems, associated to
some state space

An analog computer should use a continuous state space

However, there is no widely accepted Universal Analog
Computer, i.e., there is no counterpart of the Church-Turing
Thesis for analog computation
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Introduction Motivation

Importance of analog computation

Many engineering problems are stated using real data/continuous
dynamical systems.

Digital computers truncate data, while analog computers do not. Can
this be used as a future complement/alternative to digital
microprocessors, where an analog “co-processor” would solve more
efficiently certain classes of problems? (work of Jonathan Mills at
University of Indiana)

Can we relate problems over continuous dynamical systems with
standard computability? (useful for control theory, etc.)

Is there a Church-Turing Thesis for analog computation, or do we
have to stick to a plethora of different models?
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Introduction Motivation

Motivations for our research

Many models of analog computation found in the literature are based
on characteristics borrowed from digital computers (e.g. treat real
numbers as sequences of bits. Use dynamics that are not smooth),
and may not be adequate for some applications

Considering that classical models in Physics usually depend on
analytic dynamics, it would be interesting to have an analog model of
computation suited to this case

By this reason, we focused our research on an older model of analog
computation. With this we hope to gain some insight in the
possibilities offered by analog computation
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The GPAC The differential analyzer

The differential analyzer

The principles underlying this computing device were first described
by Lord Kelvin in 1876

A fully operational Differential Analyzer was assembled at MIT in
1931, under the supervision of V. Bush

Several mechanical Differential Analyzers were built in the 1930s and
1940s, especially during the U.S. war effort. Their applications ranged
from gunfire control up to aircraft design

In the late forties, they were substituted by electronic versions that
remained in use up to the beginnings of the 1970s
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The GPAC The differential analyzer

A mechanical integrator:

Bureau of Naval Personnel, Basic Machines and How They Work, 1964
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The GPAC Shannon’s work

The GPAC

In 1941, Claude Shannon presented a paper entitled “Mathematical theory
of the Differential Analyzer”, where he first described the General Purpose
Analog Computer (GPAC).
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The GPAC Shannon’s work

Example

Example

Compute y(x) = ex with a GPAC

i e t

t

{

y ′ = y
y(0) = 1
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The GPAC Shannon’s work

Main features of the GPAC

Real numbers are not treated as strings of digits

Assumes continuous-time dynamics

The computation is performed in real time: for a GPAC computing a
function f , if an input x is given at time t, the output at time t is
f (x), i.e. the computation took 0 time units to be carried out.

Generates analytic functions (i.e. it has smooth dynamics)
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The GPAC Shannon’s work

Shannon’s algebraic-differential characterization

Definition

The unary function y : R → R is differentially algebraic (d.a.) on I ⊆ R if
there is a nonzero polynomial p with real coefficients such that

p
(

x , y , y ′, ..., y (n)
)

= 0, on I . (1)

Theorem (Shannon)

A unary function y is generated by a GPAC on an interval I ⊆ R iff it is
d.a. on I .
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The GPAC Shannon’s work

This result implies that:

1 The GPAC computes polynomials, the exponential function, the usual
trigonometric functions, their inverses as well as the finite composition
and quotients of all these functions wherever they are well defined;

2 The Gamma function

Γ(x) =

∫

∞

0
tx−1e−tdt

and Riemann’s zeta function

ζ(x) =
∞

∑

n=1

1

nx

cannot be computed by a GPAC.
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The GPAC Shannon’s work

Problems of Shannon’s GPAC

Shannon’s assumes that his circuits have an output and that this
output is unique. However, he does not provide any criteria to know
when this happens (in particular, is this problem decidable?)

The result relating the GPAC with d.a. functions has a gap (first
noticed by Pour-El in 1974)
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The GPAC Shannon’s work

1
+

Figure 1: A circuit that admits no solutions as outputs.
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Figure 2: A circuit that admits two distinct solutions as outputs.
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The GPAC Shannon’s work

Other work

In 1974, M. B. Pour-El pointed out a gap on Shannon’s proof. She
also redefined the GPAC in order to prove Theorem 1. Nevertheless,
it is not clear if her model, based on system of differential equations,
has anything to do with the Differential Analyzer.

Further refinements where made by Lipshitz and Rubel (1987).
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The GPAC The extended analog computer

The Extended Analog Computer

In 1993, L.A. Rubel presented an extension of the GPAC, the Extended
Analog Computer (EAC). This model has the following features:

1 It has all the units of the GPAC, plus units that can compute Partial
Differential Equations (PDEs), inverse functions, and limits (this
later, with some restrictions);

2 It can compute functions that are not computable by the GPAC (e.g.
Γ, ζ) and solve problems not solvable by a GPAC (namely problems
involving PDEs and limits);

3 Contrarily to the GPAC, it is not based on any physical device, and its
realizability remains unknown (remark: recently, researchers from the
Indiana University were able to produce analog VLSI units capable of
computing PDEs)
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The PGPAC Presentation

Our approach

Use Shannon’s model, but with restrictions on the layout of the circuits

1 Polynomial circuits: acyclic circuits built in layers, without using
integrators.

Lemma

Polynomial circuits generate exactly the class of polynomial functions

2 Use polynomial circuit as building blocks to obtain polynomial GPACs.
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The PGPAC Presentation

The basic block of the PGPAC

i yk

y  ,...,y  )1p(t, n

t

t
y
1

yn
... Ak

Here t is the input and yk is the output of the kth integrator. Ak is a
polynomial circuit.
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The PGPAC Main results

Main results I (Graça, Costa)

Theorem (Shannon =⇒ part)

If a unary function y is generated by a PGPAC in I ⊆ R then it is d.a. on I .

Theorem (Shannon ⇐= part)

If a unary function y is d.a. in I ⊆ R then it is generated by a PGPAC in
some I ′ ⊆ I , where I ′ has non-empty interior.

Corollary (connection with dynamical systems)

y is generated by a PGPAC iff it is a solution of y′ = p(y, x), where p is a
vector of polynomials.
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The PGPAC Main results

In particular, the last result guarantees that the PGPAC is well
behaved.

Because our model is well behaved, is based on circuits (Shannon’s
approach), can be written as a system of differential equations
(Pour-El’s approach), and has the main properties stated by Shannon
and Pour-El, solving previous problems, we decided to call it “the
GPAC”.

However, we drop the initial motivation based in circuits. Instead we
stress on the fact that the GPAC generate solutions of polynomial
systems of the form y′ = p(y, x). We call solutions of these systems
PIVP functions. We think this a more elegant and useful
characterization of the GPAC.
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The PGPAC Main results

Properties of PIVP functions

The PIVP functions are closed under the following operations (as far as we
know, these properties have only been reported in the literature for the
broader case of differentially algebraic functions):

Field operations +,−,×, /

Composition

Differentiation

Compositional inverses

Corollary

All closed-form functions (i.e. elementary functions in Analysis which,
informally, correspond to the functions obtained from the rational
functions, sin, cos, exp through finitely many compositions and inversions)
are PIVP functions.
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The PGPAC Main results

Main results II (Graça, Campagnolo, Buescu)

Theorem (robust continuous-time simulation of TM’s)

Let θ : N
3 → N

3 be the encoding of the transition function of a Turing
machine M and let 0 < δ < ε < 1/2. Then there is a PIVP function
gM : R

6 → R
6 such that the ODE z ′ = gM(z , t) robustly simulates M in

the following sense: there is some 0 < η < 1/2 such that for all g
satisfying ‖g − gM‖

∞
< 1/2, and for all x̄0 ∈ R

3 satisfying
‖x̄0 − x0‖∞ ≤ ε, where x0 ∈ N

3 represents an initial configuration, the
solution z of

z ′ = g(z , t), z(0) = (x̄0, x̄0)

has the following property: for all j ∈ N and for all t ∈ [j , j + 1/2],

∥

∥

∥
z2(t) − θ[j ](x0)

∥

∥

∥

∞

≤ η.
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The PGPAC Main results

Computing Γ with a GPAC

Problem: Γ is computable according to Computable Analysis, but not
computable by the GPAC.

Solution: Change the notion of computability associated to a GPAC.

The idea: Apply a limit procedure, similarly to the Computable Analysis
case.

Time (t)

Input (x0)

g(x0, t)

ε(x0, t)
GPAC

f (x0)

g(x0, t)

t
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The PGPAC Main results

This can be achieved as follows:

1 use initial settings on integrators to represent the initial input x ∈ R
n

2 use the usual input as a time variable t

3 then f : R
n → R is GPAC*-computable if there is a GPAC with two

outputs g(x , t) and ε(x , t) satisfying:

1 limt→∞ ‖ε(x , t)‖ = 0;
2 ‖g(x , t) − f (x)‖ ≤ ε(x , t)

Theorem

Both Γ and ζ are GPAC*-computable
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The PGPAC Main results

Computable analysis: Type-2 machines

Coding a real number x

For a sequence (yn, zn)n∈N, where yi , zi ∈ N, we write (yn, zn) x iff
∀i , |x − (−1)yi zi

2i | ≤
1
2i

M behaves like a Turing Machine

An input x is coded on a read-only
one-way input tape and the output
f (x) is coded on a write-only
one-way output tape.

If there is a Type-2 machine with these properties, we say that f : R → R

is computable.
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The PGPAC Main results

Main results III (Bournez, Campagnolo, Graça, Hainry)

Theorem

Let f : [a, b] → R be a real function. Then f is computable (Computable
Analysis sense) iff it is GPAC-computable.
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Conclusions/perspectives

Conclusions/perspectives

We have presented a model that relates in a very natural way to a
large class of dynamical systems

This model robustly simulates Turing machines (achieves Type-1
computability)

It is equivalent to computable analysis on compact intervals

What happens for unbounded domains?

Is this a suitable candidate as a reference model for an analog
“Church-Turing” thesis?
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Conclusions/perspectives Selected references
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Conclusions/perspectives Selected references

Thank you!
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