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in this talk:

1. reminding hyperbolic geometry

2. coordinates for tilings in the hyperbolic
plane

3. application to tiling problems

4. application to cellular automata in the
hyperbolic plane



1. hyperboli geometry



hyperbolic geometry

absolute geometry
+ new axiom (Lobachevsky-Bolyai):

from a point A not on line ℓ,
at least two parallels to ℓ

extension to any dimension

many models

Beltrami, Klein, Poincaré,...



Poincaré’s disc model
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Poincaré’s disc model
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Poincaré’s disc model
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Poincaré’s disc model
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a few useful properties

sum of angles of triangle:
always less than π

non-secant lines:
always a unique common perpendicular



motions in the hyperbolic plane

definition:
finite product of reflections in lines

classification theorem:
any isometry of the hyperbolic plane is a product
of at most three reflections

positive motions:
they do not change orientation:
products of two reflections in lines



classification of positive motions

three cases, depending on the intersection of
the axes of the reflections:

A

•

A

• a

rotation ideal shift along
rotation a line



2. oordinates for tilings in thehyperboli plane



2. coordinates for tilings in the hyperbolic
plane

2.1 tilings in the hyperbolic plane

2.2 the splitting method

2.3 application to various location
problems



2.1 tilings in the hyperbolic plane

tilings:

sequence fTigi∈I of tiles,

Ti � E, E geometric space such that:

i) [
i∈I

Ti = E

ii) 8i, j (i 6= j ) int(Ti)\ int(Tj) = ;)
where int(Ti) is the interior of Ti



here, as usual, only

finitely generated tilings:

there is a finite J , J � I,
such that for all i,
Ti is a copy (isometric image) of some Tj

for j 2 J

Tj’s, for j 2 J are called prototiles



tessellations

one basic tile P ;

Ti’s are obtained by reflections of a convex
polygon P in its sides and, recursively, of the
images in their sides

classically :

in the Euclidean plane, three tessellations:

square, regular hexagon, equilateral triangle



in the hyperbolic plane:

Poincaré’s theorem, (1882):

all tessellations based on a triangle with angles
π

p
,

π

q
and

π

r
, with p, q and r positive integers

such that
1

p
+

1

q
+

1

r
< 1 exist

and so, infinitely many solutions



2.2 the splitting method

2.2.a the classical case
of the pentagrid

2.2.a combinatoric tilings



2.2. a the classical case of the pentagrid:

the simpest rectangular
grid here restricted
to the South-Western quarter



IH2, the splitting process for the pentagrid:

the leading pentagon P
of a quarter



IH2, the splitting process for the pentagrid:

in the complement of P ,
a quarter



IH2, the splitting process for the pentagrid:

another one



IH2, the splitting process for the pentagrid:

and the remaing part:
a strip



IH2, the splitting process for the pentagrid:

in a strip:
the leading pentagon and a quarter



IH2, the splitting process for the pentagrid:

and the remaing part:
a strip again



IH2, the splitting process for the pentagrid:

the recursive splitting:
first step



IH2, the splitting process for the pentagrid:

the recursive splitting:
second step



IH2, the splitting process for the pentagrid:

the recursive splitting:
third step



IH2, the splitting process for the pentagrid:

the recursive splitting:
and so on...



the tree being associated to the pentagrid

with its numbering
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new look on the numbering of the pentagrid

1
2

3

4

5

6

7

8

9 10

11 12

13

14

15

16
17

18

19

20

21
2223

24
25 26

27 28

2930 31
32 33

34
35

36
37
38

39

40

41
42
43

44
45
46

47

48

49

50
51

52

53

54
55
5657

585960
61

62
636465

666768
69

70

71
72 73

74 75
767778

7980 81
82 83

848586
8788

1
2

3

4

5

6

7

8

9 10

11 12

13

14

15

16
17

18

19

20

21
2223

24
25 26

27 28

2930 31
32 33

34
35

36
37
38

39

40

41
42
43

44
45
46

47

48

49

50
51

52

53

54
55
5657

585960
61

62
636465

666768
69

70

71
72 73

74 75
767778

7980 81
82 83

848586
8788



the generating tree:
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Fibonacci technology:

recall: for any number n: n =
k

∑

i=0

aifi,

where fi: Fibonacci sequence

the representation is not unique ;
uniqueness obtained by a rule: forbid 11

this representation called coordinate of n
the language of coordinates is regular



the property of the preferred son:

let αk . . . α0 be the coordinate of ν
and let βh . . . β0 represent ν�1

coordinates of the sons of ν:

if ν 2-node: αk . . . α000 , αk . . . α001

if ν 3-node: βh . . . β010 , αk . . . α000 ,

αk . . . α001



call the node with coordinate αk . . . α000
the preferred son of ν

every node has precisely one preferred node

rule to determine the preferred son:

in 2-nodes, it is the leftmost son

in 3-nodes, it is the middle son



2.2.b combinatoric tilings: (2002)

basis of splitting:

k unbounded simply connected parts of IHn

S0, . . ., Sk, and h bounded simply connected
parts of IHn P0, . . ., Ph, h � k, with:
(i) IHn split into finitely many copies of S0

(copy = isometric image)
(ii) each Si split into one copy of some Pℓ and
finitely many copies of Sj

distinguished Pℓ: leading tile of Si



the spanning tree of the splitting

root : the leading tile of S0

let level n defined and each node associated to
the leading tile of a copy Cj of some Sj

then, sons of leading tile of Cj:
leading tiles of copies of those Sk’s occurring
in the splitting of Cj

by induction: infinite tree



combinatoric tilings

say that the tiling T is combinatoric

if there is a basis of splitting such that:

the associated spanning tree is in bijection
with the restriction of T to S0, all tiles of T

being copies of Pℓ’s

later, in most cases, a single generating tile
P = P0



matrix and polynomial of the splitting

when combinatoric tiling,
its spanning tree:
k+1 types of nodes: type i means Si

moreover:
let Mi,j be the number of Sj in splitting
Si ;) the number of nodes of level n for

a root of type i
= sum of row i+1 of Mn

M : matrix of the splitting ; its characteristic
polynomial: polynomial of the splitting



language of the splitting

let un = #fnodes at level n of Ag

where A spanning treefugn satisfies the induction equation defined by
the polynomial of the splitting

number the nodes of A starting from 1, from
the root and level by level:

coordinate of node ν = maximal greedy
representation of ν

language of the splitting = language of the
coordinates



greedy representation in a basis

let fungn∈IN be positive numbers with u0 = 1,

un < un+1 and limsup
un

un+1

< 1

let b = b limsup
un

un+1


then n =

k
∑

i=0

αiui with αi 2 [0..b]

maximal greedy representation:
if k maximal, then unique



results: tilings proved to be combinatoric:

IH2: f5, 4g: pentagrid (MM-KM, MM)fs, 4g: s sides and right angle (MM-GS)fp, qg: p sides and angle of
2π

q
(MM)

most cases of Poincaré’s theorem
(MM 2002)f1, qg: � (MM 2003)

IH3: f5, 3, 4g: rectangular dodecahedron
(MM-GS)

IH4: f5, 3, 3, 4g: 120-cell (MM, 2004)



2.3 application to various location prob-
lems

2.3.a the shortest path from a tile to
another one

2.3.b change of coordinates

2.3.c locating points in the penta-
and the heptagrid

2.3.d other connected results



2.3.a the shortest path from a tile
to another one

given 2 tiles T1 and T2 by their coordinates,
find a shortest path from T1 to T2:

i.e. find a sequence fτig0≤i≤k with
τ0 = T1, τk = T2 and τi, τi+1 sharing a
side for i 2 f0..k�1g and such that k is
the smallest as possible



the shortest path from T1 to T2

first result:

theorem (MM 2003)
there is an algorithm which gives the path from a
tile T in a Fibonacci tree F to the root of F in a
time which is linear in the size of the coordinate
of T in F



the shortest path from T1 to T2

define coordinates for the tiles of the penta-
or the -heptagrid as follows:

fix a central tile T0

define α sectors around T0, each one
spanned by a Fibonacci tree,
α 2 f5, 7g



the shortest path from T1 to T2

number the sides of a tile:

for the central tile T0

side i defines sector i

for another tile T

side 1 is shared with the father of T
other sides numberd by counterclock-
wise turning around T





the shortest path from T1 to T2

number the sectors around T0 from 1 to α,
counterclockwise turning around T0,
sector 1 being fixed once for all

the coordinate of T0 is 0

the coordinate of T 6= T0 is ν(i)

with i the number of the sector of T
and ν the coordinate of T in the tree
spanning the sector



the shortest path from T1 to T2

then as a corollary of the theorem we have:

there is an algorithm which gives a path from a
tile T1 to a tile T2 of the penta- or the heptagrid
in a time which is linear in the size of the
coordinates of T1 and T2

note that the path given by the algorithm
may be not a shortest one



the shortest path from T1 to T2

recently, a new result:

theorem (MM, 2008):
the coordinates being fixed in the penta- or the
heptagrid, there is an algorithm which, for any
pair of tiles T1 and T2 computes a shortest path
between T1 and T2 in a time which is linear in
the coordinates of T1 and T2



the shortest path from T1 to T2

the proof relies on the characterization of
the shortest paths between T1 and T2

in general the shortest path between T1

and T2 is not unique

following two paths π1 and π2 between T1

and T2, we define the apartness between π1

and π2, denoted by apart(π1, π2), as the
biggest distance bewteen tiles of π1 and π2

which are at the same distance from the
origin of π1 and π2



the shortest path from T1 to T2

lemma
let π1 and π2 be two shortest paths from T1 to T2 ;
then apart(π1, π2) � 1

the apartness is easily computed,

it allows to characterize the leftmost and
the rightmost shortest paths,

the algorithm computes the leftmost short-
est path



2.3.b change of coordinates

consider a central tile O and a system of
coordinates based on this tile ; consider two
tiles A and T , knowing their coordinates
with respect to O

theorem (MM, 2008)
in the above setting, there is an algorithm which
computes the coordinates of T in a system of
coordinates centred at A which is linear in the
size of the coordinates of A and T in the system
centred at O



change of coordinates

the theorem is a corollary of the theorem of the
shortest path:

from the coordinates of A and T in the
system centered at O, we compute a shortest
path between A and T ;

from the shortest path, we compute the
coordinate of T in a system of coordinates
centered at A

both parts of the computations are linear in
the sizes of the coordinates of A and T in
the system centered at O



2.3.c locating point in the penta- and the
heptagrid

consider a central tile O and a system of
coordinates based on this tile ; consider a
point P of the hyperbolic plane

question:

can we find a tile T such that P 2 T ?



locating point in the penta- and the
heptagrid

the answer depends on how P is defined

define P by (x, y), its cartesian coordinates cen-
tered at O

then:

we have x2 + y2 < 1 and,

if x, y 2 IR, the problem is undecidable



locating point in the penta- and the
heptagrid

if x, y 2 IQ, the problem is not only decidable,
it has a relatively low complexity:

theorem (KC-MM-BM-IP, 2004 ; MM, 2008)
there is an algorithm to find T such that P 2 T
such that:
the number of equations of circles involved in the
computation is linear in the size of x and y
for any r 2 IQ, 0 < r < 1, the computation
of T is polynomial in the size of x and y when
x2 + y2 � r



locating point in the penta- and the
heptagrid

the proof relies on the following:

X2 + Y 2 � 2aX � 2bY + 1 = 0 is the form
of the equations of the circles which support
the sides of the tiles

now, a, b 2 IQ(ω, ζ) where ω is an algebraic
integer and ζ, a primitive root of 1 of or-
der α



locating point in the penta- and the
heptagrid

this proves the decidability part of the the-
orem

the complexity part relies on an analysis of
the operations involved in computing the
new a’s, b’s from the former ones



2.3.d connected results:

two results:

defining coordinates for points of the hyper-
bolic plane

constructing a Peano curve in the hyperbolic
plane



connected results:

coordinates for points of the hyperbolic
plane

from the location algorithm, considering P
with x, y 2 IR we can define a tile T such
that P 2 T

note that this is not constructive

the number of T in the Fibonacci tree of its
sector is the integral part of the coordi-
nate of P



coordinates for points of the hyperbolic
plane

next: tile T is split into seven triangles T 0
i con-

structed on its sides and its centre

one of these triangles contains P : this defines
the first digit in f0..α�1g of the coordinate
of P , i being attached to side i+1



coordinates for points of the hyperbolic
plane

then, for each i: the current tile T i is split
into four triangles T i+1

j constructed on the mid-
points of the sides of T i, j 2 f0..3g

one of these triangles contains P : this defines
the i+1th digit in f0..3g of the coordinate
of P



coordinates for points of the hyperbolic
plane

to be more precise for the digits:

number the vertices of T 0
i as follows:

the centre is numbered with 2, the other
vertices are 0 and 1, in the natural order
when counterclockwise turning around T

number the vertices of T i+1
j as follows:

the mid-point of ab of T i
j is c such thatfa, b, cg = f0, 1, 2g



coordinates for points of the hyperbolic
plane

then, in T i
j , T i+1

k has the number of its vertex
which is also a vertex of T i

j ; T i+1
3 is the

triangle whose vertices are the mid-points
of the sides of T i

j

the orientation in the numbering of the ver-
tices is the same for T i

j and T i+1
3 and oppo-

site for T i
j and T i+1

k for k 6= 3



coordinates for points of the hyperbolic
plane

let ζ be the coordinate of P

the digits of ζ are ultimately stationnary if
and only if P is a vertex of some T i

j or the
intersection of all T m+n

3 for a certain m

let α0α1 . . . be the digits of fζg
define α′

k by the condition
(�) fα′

k, αk+1, α
′
k+1g = f0, 1, 2g,

assuming simply α′
0 6= α0



coordinates for points of the hyperbolic
plane

we have:

lemma (MM, 2008)

ζ belongs to a side of some T i0
j if and only if

there is a k0 such that the condition (�) is true
for all k � k0 for a certain k0

in particular, we get:

if the digits of fζg contains infinitely many
3’s, P lies inside all T i

j ’s which contain P



coordinates for points of the hyperbolic
plane

there are examples of P for which the digit
of fζg are in f0, 1, 2g only such that P is
inside all T i

j ’s which contain P

here is such an example:

take the sequence of digits defined
by (02)∞



connected results:

a Peano curve in the hyperbolic plane
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a Peano curve in the hyperbolic plane

the first generation



a Peano curve in the hyperbolic plane

the second generation



a Peano curve in the hyperbolic plane

this can be continued for each generation:

the tile is divided into an annulus and a
center

then, from the generation n to n+1:

the annulus goes from generation n to n+1

the center is repaced by a ’scaled’ tile of
generation n



3. appliation to tiling problems

3.1 the tiling problem

3.2 construction of a grid

3.3 undecidability of the tiling prob-
lem



3.1 the tiling problem

question:

is there an algorithm A such that:

given the description of a finite set S of
tiles, the prototiles, A says yes if it is
possible to tile the plane with copies of
the prototiles and no if it is not the case



in the case of the Euclidean plane:

problem raise by Hao Wang in 1958

conjectured decidable by Hao Wang

proved undecidable by Robert Berger in
1966
complexed proof but a very deep one, involv-
ing a bit more than 21,000 prototiles

in 1971, Raphael Robinson gave a simpler
proof of the same result



in the case of the hyperbolic plane:

in the same 1971 paper, Robinson asks:

what can be said for the hyperbolic plane ?

in 1978

Robinson proved that the origin-constrained
problem is undecidable in the hyperbolic
plane

it is known that he tried to solve the general
problem



nothing new in the case of the hyperbolic plane
until 2006

in march 2006 (published 2008), I proved
the undecidability of a problem which is
an intermediate step between the origin-
constrained problem and the general one:

it is the generalized-origin constrained prob-
lem



now, in 2007:

the general problem is proved undecidable

first proof, arXiv:cs/0701096 (MM2007)
presented at the AMS sectional meeting,
Davidson, NC, March 2007
at the same meeting, another proof an-
nounced by Jarkko Kari, completely differ-
ent and independent

Oct. 2008,
TCS, MM2008:
single full proof published up to date



here:

a variant of the TCS proof

sketchy outline of the proof:

construction of a grid

and then:

the interwoven triangles

their implementation in IH2

simulating a Turing machine



3.2 construction of a grid



recall the ternary heptagrid:



another way to tile the heptagrid:

G �! Y BG

Y �! Y BG

B �! BO
O �! Y BO



two trees with one set of tiles:

central Fibonacci tree:

black: B
white: G, O and Y

adapted standard Fibonacci tree:

black: G and Y
white: B and O



the levels in the adapted standard tree

they are
the horizontals



the verticals in the adapted standard tree

they avoid
any standard
subtree
with a G-root



this defines a grid

possible to simulate the computation of a
Turing machine:

easy construction,
already coming from Hoa Wang



3.3 the undecidability of the tiling
problem in the hyperbolic plane

3.3.a the interwoven triangles

3.3.b the trees and the seeds

3.3.c simulations of a Turing machine



three-stepped construction:

first:

a one-dimensional process on brackets

next:

lift up the process in the Euclidean plane

and then,

in the hyperbolic plane



a one-dimensional process on brackets

consider the following picture:

M M M M M M M M M M M M M M M M MR R R R R R R RB B B B B B B B

M M M M M M M M MR R R RB B B B

M M M M MR RB B

M M MB R

X M Y



it is a result of the following process:

M M M M M M M M M M M M M M M M MR R R R R R R RB B B B B B B B



it is a result of the following process:

M M M M M M M M M M M M M M M M MR R R R R R R RB B B B B B B B

M M M M M M M M M



it is a result of the following process:

M M M M M M M M M M M M M M M M MR R R R R R R RB B B B B B B B

M M M M M M M M MR R R RB B B B



it is a result of the following process:

M M M M M M M M M M M M M M M M MR R R R R R R RB B B B B B B B

M M M M M M M M MR R R RB B B B



it is a result of the following process:

M M M M M M M M M M M M M M M M MR R R R R R R RB B B B B B B B

M M M M M M M M MR R R RB B B B

M M M M M



it is a result of the following process:
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M M M M MR RB B



it is a result of the following process:
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it is a result of the following process:
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it is a result of the following process:
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it is a result of the following process:
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it is a result of the following process:
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it is a result of the following process:
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3.3.a the interwoven triangles:

it consists in lifting up the construction:

first into the Euclidean plane

and then into the hyperbolic plane



the key pattern:



from this, the Euclidean interwoven triangles:
triangles and phantoms,

generation 0, blue-0



from this, the Euclidean interwoven triangles:
triangles and phantoms,

generation 1, red



from this, the Euclidean interwoven triangles:
triangles and phantoms,

generation 2, blue



from this, the Euclidean interwoven triangles:
triangles and phantoms,

generation 3, red



from this, the Euclidean interwoven triangles:
triangles and phantoms,

generation 4, blue, and so on...



this figure can be defined by a finitely gener-
ated tiling of the Euclidean plane (190 tiles)
which forces a relization of this construction



3.3.b the trees and the seeds

implementation in the hyperbolic plane
thanks to:� threads of successively embedded trees

of the heptagrid and� synchronization of the implementation
on each thread with that of the others



the trees with the green roots

key property:

either
embedded

or
disjoint

avoided
by the
verticals



trees of the heptagrid

we select the trees:

say a G-node with Y -father and G-grand
father is a root

a root generates a tree of the heptagrid:

V is the vertex of the root, e the edge
between the Y -father and its B-uncle

let A be the mid-point of e
from e, draw the two mid-point rays
which cross the root
they define the borders of the tree



main property of the trees of the heptagrid

two trees of the heptagrid are either embed-
ded or disjoint

trees of the heptagrid can be gathered into
sequences of consecutively embedded ele-
ments, indexed by IN or ZZ, called threads



isoclines

the horizontals we defined

number them periodically from 0 to 7

this defines the direction

from up to bottom



seeds:

roots which are on an even isocline

the seeds on an isocline 0 are active
by definition, seeds within a tree rooted
at an active seed σ and lying on the 2nd

isocline below σ are also active

the set of the seeds is dense enough in IH2:
for any tile T of the heptagrid, there is
an active seed within a ball of radius 10
around T



the seeds, the isocines and the verticals

the verticals
avoid the trees



the interwoven triangles
in the hyperbolic plane:

the triangles and phantoms are defined by the
active seeds
the legs are along the extremal branches of

the tree rooted at the seed
the basis runs along an isocline



the generation 0, blue-0 triangles, have their
vertices on the isoclines 0 and their basis on
the next isoclines 10,
then red and blue generations alternate

in each generation, the active seeds on a basis
of a triangle generate a phantom, the same
figure as a triangle but distinguished, whose
basis is on the isocline of the vertices of the
next triangles



the verticals:

they are defined by the sequence of alternat-
ing B- and O-nodes issued from a the root
of a tree or from a G- or a Y -node of its
border

key property:
verticals never meet a tree of the hepta-
grid rooted at an active seed



the horizontals:

red triangles contain isoclines 0 and 4 which
never meet any inner red triangle, call them
free rows

in a red triangle T of the generation 2n+1
there are 2n+1 free rows which never
meet an inner red triangle of T



3.3.c simulations of a Turing machine

the just defined free rows and verticals in-
side a red triangle define a grid in which
an initial segment of the computation of a
Turing machine can be defined

in each red triangle, the same computation
of the same Turing machine starting from an
empty tape is simulated

thanks to the properties of the trees, the
different computations do not interfer with
each other



simulations of a Turing machine

as there are infinitely many triangles of all
admissible sizes which makes an increasing
sequence,

as the same Turing machine with the same
data is simulated from the beginning in each
red triangle,

we get:

the set of prototiles tiles the plane if and
only if the machine does not halt



4. appliation to ellular automatain the hyperboli plane

4.1 characterization of hyperbolic CA’s

4.2 injectivity problem of their global
function

4.3 small universal hyperbolic CA’s

4.4 beyond the Turing barrier



4.1. characterization of hyperbolic CA’s

we place α sectors around a central tile

coordinates of a cell:

central cell: 0, otherwise, ν(σ)

with:

ν coordinate of the cell in its quarter

σ 2 f1..αg: number of the sector



remember the coordinate system



numbering the neighbours

neighbour 1:

central cell: fixed once and for all
other cells: the father

all cells:

neighbours 2..α:

increasing numbers while counter-
clockwise turning around the cell,
starting from neighbour 1



format of a rule

η0: current state of the cell

ηi: current state of neighbour i,
i 2 f1..αg

η1
0: new state of the cell

format: η0η1η2..ηα �! η1
0

for short: η0η1η2..ηαη1
0

η0η1η2..ηα == context of the rule



characterization of these CA’s

remind the classical results in the Euclidean
case:

global function of a CA A:

set of configurations: QZZ2

, Q: states of A

global function: GA : QZZ2 7! QZZ2

defined by
GA(x)(c) = f(N(c)),

f : transition function of A, the rules

x 2 QZZ2

, c 2 ZZ2

and N(c): neighbourhood of c



Hedlund’s theorem

classical characterization theorem of the global
function of a CA:

theorem (Hedlund, 1969)
Let F : QZZ2 7! QZZ2

, where Q is a finite set.
Then, F is the global function of a CA A with
states in Q if and only if F is continuous, when
QZZ2

is fitted with the product topology, and if F
commutes with the shifts σ1 and σ2.

shift σ1: (x, y) 7! (x+1,y)
shift σ2: (x, y) 7! (x, y+1)



global function of a CA on the penta- and
the heptagrids

let Fα, α 2 f5, 7g, be the set constituted of
a central cell O and the union of α sectors
around O, spanned by the Fibonacci tree

space of configurations:
QFα , where Q set of states of the CA A

global function:
GA : QFα 7! QFα given by:
GA(x)(c) = f(x(Nc), x(c), x 2 QFα ,
c 2 Fα, Nc: neighbours of c



properties of the shifts on the penta- and
the heptagrids

lemma 1
the shifts of the hyperbolic plane which leave the
pentagrid globally invariant are generated by two
shifts and their inverses

lemma 2
the shifts of the hyperbolic plane which leave the
ternary heptagrid globally invariant are gener-
ated by two shifts and their inverses



basic lemma:

let τ1 and τ2 be two shifts along the lines ℓ1 and
ℓ2 respectively ; then, τ1◦τ2 Æ τ−1

1 is a shift along
the line τ1(ℓ2), with the same amplitude as τ2

and in the same direction

notation: τ τ1

2 == τ1◦τ2 Æ τ−1
1



shifts in the pentagrid:

Π 0

Π 1

Π 5

Π 4

Π 3

Π 2
A

B C

D E



shifts in the heptagrid:

H 0

H 1

H 2

H 3

H 4

H 5H 6

H 7

A

B

C

D



rotation invariant CA’s

assume that Nc is a ball or radius k around c,
k � 1, fixed once for all, let α 2 f5, 7g

let π be a circular permutation on [1..α] ;
it induces a rotation on Nc, denote it by
[π(1)..π(α.uk)] ; say that π is extended to
[1..α.uk]

say that a CA A is rotation invariant if and
only if for any rule η0η1..ηα.uk

η1
0 and any

circular permutation π on [1..α] extended to
[1..α.uk], the rule η0ηπ(1)..ηπ(α.uk)η

1
0 is also in

the table of A



theorems

theorem 1 (MM, 2007)
A CA on the pentagrid or the heptagrid com-
mutes with the shifts if and only if it is rotation
invariant

theorem 2 (MM, 2007)
A mapping F : QFα 7! QFα is the global func-
tion of a rotation invariant CA if and only if
it is continuous on QFα, fitted with the product
topology, and if it commutes with the shifts leav-
ing the grid invariant.



note that the product topology can be de-
fined by a distance, as in the Euclidean case:

dist(x, y) =
∑

i∈Fα

dist(x(i), y(i))

α.u|i|

2−|i|

where jij is the index of the level of the
tree on which i is
here, uk = f2k+1 in both cases

the proof is very similar to the Euclidean
case, up to rotation invariance
it is non-constructive: compacity argument



4.2 injectivity problem of the global
function of a cellular automaton

theorem (MM, 2008)
the injectivity of the global function of a cellular
automaton on the heptagrid is undecidable

plan of the proof:

the mauve triangles

the path

reduction of the halting problem



4.2.a the mauve triangles

definition of these triangles

intersection properties

particular points and isoclines
the β-clines
the β-points and the γ-points



starting point of the construction:

consider red triangles only
each red triangle R of the generation 2n+1
defines a mauve triangle T of the genera-
tion n:

vertex of T = vertex of R
legs of T on those of R but twice longer
basis along an isocline again

from the doubling, mauve triangles intersect
between themselves, but as interwoven tri-
angles of opposite colour:

the leg of one with the basis of the other



representation of the mauve triangles



particular points:
on the leg of a mauve triangle T :

from top to bottom, h is the height of T :� the high-point, HP :
close to the vertex, defined later� the first point, FP :

at
h

4
from the vertex� the mid-point� the low-point, LP :

at
3h

4
from the vertex

all of them constructible by the tiles



the special points in a mauve triangle

0 1 2 3

FPl

FPr

MPl

MPr

LPl

LPr

remark the

i-triangles,

i 2 f0..3g



the FP -, MP and LP ’s define the 0, 1 and
2-clines and the basis defines the 3-cline

intersection properties:

let T be of generation n+1:

the i-clines of T cuts the legs of its inner i-
triangles of generation n and those of the 2-
tiangles of these i-triangles and, recursively,
the legs of the 2-triangles of generation m
of the already cut 2-triangles of generation
m+1 for m+1 < n,

all legs being cut at their LP ’s



the β-clines

from the overlapping between mauve trian-
gles, define a new notion:

define T : mauve triangle of generation n+1
its basis is cut by a 3-triangle of the
generation n ;

by recursion, this defines fTigi∈{0..n+1}, with:
Tn+1 = T , Ti, i 2 f0..ng, is a 3-triangle,
Ti is a mauve triangle of the generation i,
Ti cuts the basis of Ti+1

β-cline == the isocline of the basis of T0

its type: rank of Tn+1



from the existence of the β-clines:

β-points and γ-points

define, for a triangle T of the generation n+1:

β-point: the intersection of the leg of T with the
β-cline of its 2-triangles of the generation n
the β-point is below the LP ’s of T

the β-points emit lateral signals outside T
opposite lateralities can be joined once in be-
tween two consecutive triangles of the same
generation and latitude



γ-point:

for a triangle T of the generation n+1:

intersection of the leg with the β-cline of its
hat

the hat of T may not exist, but there are
copies of T on the same latitude which
have a hat) the γ-point can always be defined



construction of the β-points

key points:� from the corner of T , take the first 3-
triangle of the generation n which cuts the
basis of T� from there reach a 2-triangle D of the
generation n inside T� the β-cline of D cuts the legs of T at the
expected β-point



construction of the β-points

FPl

FPr

MPl

MPr

LPl

LPr



construction of the γ-points

in a triangle T of the generation n+1, their
0-triangles are hatted

same β-cline as that of the hat of T

construction by a recursive algorithm:

start from the mid-point of the red tri-
angle supporting T
go on the isocline to the first 0-triangle
find its γ-point and go back to the leg
of T



construction of the γ-point

FPl

FPr

MPl

MPr

LPl

LPr



the HP ’s of a mauve triangle

starting from the FP , in the direction of the
vertex:

if β-cline of type 2 at the γ-point,
then HP = γ-point

otherwise:
HP = intersection with first basis if any

if no basis between the FP and the vertex,
HP ’s on the legs, on the isocline below
the vertex



4.2.b the path

basic step for the injectivity theorem:

construction of a frame guaranteeing a
plane-filling path, or at least a half-plane
filling path



construction of the path

definition by induction on the generations of
the mauve triangles:

generation 0:

entry into the triangle:
at the LP on one side

exit from the triangle:
at the vertex of T or the isocline just
below, towards the other side

in-between : zig-zags



illustration:



illustrating all cases:



in between mauve-0 triangles:

and similar figures for the other cases



schematic representation for the generation 0

a( )

c( )

b( )

d( )



from the generations n to n+1

inside a triangle

namely,
a 0- or a 1-triangle



from the generations n to n+1

inside a triangle
when a bigger one
intersects it

namely,
a 3- or a 2-triangle



from the generations n to n+1

in-between two consecutive
triangles of the same generation



as in the previous figure:

motion within a latitude in between legs of
a higher generation:

either legs of a triangle
or consecutive legs of two consecutive
triangles of the same generation

this defines the basic areas of the path for
each generation



special role of β-clines of 2-triangles:

they require that the path cuts the top of
the encountered triangles when in an open
part of the β-cline

mechanism needed to ensure the global di-
rection
the same 2-β-cline used inside a triangle T
and then, in between two consecutive trian-
gles of the same latitude but below T



all elements above indicated:

LP ’s, HP ’s, mid-points, rank,
β- and γ-points, β-clines and their types,
correspondence entry/exit in a triangle

can be fixed by a finite set of prototiles

by induction on the generation, this forces
the path for next generation



as a corollary,

a basic area cannot contain a cycle of the
path

and so the path contains no cycle

in most cases, the path consists of one com-
ponent: it visits all the tiles

this is the case when there is no infinite
mauve triangle



the exceptional case: the infinite triangle

this case is yelded by the case of the butterfly
model for the interwoven triangles

case when there is an isocline which is never
cut by a any red or blue triangle, whatever
the generation

a possibility only:

it cannot be forced algorithmically

there may be infinite red triangles



when there are infinite red triangles, this
entails the same for mauve triangles

in this case:

there is an infinite mauve triangle T∞ with
a basis cutting infinitely many 2-triangles:

the infinite basis of T∞ contains in-
finitely many vertices of infinite mauve
triangles



in this case:

there are infinitely many paths:

one over the infinite basis,
it also fills up the 2-triangles Ti’s crossed
by the basis

and one path in each infinite triangle
which visits also a contiguous zone in-
between the next infinite triangle and
itself



in all cases:

one component
or infinitely many components

basic lemma
any component of the path fills up an infinite
sequence of triangles of increasing sizes



4.2.c reduction of the halting problem



theorem
the injectivity of the global function of a CA on
the heptagrid is undecidable

proof
easy to define an orientation of the path in
each component:

define three colours in a given order used
by the path only

rest of the proof:
argument similar to the Euclidean proof
with a difference



proof, continued

let M be the set of Turing machines starting
from an empty tape

let TM be a finite set of prototiles of the
heptagrid associated to M 2 M with the
interwowen triangles:

TM tiles the plane if and only if M does
not halt, starting from the empty tape

let D be the finite set of prototiles of the
mauve triangles with the oriented paths



proof, continued

for M 2 M, define AM as a CA on the
heptagrid by:

states: TM �D � f0, 1g

transition function f , addresses the bit only:
if TM or D not correct at c, no change
if both correct,
f(c, t+1) = xor(f(c, t), f(d(c), t)),
where d(c) is the next tile on the path
after c
G = GAM

== global function of AM



proof, continued

then, G is not injective if and only if M does
not halt

indeed:
if M does not halt:
then TM tiles the plane ;

let ξ be a configuration corresponding to a
correct tiling in TM and in D ;

we may chose ξ in such a way that the
path has a single component under D



proof, continued

define x0 at c by:
ξ for the tile, 0 for the bit

similarly define x1 at c by:
ξ for the tile, 1 for the bit

then, by the xor, which applies, the next
transition is always x0

hence, G is not injective



proof, continued

if G not injective: there are x0, x1 and c with
x0(c) 6= x1(c) and G(x0)(c) = G(x1)(c)

as G changes only the bits, same situation of
the tilings at c ; easy to see that necessarily,
both TM and D are correct at c and then,
also at d(c) ;



proof, continued

by induction,
TM and D correct along the path starting
from c ;

now, the component of the path through c
visits an infinite sequence of triangles with
increasing sizes, also after c ;
by the construction of TM , then M cannot
halt



4.2.d about Gardens of Eden

natural questions:

what about surjectivity ?

what about bijectivity and reversibility ?



in the Euclidean setting:

theorem 1 (J. Kari, 1994, B. Durand 1996)
it is undecidable to know whether the global func-
tion of a CA on the Euclidean plane is surjective

theorem 2 (J. Kari, 1994)
it is undecidable to know whether the global func-
tion of a CA on the Euclidean plane is bijective



basis of these theorems:

in the Euclidean setting, the Garden of Eden
theorem (Moore, Myhill, 1963) says, for the
global function G of a CA that:

G surjective, G injective on finite configurations



Hedlund’s characterizations of CA’s
+ compacity of the space of configurations
entails:

bijectivity , reversibility

for the global function of a CA

and so, G injective , G reversible

theorem 1 is based on the proof of J. Kari’s
theorem, 1994, of the undecidability of the
injectivity of the global function of a CA



in the hyperbolic plane:

an analoguous version of Hedlund’s charac-
terizations of CA’s holds

but the Garden of Eden theorem is not true

theorem 3 (J. Kari, M. Margenstern)
there are CA’s in the hyperbolic plane whose
global function is surjective but not injective,
even on finite configurations, and there are oth-
ers whose global function is injective but not sur-
jective



theorem 3 has a partial refinment, consider-
ing CA’s in the hyperbolic plane which are
rotation invariant:

theorem 4 (M. Margenstern, J. Kari)
there are rotation invariant CA’s in the hyper-
bolic plane whose global function is surjective but
not injective, even on finite configurations



4.3 small universal hyperbolic CA’s

4.3.a the railway model

4.3.b in the plane

4.3.c in the 3D-space



4.3.a railway simulation

all results here: implementation of this model

introduced by Ian Stewart,

a circuit in the Euclidean plane made of:

tracks

crossings

switches

a unique locomotive runs over the circuit



the switches

three types:

fix flip-flop memory

flip-flop: only active passage, triggers the
change of the selection

memory switch:
selected track = last passive passage
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1

0

O

O

1

2

E

U

the basic element

E: reading entry

U : writing entry:
changes the con-
tent of the element

assembly of elements: allows to construct regis-
ters or a tape of a Turing machine



a register unit:

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0
i+1

d
i+1

i
i
d

i
i

K’
K

H

I
R
D

E G G’E’

F F’

C C’

B B’
A

A’
S

P

Q

J
J

1

2



1

1

1

1

2

2

2

2

1 :

5 :

8 :

12 :

,5

,8

,12

,15

jmp 1
inc W
inc Z

dec X

dec W

inc X
jmp 5

dec Y

inc Z

inc W
jmp 8
dec W

inc Y
jmp 12

an example:



it is known that by assembling switches and
tracks, a universal computation can be simu-
lated by the motion of the locomotive



4.4.b in the hyperbolic plane

common feature of the results:

weak universality: infinite initial configu-
ration, but not arbitrary, at large two parts
globally invariant by a shift



organization of the circuit

mainly, following TCS paper� implementation of an elementary unit� structure of the global implementation



A

M
F

F

F

F

E

U

the elementary unit



a block : unit of a register



organization of the circuit on the example

here, in the heptagrid



organization of the circuit

thanks to the description of various kinds of
paths:

using isoclines as horizontals

using lines following a branch in a Fibonacci
tree as verticals

note: needed only finite parts of horizontals
and verticals



the results:

22 states, pentagrid, MM-FH, 2002, first
result in the hyperbolic plane

9 states, pentagrid, MM-YS, 2008

6 states, heptagrid, MM-YS, 2008, and,

very recently, 4 states, heptagrid

all of them are rotation invariant CA’s



the HCA on the heptagrid with 6 states

we illustrate two points:

the motion of the locomotive along a track

the passive crossing of a memory switch
from the non-selected track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the motion along a track



illustration of the crossing of a
memory switch:

here, the passive passage through

the non-selected track, in sector 1

if the locomotive arrives through sec-
tor 1

it is sent to sector 4

and sector 1 becomes the selected track



left-hand side memory switch:

the locomotive arrives through sector 1:

front in 4(1)



left-hand side memory switch:

the locomotive arrives through sector 1:

front in 4(1)



left-hand side memory switch:

the locomotive arrives through sector 1:

front in 4(1)



left-hand side memory switch:

the locomotive arrives through sector 1:

front in 1(1)



left-hand side memory switch:

the locomotive arrives through sector 1:

front in 0



left-hand side memory switch:

and leaves through sector 4:

front in 1(4)

change
of

selection



left-hand side memory switch:

and leaves through sector 4:

front in 4(4)



left-hand side memory switch:

and leaves through sector 4:

front in 12(4)



left-hand side memory switch:

and leaves through sector 4:

front in 33(4)



left-hand side memory switch:

and leaves through sector 4:

front in 88(4)



left-hand side memory switch:

and leaves through sector 4:

stable again,
on the other side



the HCA on the heptagrid with 4 states

here too, we illustrate two points:

the motion of the locomotive along a track
which follows an isocline

the passive crossing of a memory switch
from the non-selected track



the locomotive on a track along an isocline

the idle
configuration



the locomotive on a track along an isocline

the idle
configuration



the locomotive on a track along an isocline

the locomotive
is arriving



the locomotive on a track along an isocline

the locomotive
is arriving



the locomotive on a track along an isocline

the locomotive
is arriving



the locomotive on a track along an isocline

the locomotive
is arriving



the locomotive on a track along an isocline

and it goes
along
the path



the locomotive on a track along an isocline

and it goes
along
the path



the locomotive on a track along an isocline

and it goes
along
the path



the locomotive on a track along an isocline

and it goes
along
the path



the locomotive on a track along an isocline

and it goes
along
the path



the locomotive on a track along an isocline

and it goes
along
the path



the locomotive on a track along an isocline

and it goes
along
the path



the locomotive on a track along an isocline

until
it reaches
the other
side



the locomotive on a track along an isocline

until
it reaches
the other
side



the locomotive on a track along an isocline

from where
it will be
leaving



the locomotive on a track along an isocline

it will be
leaving



the locomotive on a track along an isocline

it will be
leaving



the locomotive on a track along an isocline

it will be
leaving



the locomotive on a track along an isocline

and now,
it is
leaving



the locomotive on a track along an isocline

and now,
it is
leaving



the locomotive on a track along an isocline

and now,
it is
leaving



the locomotive on a track along an isocline

and now,
it is
leaving



the locomotive on a track along an isocline

here,
idle again



illustration of the crossing of a
memory switch:

here, the passive passage through

the non-selected track, in sector 7

if the locomotive arrives through sec-
tor 7

it is sent to sector 4

and sector 7 becomes the selected track



left-hand side memory switch:

next, when the locomotive arrives from sec-
tor 7,

the non-selected track:

it is sent to sector 4

and sector 7 becomes the selected track



left-hand side memory switch:

the locomotive
will arrive
through sector 7

here, idle
configuration



left-hand side memory switch:

the locomotive arrives
through sector 7

front in 32(1)



left-hand side memory switch:

the locomotive arrives
through sector 7

front in 31(1)



left-hand side memory switch:

the locomotive arrives
through sector 7

front in 11(1)



left-hand side memory switch:

and it goes
to sector 4

front in 10(1)



left-hand side memory switch:

and it goes
to sector 4

but here, it
meets with
an obstacle

front in 3(1)



left-hand side memory switch:

the obstacle triggers
the change of the
selected track

here, first step:
the obstacle
is removed

front in 1(1)



left-hand side memory switch:

second step of the
change of selection:

the obstacle is
put on track 1

front in 0



left-hand side memory switch:

last step of the
change of selection:

the track 7
is now free, and
the locomotive
enters sector 4

front in 1(4)



left-hand side memory switch:

the locomotive enters
sector 4

front in 3(4)



left-hand side memory switch:

the locomotive will
leave through
sector 4

front in 10(4)



left-hand side memory switch:

the locomotive will
leave through
sector 4

front in 11(4)



left-hand side memory switch:

the locomotive is
leaving sector 4

front in 31(4)



left-hand side memory switch:

the locomotive is
leaving sector 4

front in 32(4)



left-hand side memory switch:

the locomotive is
leaving sector 4

front in 88(4)



left-hand side memory switch:

the locomotive
left sector 4

idle again,
but as a
right-hand side
memory switch



4.3.c in the hyperbolic 3D space

possible to implement the same model

important differences:

take advantage of the 3D space
to replace crossings by bridges

also: more neighbours for each cell:
12 of them instead of 7 in the heptagrid



the result:

5 states, dodecagrid, MM, 2004

again, weakly universal rotation invari-
ant CA

another property:

let fA,B,C,D,Eg be the states
consider a rule: η0η1..η12 ! η′

0

define its reduced pattern as the word
Aa1Ba2Ca3Da4Ea5 ; η0η

′
0,

∑

ai = 12

then: the mapping from the rules to their
reduced pattern is injective



4.4 beyond the Turing barrier

4.4.a infinigons and infinigrids

4.4.b register CA’s on an infinigrid



4.4.a infinigons and infinigrids

plane again:
viewing the
regular
rectangular
polygons
at once,

their limit) infinigon:



the visual limit:



the basic construction

define a sequence of segments, xnxn+1,
n 2 ZZ, such that:

- 8n : xnxn−1, xnxn+1 = xn+1xn, xn+1xn+2

- 8n : jjxnxn+1jjh = jjxn+1xn+2jjh
claim:

the xn’s belong to an e-circle Γ
if x0 = 0 and jjxnxn+1jje = x, x 2]0, 1[

then, diameter of Γ =
x

cos(α

2
)



let U denote the open unit disc ;

- if Γ � U , xn’s either a regular polygon
or a dense subset of an annulus

- if Γ � U and Γ 6� U ,
then Γ horocycle and xn’s basic infinigon

- if Γ 6� U , then Γ equidistant curve
and xn’s open infinigon

points at infinity of an infinigon:

- basic infinigon: a single point
- open infinigon: a closed interval of ∂U



the basic construction in the disc model:

∂U

Γ

x0x1

β1

x2

β2

D



infinigrids:

tessellation:
fix an infinigon ; replicate it by reflections
in its sides and repeat the process with the
images, recursively

theorem 1 (Coxeter/Rozenfeld/Margenstern)� an infinigon generates a tiling by tessellation

iff its interior angle =
2π

k
, k � 3

infinigon: basic or open



disc model: the rectangular infinigrid



the same

with horocycles



important property:

the splitting method can be extended to the
infinigrids

theorem 2 (Margenstern) � the tiling gener-
ated by a an infinigon is in a one-to-one corre-
spondance with an infinite tree with an infinite
branching in each node

proof based on a recursive splitting

by recursion, generate a spanning tree of the
dual graph



the splitting of HI2:

even case odd case
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the construction algorithms:

p−2 p−3 p−2

p−2

p−2
p−1

i

p−2 p−2
p−2 p−2

p−2
p−2 p−2

p−2
p−2 p−2

p−2

i
i−1

p−2 p−2
p−2 p−2

i−1
1

0

−1

0

1

−1

0

1 −1

−1

1 0

(i) (ii) (iii) (iv)

0 0

p−2 p−2

0 0

p−2 p−2
p−2

p−2 p−2
p−2p−2

p−2 p−2

p−2
p−3

p−3

0
1

−1

0

1

−1 0

1

−1 in (iii):
i < p−2

even case
(v) (vi) (vii)



the construction algorithms (continued):

p−1 p−2 p−2

p−1

p−1
p−1

i

p−1 p−2
p−1 p−1

p−2
p−1 p−1

p−1
p−1 p−1

p−1

i
i−1

p−1 p−2
p−1 p−1

i−1
1

0

−1

0

1

−1

0

1 −1

−1

1 0

(i) (ii) (iii) (iv)

0 0

p−1 p−1

0 0

p−1 p−1
p−2

p−1 p−1
p−2p−2

p−1 p−1

p−2
p−3

p−2

0
1

−1

0

1

−1 0

1

−1 in (iii):
i < p−2

odd case
(v) (vi) (vii)



special cases:

k = 3

0

1 −1

−1

1 0



special cases:

k = 4

−1

1 0

0

1 −1

−1

1 0



special cases:

k = 5

0
0

1

0

−1

0

1

−1

0

1 −1

−1

1 0

1
1 1

1 1

1
11

1

1
0

1 1
0

11
1



4.4.b register CA’s on the infinigrid

first, it is an adapted CA to the infinigrid:

its transition function δ is of the following form:

δ : Q� f0, 1g|Q| 7! Q

with <s, t+1> = δ(<s, t>, z1(s, t), . . . , z|Q|(s, t))
where the states of the CA are 1,. . . , k and

zi(s, t) =

{

1 if there is a neighbour of the
cell in state i at time t

0 otherwise

addresses of cells: (a1, . . . , an), ai 2 IN



infinigrids: the tree representation



infinigrids: another representation



theorem 1 � (SG-MM, 2002)
there is a CA U which is adapted on the infini-
grid and such that for any arithmetical formula
F in Σ0

n or in Π0
n, U recognises whether F is

true or not

proof
we may assume F being closed
let F = 9x1 8x2 . . . ξxn G(x1, . . . , xn)
where G prim. rec. with values in f0, 1g

initialization of F :
put G(a1, . . . , an) in the cell (a1, . . . , an)

(a1, . . . , an) oversees (a1, . . . , an, z) for all z’s



second, a register CA has the following facilities:� states contain accept and reject� in each cell, two registers: a and x
a read-only, holds the address of the cell
x read-write, to compute integers

permitted operations: copy a, +, �, /, �,
mod, sg, sg, f(n)ig|n|i=1, any in 1 step

data in unary via the root, initially not in 1
halting: root in accept or reject



theorem 2 � (SG-MM, 2002)
register CA’s on the infinigrid are able to decide
the truth of any Σ0

n ; they can do that in time
linear in the length of the formula

proof

same basic idea as in theorem 1,
+ Matiyasevich’s theorem on the existence
of a polynomial representing any partial re-
cursive function by the associated diophan-
tine equation

constant time for reporting the result to the
root: indeed 12 levels
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