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We consider the following initial-value problem defined by an ODE

�
x� = f(x)
x(0) = x0

(1)

where f is defined in some (possibly unbounded) domain.
In this paper we show that if f : Rn → Rn admits an analytic extension over Cn and x : R → R admits an

analytic extension over R and both satisfies a very generous assumption about its growth rate, this solution can
be computed in polynomial time from f and x0 over R. Actually, our constructions also works when considering
solutions over C and assuming f : Cn → Cn analytic. Notice that, as it is well known, Equation (1) covers the case
of an ODE of type x� = f(t, x), as this latter case can be reduced to (1) by using a new variable xn+1 satisfying
x�
n+1 = 1.

Motivation 1 & Digression: Analog models of computation. We got to this result by trying
to understand whether analog continuous-time models of computations do satisfy (some variant) of Church-
Turing thesis: as such systems can usually be described by particular classes of ordinary differential equations,
understanding whether they can compute more than Turing machines is equivalent to understanding whether
they can always be simulated by Turing machines.

For example, the most well known example of analog model of computations is the General Purpose Analog
Computer (GPAC) introduced by Claude Shannon in [7] as the idealization of an analog computer, the Differential
Analyzer [1]. Shannon worked as an operator early in its career on these machines.

As it can be proved [4, 7] that any GPAC can be described by an ordinary differential equation of the form of
(1) with f componentwise polynomial, proving that the GPAC does satisfy the Church-Turing thesis is equivalent
to proving that solutions of such an ODE is always computable. It has been proved only recently that this holds
for the case of f componentwise polynomial [5], [2]. Hence, the GPAC do satisfy the Church-Turing thesis. Notice
that computability of solutions doesn’t hold for general computable f [6], but in general known uncomputability
results can only be obtained when the system is “ill behaved” (e.g. non-unique solutions in [6]). These kind of
phenomena does not appear in models physically inspired by true machines like the GPAC.

Here, we are dealing with the next step. Do analog models like the GPAC satisfy the effective (in the
sense of computable complexity) version of Church Turing thesis: all (sufficiently powerful) “reasonable” models
of computations with “reasonable” measure of time are polynomially equivalent. In other words, we want to
understand whether analog systems can provably (not) compute faster than usual classical digital models like
Turing machines.

Taking time variable t as a measure of time (which is the most natural measure), proving that the GPAC can
not compute more than Turing machines would require to prove that solutions of ODE (1) are always computable
(in the classical sense) in a time polynomial in t, for f (componentwise) polynomial.

We here don’t get exactly this result: for f componentwise polynomial, corresponding to GPACs, f is clearly
analytic. But here, in our results, we have to suppose furthermore f to admit an analytic extension over Cn.
Although this case is stronger that when f is real analytic (it is well known that analyticity in the complex plane
implies analyticity over the real line, but that the converse direction does not hold), we believe that our results
are interesting on their own and provide a promising step towards the case of the real line.

Motivation 2: Recursive analysis. The results obtained in this paper turn out to be new and not known
in a recursive analysis or classical computability or complexity perspective.

Being able to compute efficiently solutions of general ordinary differential equations is clearly of interest. Ob-
serve that all usual methods for numerical integrations (including basic Euler’s method, Runge Kutta’s methods,
. . . ) do not provide the value of x(t) in a time polynomial in t, whereas we do for general analytic functions
under our hypotheses. Actually, as all these numerical methods falls in the general theory of n-order methods for
some n, this is possible to use this theory (developed for example in [3]) to prove that none of them produce the
value of x(t) in a time polynomial in t. This has been already observed in [8], and claimed possible in [8] for some
classes of functions by using methods of order n with n depending on t, but without a full proof. The method
proposed here is different from the ideas proposed in this latter paper but prove that this is indeed possible to
produce x(t) in a time polynomial in t.
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