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1ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
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Stream languages including lazy functional languages like Haskell allows the programmer to represent func-
tionals, functions over functions. From this perspective, they can be understood as a way to simulate type 2
functions. There are many works in the literature that study computability and (polynomial time) complexity of
such functions [5, 14]. The implicit computational complexity (ICC) community has proposed characterizations
of such complexity classes using function algebra and types [8, 9, 15]. These results are reminiscent of former
characterizations of type 1 polynomial time functions [2, 4, 12] that led to other ICC works using polynomial
interpretations.

Polynomial interpretations [11, 13] are a well-known tool used in the termination analysis of first order
functional programs for several decades. Variants, like sup-interpretations and quasi-interpretations [3], which
allow the programmer to perform program complexity analysis have emerged in the last ten years. One of their
drawbacks is that such tools are restricted to first order programs on inductive data types. The paper [7] was a
first attempt to adapt such a tool to co-inductive data types and, more precisely, to stream programs. We provide
a second order variation of this interpretation methodology that fits to stream computation by replacing usual
polynomials with type 2 polynomials (basically polynomials with function variables) to interprete programs.

It allows us to characterize exactly the set of functions computable in polynomial time by Unary Oracle Turing
Machine (UOTM), that is functions computable by machines using oracles where the oracle has only unary input.
It can also be used in order to characterize the set of functions computable in polynomial time by Oracle Turing
Machine (OTM), that is shown to be equivalent to the BFF algebra in [9].

The first characterization has two advantages. First, it gives a new and intuitive notion of stream computa-
tional complexity in terms of Turing Machine. Second, it shows that this natural class can be easily captured
using an adaptation of the interpretation tool. Using this tool we can analyze functions of this class in an easier
way (based on the premise that it is practically easier to write a first order functional program on streams than the
corresponding Turing Machine). The drawback is that the tool suffers from the same problem as type 1 polynomial
interpretation: the difficulty to automatically synthesize the interpretation of a given program (see [1]).

The latter characterization gives a natural view of a well-know complexity class BFF, just by changing the
interpretation domain, that is allowing exponential arguments for type 2 variables. It illustrates that the first
characterization on UOTM is natural and flexible because it can be easily adapted to other complexity classes.
Finally, it can be interpreted as a negative result showing that the BFF class, whose purpose is to study functions
from N → N, is surprisingly not well-suited to describe stream polynomial complexity.

We also go one step further showing that these tools can be adapted to characterize the complexity of functions
computing over reals defined in Recursive Analysis [10], since real numbers can be seen as streams of rational
numbers and the polynomial time complexity defined using UOTMs matches the common definition of polynomial
time complexity for real functions.

Details of this work can be found in [6].
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