Computations in hyperbolic spaces

Maurice Margenstern

Université Paul Verlaine - Metz, IUT de Metz LITA, EA 3097

Workshop

New Worlds of Computation 2009
January, $12^{\text {th }}, 2009$
LIFO, Université d'Orléans

in this talk:

1. reminding hyperbolic geometry
2. coordinates for tilings in the hyperbolic plane
3. application to tiling problems
4. application to cellular automata in the hyperbolic plane
5. hyperbolic geometry

hyperbolic geometry

absolute geometry

+ new axiom (Lobachevsky-Bolyai): from a point A not on line ℓ, at least two parallels to ℓ
extension to any dimension
many models
Beltrami, Klein, Poincaré,...

Poincaré's disc model

a point A,
a line ℓ

Poincaré's disc model

Poincaré's disc model

```
a parallel p
to \ell
through \(A\)
```


Poincaré's disc model

```
another
parallel q
to \ell
through A
```


Poincaré's disc model

a non secant
 line m to ℓ
 through A

Poincaré's disc model

the common perpendicular to m and ℓ

a few useful properties

sum of angles of triangle: always less than π non-secant lines:
always a unique common perpendicular

motions in the hyperbolic plane

definition:

finite product of reflections in lines
classification theorem:
any isometry of the hyperbolic plane is a product of at most three reflections
positive motions:
they do not change orientation: products of two reflections in lines

classification of positive motions

three cases, depending on the intersection of the axes of the reflections:

rotation

ideal rotation

shift along a line

2. coordinates for tilings in the hyperbolic plane

2. coordinates for tilings in the hyperbolic plane
2.1 tilings in the hyperbolic plane
2.2 the splitting method
2.3 application to various location problems
2.1 tilings in the hyperbolic plane tilings:
sequence $\left\{T_{i}\right\}_{i \in I}$ of tiles, $T_{i} \subset E, E$ geometric space such that:
i) $\cup_{i \in I} T_{i}=E$
ii) $\forall i, j\left(i \neq j \Rightarrow \operatorname{int}\left(T_{i}\right) \cap \operatorname{int}\left(T_{j}\right)=\emptyset\right)$
where $\operatorname{int}\left(T_{i}\right)$ is the interior of T_{i}
here, as usual, only
finitely generated tilings:
there is a finite $J, J \subset I$,
such that for all i,
T_{i} is a copy (isometric image) of some T_{j} for $j \in J$
T_{j} 's, for $j \in J$ are called prototiles

tessellations

one basic tile P;
T_{i} 's are obtained by reflections of a convex polygon P in its sides and, recursively, of the images in their sides
classically :
in the Euclidean plane, three tessellations:
square, regular hexagon, equilateral triangle
in the hyperbolic plane:
Poincaré's theorem, (1882):
all tessellations based on a triangle with angles $\frac{\pi}{p}, \frac{\pi}{q}$ and $\frac{\pi}{r}$, with p, q and r positive integers
such that $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$ exist and so, infinitely many solutions
2.2 the splitting method
2.2.a the classical case of the pentagrid
2.2.a combinatoric tilings
2.2. a the classical case of the pentagrid:
the simpest rectangular grid here restricted
to the South-Western quarter
\mathbb{H}^{2}, the splitting process for the pentagrid:
the leading pentagon P of a quarter

\mathbb{H}^{2}, the splitting process for the pentagrid:

in the complement of P, a quarter

\mathbb{H}^{2}, the splitting process for the pentagrid:

another one

\mathbb{H}^{2}, the splitting process for the pentagrid:

and the remaing part: a strip

\mathbb{H}^{2}, the splitting process for the pentagrid:
in a strip: the leading pentagon and a quarter

\mathbb{H}^{2}, the splitting process for the pentagrid:

and the remaing part: a strip again

$I H^{2}$, the splitting process for the pentagrid:
the recursive splitting: first step

H^{2}, the splitting process for the pentagrid:
the recursive splitting: second step

H^{2}, the splitting process for the pentagrid:
the recursive splitting: third step

H^{2}, the splitting process for the pentagrid:
the recursive splitting: and so on...

the tree being associated to the pentagrid

with its numbering
new look on the numbering of the pentagrid

the generating tree:

Fibonacci technology:

recall: for any number n : $n=\sum_{i=0}^{k} a_{i} f_{i}$,
where f_{i} : Fibonacci sequence
the representation is not unique ;
uniqueness obtained by a rule: forbid 11 this representation called coordinate of n the language of coordinates is regular
the property of the preferred son:
let $\alpha_{k} \ldots \alpha_{0}$ be the coordinate of ν and let $\beta_{h} \ldots \beta_{0}$ represent $\nu-1$
coordinates of the sons of ν : if ν 2-node: $\quad \alpha_{k} \ldots \alpha_{0} 00, \alpha_{k} \ldots \alpha_{0} 01$
if ν 3-node: $\frac{\beta_{h} \ldots \beta_{0} 10, \alpha_{k} \ldots \alpha_{0} 00}{} \quad \alpha_{k} \ldots \alpha_{0} 01$,
call the node with coordinate $\alpha_{k} \ldots \alpha_{0} 00$ the preferred son of ν
every node has precisely one preferred node rule to determine the preferred son: in 2-nodes, it is the leftmost son in 3-nodes, it is the middle son

2.2.b combinatoric tilings: (2002)

basis of splitting:

k unbounded simply connected parts of \mathbb{H}^{n} S_{0}, \ldots, S_{k}, and h bounded simply connected parts of $\mathbb{H} H^{n} P_{0}, \ldots, P_{h}, h \leq k$, with:
(i) H^{n} split into finitely many copies of S_{0} (copy $=$ isometric image)
(ii) each S_{i} split into one copy of some P_{ℓ} and finitely many copies of S_{j}
distinguished P_{ℓ} : leading tile of S_{i}

the spanning tree of the splitting

root : the leading tile of S_{0}
let level n defined and each node associated to the leading tile of a copy C_{j} of some S_{j}
then, sons of leading tile of C_{j} :
leading tiles of copies of those S_{k} 's occurring in the splitting of C_{j}
by induction: infinite tree

combinatoric tilings

say that the tiling \mathcal{T} is combinatoric
if there is a basis of splitting such that: the associated spanning tree is in bijection with the restriction of \mathcal{T} to S_{0}, all tiles of \mathcal{T} being copies of P_{ℓ} 's
later, in most cases, a single generating tile $P=P_{0}$

matrix and polynomial of the splitting

when combinatoric tiling, its spanning tree:
$k+1$ types of nodes: type i means S_{i}
moreover:
let $M_{i, j}$ be the number of S_{j} in splitting S_{i};
\Rightarrow the number of nodes of level n for a root of type i $=$ sum of row $i+1$ of M^{n}
M : matrix of the splitting ; its characteristic polynomial: polynomial of the splitting

language of the splitting

let $u_{n}=\#\{$ nodes at level n of $\mathcal{A}\}$
where \mathcal{A} spanning tree
$\{u\}_{n}$ satisfies the induction equation defined by the polynomial of the splitting
number the nodes of \mathcal{A} starting from 1 , from the root and level by level:
coordinate of node $\nu=$ maximal greedy representation of ν
language of the splitting $=$ language of the coordinates

greedy representation in a basis

let $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ be positive numbers with $u_{0}=1$, $u_{n}<u_{n+1}$ and $\limsup \frac{u_{n}}{u_{n+1}}<\infty$
let $b=\left\lfloor\limsup \frac{u_{n}}{u_{n+1}}\right\rfloor$
then $n=\sum_{i=0}^{k} \alpha_{i} u_{i}$ with $\alpha_{i} \in[0 . . b]$
maximal greedy representation:
if k maximal, then unique
results: tilings proved to be combinatoric:
$\mathbb{H}^{2}: \quad\{5,4\}$: pentagrid (MM-KM, MM)
$\{s, 4\}: s$ sides and right angle (MM-GS)
$\{p, q\}: p$ sides and angle of $\frac{2 \pi}{q}(\mathrm{MM})$
most cases of Poincaré's theorem
(MM 2002)
$\{\infty, q\}: *$ (MM 2003)
$\mathbb{H}^{3}: \quad\{5,3,4\}$: rectangular dodecahedron (MM-GS)
$\mathbb{H}^{4}:\{5,3,3,4\}: 120$-cell
(MM, 2004)
2.3 application to various location problems
2.3.a the shortest path from a tile to another one
2.3.b change of coordinates
2.3.c locating points in the pentaand the heptagrid
2.3.d other connected results
2.3. a the shortest path from a tile to another one given 2 tiles T_{1} and T_{2} by their coordinates, find a shortest path from T_{1} to T_{2} :
i.e. find a sequence $\left\{\tau_{i}\right\}_{0 \leq i \leq k}$ with
$\tau_{0}=T_{1}, \tau_{k}=T_{2}$ and τ_{i}, τ_{i+1} sharing a side for $i \in\{0 . . k-1\}$ and such that k is the smallest as possible

the shortest path from T_{1} to T_{2}

first result:
theorem (MM 2003)
there is an algorithm which gives the path from a tile T in a Fibonacci tree F to the root of F in a time which is linear in the size of the coordinate of T in F
the shortest path from T_{1} to T_{2}
define coordinates for the tiles of the pentaor the -heptagrid as follows:
fix a central tile T_{0}
define α sectors around T_{0}, each one spanned by a Fibonacci tree, $\alpha \in\{5,7\}$

the shortest path from T_{1} to T_{2}

number the sides of a tile:
for the central tile T_{0}
side i defines sector i
for another tile T
side 1 is shared with the father of T other sides numberd by counterclockwise turning around T

the shortest path from T_{1} to T_{2}

number the sectors around T_{0} from 1 to α, counterclockwise turning around T_{0}, sector 1 being fixed once for all the coordinate of T_{0} is 0
the coordinate of $T \neq T_{0}$ is $\nu(i)$
with i the number of the sector of T and ν the coordinate of T in the tree spanning the sector

the shortest path from T_{1} to T_{2}

then as a corollary of the theorem we have:

there is an algorithm which gives a path from a tile T_{1} to a tile T_{2} of the penta- or the heptagrid in a time which is linear in the size of the coordinates of T_{1} and T_{2}
note that the path given by the algorithm may be not a shortest one

the shortest path from T_{1} to T_{2}

recently, a new result:
theorem (MM, 2008):
the coordinates being fixed in the penta- or the heptagrid, there is an algorithm which, for any pair of tiles T_{1} and T_{2} computes a shortest path between T_{1} and T_{2} in a time which is linear in the coordinates of T_{1} and T_{2}

the shortest path from T_{1} to T_{2}

the proof relies on the characterization of the shortest paths between T_{1} and T_{2}
in general the shortest path between T_{1} and T_{2} is not unique
following two paths π_{1} and π_{2} between T_{1} and T_{2}, we define the apartness between π_{1} and π_{2}, denoted by apart $\left(\pi_{1}, \pi_{2}\right)$, as the biggest distance bewteen tiles of π_{1} and π_{2} which are at the same distance from the origin of π_{1} and π_{2}

the shortest path from T_{1} to T_{2}

lemma
let π_{1} and π_{2} be two shortest paths from T_{1} to T_{2}; then apart $\left(\pi_{1}, \pi_{2}\right) \leq 1$
the apartness is easily computed, it allows to characterize the leftmost and the rightmost shortest paths, the algorithm computes the leftmost shortest path

2.3.b change of coordinates

consider a central tile O and a system of coordinates based on this tile ; consider two tiles A and T, knowing their coordinates with respect to O
theorem (MM, 2008)
in the above setting, there is an algorithm which computes the coordinates of T in a system of coordinates centred at A which is linear in the size of the coordinates of A and T in the system centred at O

change of coordinates

the theorem is a corollary of the theorem of the shortest path:
from the coordinates of A and T in the system centered at O, we compute a shortest path between A and T;
from the shortest path, we compute the coordinate of T in a system of coordinates centered at A
both parts of the computations are linear in the sizes of the coordinates of A and T in the system centered at O
2.3.c locating point in the penta- and the heptagrid
consider a central tile O and a system of coordinates based on this tile ; consider a point P of the hyperbolic plane

question:

can we find a tile T such that $P \in T ?$

locating point in the penta- and the heptagrid

the answer depends on how P is defined define P by (x, y), its cartesian coordinates centered at O
then:
we have $x^{2}+y^{2}<1$ and,
if $x, y \in \mathbb{R}$, the problem is undecidable

locating point in the penta- and the heptagrid

if $x, y \in Q$, the problem is not only decidable, it has a relatively low complexity:
theorem (KC-MM-BM-IP, 2004; MM, 2008) there is an algorithm to find T such that $P \in T$ such that:
the number of equations of circles involved in the computation is linear in the size of x and y for any $r \in Q, 0<r<1$, the computation of T is polynomial in the size of x and y when $x^{2}+y^{2} \leq r$

locating point in the penta- and the heptagrid

the proof relies on the following:
$X^{2}+Y^{2}-2 a X-2 b Y+1=0$ is the form of the equations of the circles which support the sides of the tiles
now, $a, b \in \mathscr{Q}(\omega, \zeta)$ where ω is an algebraic integer and ζ, a primitive root of 1 of order α

locating point in the penta- and the heptagrid

this proves the decidability part of the theorem
the complexity part relies on an analysis of the operations involved in computing the new a 's, b 's from the former ones

2.3.d connected results:

two results:
defining coordinates for points of the hyperbolic plane
constructing a Peano curve in the hyperbolic plane

connected results:

coordinates for points of the hyperbolic plane
from the location algorithm, considering P with $x, y \in \mathbb{R}$ we can define a tile T such that $P \in T$
note that this is not constructive the number of T in the Fibonacci tree of its sector is the integral part of the coordinate of P

coordinates for points of the hyperbolic plane

next: tile T is split into seven triangles T_{i}^{0} constructed on its sides and its centre
one of these triangles contains P : this defines the first digit in $\{0 . . \alpha-1\}$ of the coordinate of P, i being attached to side $i+1$

coordinates for points of the hyperbolic plane

then, for each i : the current tile T^{i} is split into four triangles T_{j}^{i+1} constructed on the midpoints of the sides of $T^{i}, j \in\{0 . .3\}$ one of these triangles contains P : this defines the $i+1^{\text {th }}$ digit in $\{0 . .3\}$ of the coordinate of P

coordinates for points of the hyperbolic plane

to be more precise for the digits: number the vertices of T_{i}^{0} as follows:
the centre is numbered with 2 , the other vertices are 0 and 1 , in the natural order when counterclockwise turning around T number the vertices of T_{j}^{i+1} as follows: the mid-point of $a b$ of T_{j}^{i} is c such that $\{a, b, c\}=\{0,1,2\}$

coordinates for points of the hyperbolic plane

then, in T_{j}^{i}, T_{k}^{i+1} has the number of its vertex which is also a vertex of $T_{j}^{i} ; T_{3}^{i+1}$ is the triangle whose vertices are the mid-points of the sides of T_{j}^{i}
the orientation in the numbering of the vertices is the same for T_{j}^{i} and T_{3}^{i+1} and opposite for T_{j}^{i} and T_{k}^{i+1} for $k \neq 3$

coordinates for points of the hyperbolic plane

let ζ be the coordinate of P
the digits of ζ are ultimately stationnary if and only if P is a vertex of some T_{j}^{i} or the intersection of all T_{3}^{m+n} for a certain m
let $\alpha_{0} \alpha_{1} \ldots$ be the digits of $\{\zeta\}$ define α_{k}^{\prime} by the condition

$$
\text { (*) }\left\{\alpha_{k}^{\prime}, \alpha_{k+1}, \alpha_{k+1}^{\prime}\right\}=\{0,1,2\},
$$

assuming simply $\alpha_{0}^{\prime} \neq \alpha_{0}$

coordinates for points of the hyperbolic plane

we have:
lemma (MM, 2008)
ζ belongs to a side of some $T_{j}^{i_{0}}$ if and only if there is a k_{0} such that the condition $(*)$ is true for all $k \geq k_{0}$ for a certain k_{0}
in particular, we get:
if the digits of $\{\zeta\}$ contains infinitely many 3's, P lies inside all T_{j}^{i} 's which contain P
coordinates for points of the hyperbolic plane
there are examples of P for which the digit of $\{\zeta\}$ are in $\{0,1,2\}$ only such that P is inside all T_{j}^{i} 's which contain P
here is such an example:
take the sequence of digits defined by $(02)^{\infty}$

connected results:

a Peano curve in the hyperbolic plane
the integral part

a Peano curve in the hyperbolic plane

the first generation
a Peano curve in the hyperbolic plane

the second generation
a Peano curve in the hyperbolic plane
this can be continued for each generation: the tile is divided into an annulus and a center
then, from the generation n to $n+1$: the annulus goes from generation n to $n+1$ the center is repaced by a 'scaled' tile of generation n

3. application to tiling problems

3.1 the tiling problem
3.2 construction of a grid
3.3 undecidability of the tiling problem

3.1 the tiling problem

question:
is there an algorithm A such that:
given the description of a finite set \mathcal{S} of tiles, the prototiles, A says yes if it is possible to tile the plane with copies of the prototiles and no if it is not the case
in the case of the Euclidean plane:
problem raise by Hao Wang in 1958 conjectured decidable by Hao Wang proved undecidable by Robert Berger in 1966
complexed proof but a very deep one, involving a bit more than 21,000 prototiles
in 1971, Raphael Robinson gave a simpler proof of the same result
in the case of the hyperbolic plane: in the same 1971 paper, Robinson asks: what can be said for the hyperbolic plane? in 1978

Robinson proved that the origin-constrained problem is undecidable in the hyperbolic plane
it is known that he tried to solve the general problem
nothing new in the case of the hyperbolic plane until 2006 in march 2006 (published 2008), I proved the undecidability of a problem which is an intermediate step between the originconstrained problem and the general one:
it is the generalized-origin constrained problem
now, in 2007:
the general problem is proved undecidable first proof, arXiv:cs/0701096 (MM2007) presented at the AMS sectional meeting, Davidson, NC, March 2007 at the same meeting, another proof announced by Jarkko Kari, completely different and independent

Oct. 2008,
TCS, MM2008:
single full proof published up to date
here:
a variant of the TCS proof sketchy outline of the proof: construction of a grid and then:
the interwoven triangles their implementation in \mathbb{H}^{2}
simulating a Turing machine
3.2 construction of a grid

recall the ternary heptagrid:

another way to tile the heptagrid:
$G \longrightarrow Y B G$
$Y \longrightarrow Y B G$
$B \longrightarrow B O$
$O \longrightarrow Y B O$

two trees with one set of tiles:
central Fibonacci tree:
black: B
white: G, O and Y
adapted standard Fibonacci tree:
black: G and Y
white: B and O
the levels in the adapted standard tree
they are
the horizontals

the verticals in the adapted standard tree
they avoid
any standard subtree
with a G-root

this defines a grid
possible to simulate the computation of a Turing machine:
easy construction, already coming from Hoa Wang
3.3 the undecidability of the tiling problem in the hyperbolic plane
3.3. a the interwoven triangles
3.3.b the trees and the seeds
3.3.c simulations of a Turing machine

three-stepped construction:

first:

a one-dimensional process on brackets
next:
lift up the process in the Euclidean plane
and then,
in the hyperbolic plane

a one-dimensional process on brackets

 consider the following picture:
it is a result of the following process:

M RMBMRMBMRMBMRMBMRMBMRMBMRMBMRMBM
it is a result of the following process:

3.3. a the interwoven triangles:
it consists in lifting up the construction:
first into the Euclidean plane
and then into the hyperbolic plane

the key pattern:

from this, the Euclidean interwoven triangles: triangles and phantoms, generation 0, blue-0

from this, the Euclidean interwoven triangles: triangles and phantoms, generation 1, red

from this, the Euclidean interwoven triangles: triangles and phantoms, generation 2, blue

from this, the Euclidean interwoven triangles: triangles and phantoms, generation 3, red

from this, the Euclidean interwoven triangles: triangles and phantoms, generation 4, blue, and so on...

this figure can be defined by a finitely generated tiling of the Euclidean plane (190 tiles) which forces a relization of this construction

3.3.b the trees and the seeds

 implementation in the hyperbolic plane thanks to:- threads of successively embedded trees of the heptagrid and
- synchronization of the implementation on each thread with that of the others
the trees with the green roots
key property:
either
embedded
or
disjoint
avoided
by the
verticals

trees of the heptagrid

we select the trees:
say a G-node with Y-father and G-grand father is a root
a root generates a tree of the heptagrid:
V is the vertex of the root, e the edge between the Y-father and its B-uncle let A be the mid-point of e from e, draw the two mid-point rays which cross the root they define the borders of the tree
main property of the trees of the heptagrid
two trees of the heptagrid are either embedded or disjoint
trees of the heptagrid can be gathered into sequences of consecutively embedded elements, indexed by $I N$ or \mathbb{Z}, called threads

isoclines

the horizontals we defined
number them periodically from 0 to 7
this defines the direction

from up to bottom

seeds:

roots which are on an even isocline
the seeds on an isocline 0 are active
by definition, seeds within a tree rooted at an active seed σ and lying on the $2^{\text {nd }}$ isocline below σ are also active
the set of the seeds is dense enough in \mathbb{H}^{2} : for any tile T of the heptagrid, there is an active seed within a ball of radius 10 around T
the seeds, the isocines and the verticals
the verticals avoid the trees

the interwoven triangles in the hyperbolic plane:
the triangles and phantoms are defined by the active seeds
the legs are along the extremal branches of the tree rooted at the seed
the basis runs along an isocline
the generation 0 , blue- 0 triangles, have their vertices on the isoclines 0 and their basis on the next isoclines 10 , then red and blue generations alternate
in each generation, the active seeds on a basis of a triangle generate a phantom, the same figure as a triangle but distinguished, whose basis is on the isocline of the vertices of the next triangles

the verticals:

they are defined by the sequence of alternating B - and O-nodes issued from a the root of a tree or from a G - or a Y-node of its border
key property:
verticals never meet a tree of the heptagrid rooted at an active seed

the horizontals:

red triangles contain isoclines 0 and 4 which never meet any inner red triangle, call them free rows
in a red triangle T of the generation $2 n+1$ there are 2^{n+1} free rows which never meet an inner red triangle of T

3.3.c simulations of a Turing machine

the just defined free rows and verticals inside a red triangle define a grid in which an initial segment of the computation of a Turing machine can be defined
in each red triangle, the same computation of the same Turing machine starting from an empty tape is simulated
thanks to the properties of the trees, the different computations do not interfer with each other

simulations of a Turing machine

as there are infinitely many triangles of all admissible sizes which makes an increasing sequence,
as the same Turing machine with the same data is simulated from the beginning in each red triangle,
we get:
the set of prototiles tiles the plane if and only if the machine does not halt
4. application to cellular automata in the hyperbolic plane
4.1 characterization of hyperbolic CA's
4.2 injectivity problem of their global function
4.3 small universal hyperbolic CA's
4.4 beyond the Turing barrier

4.1. characterization of hyperbolic CA's

we place α sectors around a central tile coordinates of a cell:
central cell: 0 , otherwise, $\nu(\sigma)$ with:
ν coordinate of the cell in its quarter $\sigma \in\{1 . . \alpha\}:$ number of the sector
remember the coordinate system

numbering the neighbours

neighbour 1:
central cell: fixed once and for all
other cells: the father
all cells:
neighbours 2.. α :
increasing numbers while counterclockwise turning around the cell, starting from neighbour 1

format of a rule

η_{0} : current state of the cell
η_{i} : current state of neighbour i, $i \in\{1 . . \alpha\}$
η_{0}^{1} : new state of the cell
format: $\eta_{0} \eta_{1} \eta_{2} . . \eta_{\alpha} \longrightarrow \eta_{0}^{1}$
for short: $\underline{\eta_{0}} \eta_{1} \eta_{2} . . \eta_{\alpha} \underline{\eta_{0}^{1}}$
$\eta_{0} \eta_{1} \eta_{2} . . \eta_{\alpha}==$ context of the rule

characterization of these CA's

remind the classical results in the Euclidean case:

global function of a CA A :

set of configurations: $Q^{\mathbb{Z}^{2}}, Q$: states of A global function: $G_{A}: Q^{\mathbb{Z}^{2}} \mapsto Q^{\mathbb{Z}^{2}}$ defined by $G_{A}(x)(c)=f(N(c))$,
f : transition function of A, the rules $x \in Q^{\mathbb{Z}^{2}}, c \in \mathbb{Z}^{2}$ and $N(c)$: neighbourhood of c

Hedlund's theorem

classical characterization theorem of the global function of a CA:
theorem (Hedlund, 1969)
Let $F: Q^{\mathbb{Z}^{2}} \mapsto Q^{\mathbb{Z}^{2}}$, where Q is a finite set. Then, F is the global function of a $C A A$ with states in Q if and only if F is continuous, when $Q^{\mathbb{Z}^{2}}$ is fitted with the product topology, and if F commutes with the shifts σ_{1} and σ_{2}.

$$
\begin{aligned}
\text { shift } \sigma_{1}:(x, y) & \mapsto(x+1, y) \\
\text { shift } \sigma_{2}:(x, y) & \mapsto(x, y+1)
\end{aligned}
$$

global function of a CA on the penta- and the heptagrids

let $\mathcal{F}_{\alpha}, \alpha \in\{5,7\}$, be the set constituted of a central cell O and the union of α sectors around O, spanned by the Fibonacci tree space of configurations:
$Q^{\mathcal{F}_{\alpha}}$, where Q set of states of the CA A global function:
$G_{A}: Q^{\mathcal{F}_{\alpha}} \mapsto Q^{\mathcal{F}_{\alpha}}$ given by:
$G_{A}(x)(c)=f\left(x\left(N_{c}\right), x(c), x \in Q^{\mathcal{F}_{\alpha}}\right.$,
$c \in \mathcal{F}_{\alpha}, N_{c}$: neighbours of c

properties of the shifts on the penta- and the heptagrids

lemma 1

the shifts of the hyperbolic plane which leave the pentagrid globally invariant are generated by two shifts and their inverses

lemma 2

the shifts of the hyperbolic plane which leave the ternary heptagrid globally invariant are generated by two shifts and their inverses

basic lemma:

let τ_{1} and τ_{2} be two shifts along the lines ℓ_{1} and ℓ_{2} respectively; then, $\tau_{1 \circ} \tau_{2} \circ \tau_{1}^{-1}$ is a shift along the line $\tau_{1}\left(\ell_{2}\right)$, with the same amplitude as τ_{2} and in the same direction
notation: $\tau_{2}^{\tau_{1}}==\tau_{1 \circ} \tau_{2} \circ \tau_{1}^{-1}$
shifts in the pentagrid:

shifts in the heptagrid:

rotation invariant CA's

assume that N_{c} is a ball or radius k around c, $k \geq 1$, fixed once for all, let $\alpha \in\{5,7\}$
let π be a circular permutation on $[1 . . \alpha]$; it induces a rotation on N_{c}, denote it by $\left[\pi(1) . . \pi\left(\alpha . u_{k}\right)\right]$; say that π is extended to [1....u_{k}]
say that a CA A is rotation invariant if and only if for any rule $\underline{\eta_{0}} \eta_{1} . . \eta_{\alpha, u_{k}} \underline{\eta}_{0}^{1}$ and any circular permutation π on $[1 . . \alpha]$ extended to $\left[1 . . \alpha . u_{k}\right]$, the rule $\underline{\eta_{0}} \eta_{\pi(1)} . . \eta_{\pi\left(\alpha . u_{k}\right)} \underline{\eta}_{0}^{1}$ is also in the table of A

theorems

theorem 1 (MM, 2007)

A CA on the pentagrid or the heptagrid commutes with the shifts if and only if it is rotation invariant
theorem 2 (MM, 2007)
A mapping $F: Q^{\mathcal{F}_{\alpha}} \mapsto Q^{\mathcal{F}_{\alpha}}$ is the global function of a rotation invariant $C A$ if and only if it is continuous on $Q^{\mathcal{F}_{\alpha}}$, fitted with the product topology, and if it commutes with the shifts leaving the grid invariant.
note that the product topology can be defined by a distance, as in the Euclidean case:

$$
\operatorname{dist}(x, y)=\sum_{i \in \mathcal{F}_{\alpha}} \frac{\operatorname{dist}(x(i), y(i))}{\alpha \cdot u_{|i|}} 2^{-|i|}
$$

where $|i|$ is the index of the level of the tree on which i is
here, $u_{k}=f_{2 k+1}$ in both cases
the proof is very similar to the Euclidean case, up to rotation invariance it is non-constructive: compacity argument
4.2 injectivity problem of the global function of a cellular automaton
theorem (MM, 2008)
the injectivity of the global function of a cellular automaton on the heptagrid is undecidable
plan of the proof:
the mauve triangles
the path
reduction of the halting problem

4.2. a the mauve triangles

definition of these triangles
intersection properties
particular points and isoclines
the β-clines
the β-points and the γ-points
starting point of the construction:
consider red triangles only each red triangle R of the generation $2 n+1$ defines a mauve triangle T of the generation n :
vertex of $T=$ vertex of R
legs of T on those of R but twice longer basis along an isocline again
from the doubling, mauve triangles intersect between themselves, but as interwoven triangles of opposite colour:
the leg of one with the basis of the other
representation of the mauve triangles

particular points:
on the leg of a mauve triangle T :
from top to bottom, h is the height of T :

- the high-point, $H P$:
close to the vertex, defined later
- the first point, $F P$:
at $\frac{h}{4}$ from the vertex
- the mid-point
- the low-point, $L P$:
at $\frac{3 h}{4}$ from the vertex
all of them constructible by the tiles
the special points in a mauve triangle

the $F P$-, $M P$ and $L P$'s define the 0,1 and 2-clines and the basis defines the 3 -cline
intersection properties:
let T be of generation $n+1$:
the i-clines of T cuts the legs of its inner i triangles of generation n and those of the 2tiangles of these i-triangles and, recursively, the legs of the 2 -triangles of generation m of the already cut 2 -triangles of generation $m+1$ for $m+1<n$, all legs being cut at their $L P$'s

the β-clines

from the overlapping between mauve triangles, define a new notion:
define T : mauve triangle of generation $n+1$ its basis is cut by a 3 -triangle of the generation n;
by recursion, this defines $\left\{T_{i}\right\}_{i \in\{0 . . n+1\}}$, with: $T_{n+1}=T, T_{i}, i \in\{0 . . n\}$, is a 3 -triangle, T_{i} is a mauve triangle of the generation i, T_{i} cuts the basis of T_{i+1}
β-cline $==$ the isocline of the basis of T_{0} its type: rank of T_{n+1}
from the existence of the β-clines:
β-points and γ-points
define, for a triangle T of the generation $n+1$:
β-point: the intersection of the leg of T with the β-cline of its 2-triangles of the generation n the β-point is below the $L P$'s of T
the β-points emit lateral signals outside T opposite lateralities can be joined once in between two consecutive triangles of the same generation and latitude

γ-point:

for a triangle T of the generation $n+1$: intersection of the leg with the β-cline of its hat
the hat of T may not exist, but there are copies of T on the same latitude which have a hat
\Rightarrow the γ-point can always be defined

construction of the β-points

key points:

- from the corner of T, take the first 3triangle of the generation n which cuts the basis of T
- from there reach a 2-triangle D of the generation n inside T
- the β-cline of D cuts the legs of T at the expected β-point
construction of the β-points

construction of the γ-points

in a triangle T of the generation $n+1$, their 0 -triangles are hatted
same β-cline as that of the hat of T construction by a recursive algorithm:
start from the mid-point of the red triangle supporting T
go on the isocline to the first 0-triangle find its γ-point and go back to the leg of T
construction of the γ-point

the $H P^{\prime}$ s of a mauve triangle
starting from the $F P$, in the direction of the vertex:
if β-cline of type 2 at the γ-point, then $H P=\gamma$-point
otherwise:
$H P=$ intersection with first basis if any
if no basis between the $F P$ and the vertex, $H P$'s on the legs, on the isocline below the vertex

4.2.b the path

basic step for the injectivity theorem: construction of a frame guaranteeing a plane-filling path, or at least a half-plane filling path

construction of the path

definition by induction on the generations of the mauve triangles:
generation 0:
entry into the triangle:
at the $L P$ on one side
exit from the triangle:
at the vertex of T or the isocline just below, towards the other side in-between : zig-zags
illustration:

illustrating all cases:

in between mauve-0 triangles:

and similar figures for the other cases
schematic representation for the generation 0

(a)

(c)

(b)

(d)
from the generations n to $n+1$
inside a triangle
namely,

a 0 - or a 1 -triangle
from the generations n to $n+1$
inside a triangle when a bigger one intersects it
namely,

a 3 - or a 2-triangle
from the generations n to $n+1$
in-between two consecutive triangles of the same generation

as in the previous figure:
motion within a latitude in between legs of a higher generation:
either legs of a triangle
or consecutive legs of two consecutive triangles of the same generation this defines the basic areas of the path for each generation
special role of β-clines of 2 -triangles:
they require that the path cuts the top of the encountered triangles when in an open part of the β-cline
mechanism needed to ensure the global direction
the same 2 - β-cline used inside a triangle T and then, in between two consecutive triangles of the same latitude but below T
all elements above indicated:
$L P$'s, H P's, mid-points, rank, β - and γ-points, β-clines and their types, correspondence entry/exit in a triangle can be fixed by a finite set of prototiles by induction on the generation, this forces the path for next generation
as a corollary,
a basic area cannot contain a cycle of the path and so the path contains no cycle in most cases, the path consists of one component: it visits all the tiles
this is the case when there is no infinite mauve triangle

the exceptional case: the infinite triangle

this case is yelded by the case of the butterfly model for the interwoven triangles
case when there is an isocline which is never cut by a any red or blue triangle, whatever the generation
a possibility only:
it cannot be forced algorithmically
there may be infinite red triangles
when there are infinite red triangles, this entails the same for mauve triangles
in this case:
there is an infinite mauve triangle T_{∞} with a basis cutting infinitely many 2 -triangles: the infinite basis of T_{∞} contains infinitely many vertices of infinite mauve triangles
in this case:
there are infinitely many paths:
one over the infinite basis, it also fills up the 2-triangles T_{i} 's crossed by the basis
and one path in each infinite triangle which visits also a contiguous zone inbetween the next infinite triangle and itself
in all cases:
one component
or infinitely many components

basic lemma

any component of the path fills up an infinite sequence of triangles of increasing sizes

4.2.c reduction of the halting problem

theorem

the injectivity of the global function of a $C A$ on the heptagrid is undecidable
proof
easy to define an orientation of the path in each component:
define three colours in a given order used by the path only
rest of the proof: argument similar to the Euclidean proof with a difference
proof, continued let \mathcal{M} be the set of Turing machines starting from an empty tape
let T_{M} be a finite set of prototiles of the heptagrid associated to $M \in \mathcal{M}$ with the interwowen triangles:
T_{M} tiles the plane if and only if M does not halt, starting from the empty tape let D be the finite set of prototiles of the mauve triangles with the oriented paths
proof, continued for $M \in \mathcal{M}$, define A_{M} as a $C A$ on the heptagrid by:
states: $T_{M} \times D \times\{0,1\}$
transition function f, addresses the bit only: if T_{M} or D not correct at c, no change if both correct, $f(c, t+1)=\operatorname{xor}(f(c, t), f(d(c), t))$, where $d(c)$ is the next tile on the path after c
$G=G_{A_{M}}==$ global function of A_{M}

proof, continued

then, G is not injective if and only if M does not halt indeed:
if M does not halt: then T_{M} tiles the plane;
let ξ be a configuration corresponding to a correct tiling in T_{M} and in D;
we may chose ξ in such a way that the path has a single component under D
proof, continued define x_{0} at c by: ξ for the tile, 0 for the bit similarly define x_{1} at c by: ξ for the tile, 1 for the bit then, by the xor, which applies, the next transition is always x_{0} hence, G is not injective
proof, continued if G not injective: there are x_{0}, x_{1} and c with $x_{0}(c) \neq x_{1}(c)$ and $G\left(x_{0}\right)(c)=G\left(x_{1}\right)(c)$ as G changes only the bits, same situation of the tilings at c; easy to see that necessarily, both T_{M} and D are correct at c and then, also at $d(c)$;
proof, continued
by induction,
T_{M} and D correct along the path starting from c;
now, the component of the path through c visits an infinite sequence of triangles with increasing sizes, also after c;
by the construction of T_{M}, then M cannot halt

4.2.d about Gardens of Eden

natural questions:

what about surjectivity?
what about bijectivity and reversibility?

in the Euclidean setting:

theorem 1 (J. Kari, 1994, B. Durand 1996) it is undecidable to know whether the global function of a CA on the Euclidean plane is surjective
theorem 2 (J. Kari, 1994)
it is undecidable to know whether the global function of a CA on the Euclidean plane is bijective
basis of these theorems:
in the Euclidean setting, the Garden of Eden theorem (Moore, Myhill, 1963) says, for the global function G of a CA that:

G surjective

$\Leftrightarrow G$ injective on finite configurations

Hedlund's characterizations of CA's + compacity of the space of configurations entails:
bijectivity \Leftrightarrow reversibility
for the global function of a CA
and so, G injective $\Leftrightarrow G$ reversible
theorem 1 is based on the proof of J. Kari's theorem, 1994, of the undecidability of the injectivity of the global function of a CA
in the hyperbolic plane:
an analoguous version of Hedlund's characterizations of CA's holds
but the Garden of Eden theorem is not true theorem 3 (J. Kari, M. Margenstern)
there are CA's in the hyperbolic plane whose global function is surjective but not injective, even on finite configurations, and there are others whose global function is injective but not surjective
theorem 3 has a partial refinment, considering CA's in the hyperbolic plane which are rotation invariant:
theorem 4 (M. Margenstern, J. Kari) there are rotation invariant $C A$'s in the hyperbolic plane whose global function is surjective but not injective, even on finite configurations

4.3 small universal hyperbolic CA's

4.3. a the railway model
4.3.b in the plane
4.3.c in the $3 D$-space

4.3.a railway simulation

all results here: implementation of this model introduced by Ian Stewart, a circuit in the Euclidean plane made of: tracks crossings switches
a unique locomotive runs over the circuit

the switches

three types:

fix

flip-flop

memory
flip-flop: only active passage, triggers the change of the selection
memory switch:
selected track $=$ last passive passage

the basic element

E : reading entry
$\boldsymbol{O}_{1} U:$ writing entry: changes the content of the element
assembly of elements: allows to construct registers or a tape of a Turing machine

a register unit:

an example:

it is known that by assembling switches and tracks, a universal computation can be simulated by the motion of the locomotive

4.4.b in the hyperbolic plane

common feature of the results: weak universality: infinite initial configuration, but not arbitrary, at large two parts globally invariant by a shift

organization of the circuit

mainly, following TCS paper

- implementation of an elementary unit
- structure of the global implementation
the elementary unit

a block : unit of a register

organization of the circuit on the example

organization of the circuit

thanks to the description of various kinds of paths:
using isoclines as horizontals
using lines following a branch in a Fibonacci tree as verticals
note: needed only finite parts of horizontals and verticals

the results:

22 states, pentagrid, MM-FH, 2002, first result in the hyperbolic plane

9 states, pentagrid, MM-YS, 2008
6 states, heptagrid, MM-YS, 2008, and, very recently, 4 states, heptagrid
all of them are rotation invariant CA's

the HCA on the heptagrid with 6 states

we illustrate two points:
the motion of the locomotive along a track the passive crossing of a memory switch from the non-selected track
illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the motion along a track

illustration of the crossing of a memory switch:

here, the passive passage through
the non-selected track, in sector 1
if the locomotive arrives through sector 1
it is sent to sector 4
and sector 1 becomes the selected track

left-hand side memory switch:

 the locomotive arrives through sector 1 :front in $4(1)$

left-hand side memory switch:

 the locomotive arrives through sector 1 :front in $4(1)$

left-hand side memory switch:

 the locomotive arrives through sector 1 :front in $4(1)$

left-hand side memory switch:

 the locomotive arrives through sector 1 :front in $1(1)$

left-hand side memory switch:

 the locomotive arrives through sector 1 :front in 0

left-hand side memory switch:

 and leaves through sector 4:
change of selection

left-hand side memory switch:

and leaves through sector 4:
front in 4(4)

left-hand side memory switch:

 and leaves through sector 4:front in $12(4)$

left-hand side memory switch:

 and leaves through sector 4:front in 33(4)

left-hand side memory switch:

 and leaves through sector 4:front in 88(4)

left-hand side memory switch:

 and leaves through sector 4:stable again, on the other side
the HCA on the heptagrid with 4 states
here too, we illustrate two points:
the motion of the locomotive along a track which follows an isocline the passive crossing of a memory switch from the non-selected track
the locomotive on a track along an isocline
the idle configuration

the locomotive on a track along an isocline
the idle configuration

the locomotive on a track along an isocline
the locomotive is arriving

the locomotive on a track along an isocline
the locomotive is arriving

the locomotive on a track along an isocline
the locomotive is arriving

the locomotive on a track along an isocline
the locomotive is arriving

the locomotive on a track along an isocline and it goes along the path

the locomotive on a track along an isocline and it goes along the path

the locomotive on a track along an isocline and it goes along the path

the locomotive on a track along an isocline and it goes along the path

the locomotive on a track along an isocline and it goes along the path

the locomotive on a track along an isocline and it goes along the path

the locomotive on a track along an isocline and it goes along the path

the locomotive on a track along an isocline
until
it reaches the other side

the locomotive on a track along an isocline
until
it reaches the other side

the locomotive on a track along an isocline
from where it will be leaving

the locomotive on a track along an isocline
it will be leaving

the locomotive on a track along an isocline
it will be leaving

the locomotive on a track along an isocline
it will be leaving

the locomotive on a track along an isocline and now, it is
leaving

the locomotive on a track along an isocline and now, it is
leaving

the locomotive on a track along an isocline and now, it is
leaving

the locomotive on a track along an isocline and now, it is
leaving

the locomotive on a track along an isocline here, idle again

illustration of the crossing of a memory switch:
here, the passive passage through the non-selected track, in sector 7
if the locomotive arrives through sector 7
it is sent to sector 4
and sector 7 becomes the selected track

left-hand side memory switch:

next, when the locomotive arrives from sector 7, the non-selected track:
it is sent to sector 4
and sector 7 becomes the selected track

left-hand side memory switch:

the locomotive will arrive through sector 7
here, idle configuration

left-hand side memory switch:

the locomotive arrives through sector 7
front in 32(1)

left-hand side memory switch:

the locomotive arrives through sector 7
front in 31(1)

left-hand side memory switch:

the locomotive arrives through sector 7
front in 11(1)

left-hand side memory switch:

and it goes to sector 4
front in 10(1)

left-hand side memory switch:

and it goes to sector 4
but here, it meets with an obstacle
front in 3(1)

left-hand side memory switch:

the obstacle triggers the change of the selected track
here, first step:
the obstacle
is removed front in 1(1)

left-hand side memory switch:

second step of the change of selection:
the obstacle is put on track 1
front in
0

left-hand side memory switch:

last step of the
change of selection:
the track 7
is now free, and the locomotive enters sector 4 front in 1(4)

left-hand side memory switch:

the locomotive enters sector 4
front in 3(4)

left-hand side memory switch:

the locomotive will leave through sector 4
front in 10(4)

left-hand side memory switch:

the locomotive will leave through sector 4
front in 11(4)

left-hand side memory switch:

the locomotive is leaving sector 4
front in 31(4)

left-hand side memory switch:

the locomotive is leaving sector 4
front in 32 (4)

left-hand side memory switch:

the locomotive is leaving sector 4
front in 88(4)

left-hand side memory switch:

the locomotive left sector 4
idle again,
but as a
right-hand side memory switch

4.3.c in the hyperbolic $3 D$ space

possible to implement the same model important differences:
take advantage of the $3 D$ space to replace crossings by bridges
also: more neighbours for each cell:
12 of them instead of 7 in the heptagrid
the result:
5 states, dodecagrid, MM, 2004 again, weakly universal rotation invariant CA
another property:
let $\{A, B, C, D, E\}$ be the states consider a rule: $\eta_{0} \eta_{1} . . \eta_{12} \rightarrow \eta_{0}^{\prime}$
define its reduced pattern as the word $A^{a_{1}} B^{a_{2}} C^{a_{3}} D^{a_{4}} E^{a_{5}} ; \eta_{0} \eta_{0}^{\prime}, \sum a_{i}=12$ then: the mapping from the rules to their reduced pattern is injective

4.4 beyond the Turing barrier

4.4. a infinigons and infinigrids
4.4.b register CA's on an infinigrid

4.4. a infinigons and infinigrids

plane again: viewing the regular rectangular polygons at once,
their limit
\Rightarrow infinigon:

the visual limit:

the basic construction

define a sequence of segments, $x_{n} x_{n+1}$, $n \in \mathbb{Z}$, such that:

$$
\begin{aligned}
& -\forall n: x_{n} x_{n-1}, x_{n} x_{n+1}=x_{n+1} x_{n}, x_{n+1} x_{n+2} \\
& -\forall n:\left\|x_{n} x_{n+1}\right\|_{h}=\left\|x_{n+1} x_{n+2}\right\|_{h}
\end{aligned}
$$

claim:

the x_{n} 's belong to an e-circle Γ if $x_{0}=0$ and $\left.\left\|x_{n} x_{n+1}\right\|_{e}=x, x \in\right] 0,1[$
then, diameter of $\Gamma=\frac{x}{\cos \left(\frac{\alpha}{2}\right)}$
let U denote the open unit disc ;

- if $\Gamma \subset U, x_{n}$'s either a regular polygon or a dense subset of an annulus
- if $\Gamma \subset \bar{U}$ and $\Gamma \not \subset U$, then Γ horocycle and x_{n} 's basic infinigon
- if $\Gamma \not \subset \bar{U}$, then Γ equidistant curve and x_{n} 's open infinigon
points at infinity of an infinigon:
- basic infinigon: a single point
- open infinigon: a closed interval of ∂U
the basic construction in the disc model:

infinigrids:

tessellation:
fix an infinigon; replicate it by reflections in its sides and repeat the process with the images, recursively
theorem 1 (Coxeter/Rozenfeld/Margenstern)

- an infinigon generates a tiling by tessellation
iff its interior angle $=\frac{2 \pi}{k}, k \geq 3$
infinigon: basic or open
disc model: the rectangular infinigrid

the same
with horocycles
important property:
the splitting method can be extended to the infinigrids
theorem 2 (Margenstern) - the tiling generated by a an infinigon is in a one-to-one correspondance with an infinite tree with an infinite branching in each node
proof based on a recursive splitting
by recursion, generate a spanning tree of the dual graph
the splitting of H^{2} :

even case

odd case

the construction algorithms:

(i)
(ii)
(iii) (iv)

(v)

in (iii):
$i<p-2$
even case

the construction algorithms (continued):

(i)
(ii)
(iii)
(iv)

(v)

(vi)

(vii)
in (iii):
$i<p-2$
odd case

special cases:

$$
k=3
$$

special cases:

$k=4$

special cases:

$$
k=5
$$

4.4.b register CA's on the infinigrid

 first, it is an adapted CA to the infinigrid:its transition function δ is of the following form:

$$
\delta: Q \times\{0,1\}^{|Q|} \mapsto Q
$$

with $\langle s, t+1\rangle=\delta\left(<s, t>, z_{1}(s, t), \ldots, z_{|Q|}(s, t)\right)$
where the states of the $C A$ are $1, \ldots, k$ and

$$
z_{i}(s, t)=\left\{\begin{array}{l}
1 \begin{array}{l}
1 f ~ t h e r e ~ i s ~ a ~ n e i g h b o u r ~ o f ~ t h e ~ \\
\text { cell in state } i \text { at time } t
\end{array} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

addresses of cells: $\left(a_{1}, \ldots, a_{n}\right), a_{i} \in \mathbb{N}$

infinigrids: the tree representation

infinigrids: another representation

theorem 1 - (SG-MM, 2002)
there is a CA U which is adapted on the infinigrid and such that for any arithmetical formula F in Σ_{n}^{0} or in Π_{n}^{0}, U recognises whether F is true or not

proof

we may assume F being closed
let $F=\exists x_{1} \forall x_{2} \ldots \xi x_{n} G\left(x_{1}, \ldots, x_{n}\right)$
where G prim. rec. with values in $\{0,1\}$ initialization of F :
put $G\left(a_{1}, \ldots, a_{n}\right)$ in the cell $\left(a_{1}, \ldots, a_{n}\right)$ $\left(a_{1}, \ldots, a_{n}\right)$ oversees $\left(a_{1}, \ldots, a_{n}, z\right)$ for all z 's
second, a register CA has the following facilities:

- states contain accept and reject
- in each cell, two registers: a and \mathbf{x} a read-only, holds the address of the cell
\mathbf{x} read-write, to compute integers permitted operations: copy $\mathbf{a},+,-, /, *$, mod, sg, $\overline{s g},\left\{(n)_{i}\right\}_{i=1}^{|n|}$, any in 1 step data in unary via the root, initially not in 1 halting: root in accept or reject

theorem 2 - (SG-MM, 2002)

register CA's on the infinigrid are able to decide the truth of any Σ_{n}^{0}; they can do that in time linear in the length of the formula

proof

same basic idea as in theorem 1, + Matiyasevich's theorem on the existence of a polynomial representing any partial recursive function by the associated diophantine equation
constant time for reporting the result to the root: indeed 12 levels ■

THANK YOU FOR YOUR ATTENTION

