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Abstract

Segments lines and their intersections in the Euclidean plane allow to realize non-trivial compu-
tations. Despite the simplicity of this abstract geometrical model of computation, it is possible to
compute in the sense of Church-Turing, and even in an analog way. We present here a formaliza-
tion of this idea into abstract devices: signal machines. To illustrate the power of these machines
working on a continuous space-time, we present in this talk an efficient and geometrical solution to
satifiability problems such as SAT or Q-SAT, by means of signals and their collisions. We also discuss
complexities and propose a new measure for time complexity on signal machines: the collision depth,
which is cubic for our proposed algorithm for Q-SAT.

Abstract Geometrical Computation. Signal machines, introduced in [Durand-Lose2003], take their ori-
gins in the world of cellular automata (see Fig.1). Indeed, signals and their interactions are very useful for studying
problems and properties of cellular automata e.g. universality [Cook2004], synchronization [Mazoyer1996] or for
implementing computations [Delorme and Mazoyer2002]. By abstracting the discrete nature of the cellular space-
time to the continuity of the Euclidean plane, we can consider 1-dimensional and colored signals moving on the
plane. Deterministic rules describe what happens when several signals meet, in function of their colors and speeds.
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Figure 1: From cellular automata to signal machines.

Computations with colored segment lines in the Euclidean plane, their formalization into abstract devices—
signal machines— and topological definitions of corresponding space-time diagrams constitute a larger class of
models of computation, called abstract geometrical computation (AGC ).

Other geometrical models of computation exist and allow to compute: Euclidean machines [Mycka and al.2006],
colored universes [Jacopini and Sontacchi1990], geometric machines [Huckenbeck1989], piece-wise constant deriva-
tive systems [Bournez1997] . . .

Signal machines can simulate Turing machines, and are thus Turing-universal [Durand-Lose2005]. They are
also capable of analog computation by using the continuity of space and time to simulate analog models such as
BSS’s one [Durand-Lose2008, Blum and al.1989] or computable analysis [Durand-Lose2009, Weihrauch2000].

Signal machines. Each signal is an instance of a meta-signal, defining its type and its speed. When a set
of signals collide, they are replaced by a new set of signals according to a matching collision rule. A rule has
the form: {σ1, . . . , σn} → {σ�

1, . . . , σ
�
p} where all σi are meta-signals of distinct speeds as well as σ�

j . A signal
machine is defined by a finite set of meta-signals and a set of collision rules. A signal machine is runned started
from an initial configuration, i.e. a finite number of signals placed on the real line. Its evolution is representated
geometrically as a space-time diagram, where space is always represented horizontally, and time vertically, growing
upwards.

The geometrical algorithm displayed in Fig. 2 computes the middle: the new w is located exactly half way
between the initial two w.

Computing in the fractal cloud. In this talk, to illustrate some abilities of signal machines, we present
a geometrical algorithm solving Q-SAT—the problem of quantified boolean formula satisfiablity—which also
provides a structure for solving other variants of boolean satifiablity.

*Details of this work can be found at http://arxiv.org/abs/1105.3454 ([Duchier and al.2011a]).
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Collision rules

{ w, div } → { w, hi, lo }

{ lo, w } → { back, w }

{ hi, back } → { w }

Initial configuration

div @ s < 0
w @ 0
w @ x > 0

Figure 2: Geometrical algorithm for computing the middle.

Figure 3: The fractal tree.

This construction is based on the previous algorithm computing the mid-
dle, which is used recursively to build the infinite binary tree of Fig. 3, the
fractal cloud. This tree is then interpreted as a binary search tree, where
the number of boolean variables determines the number of needed levels, and
all possible boolean assignments can be tested in a massive parallel way. A
computation in the fractal cloud is based on the Map/Reduce principle and
follows three steps: distributing the computation along the tree, evaluating
each case at the top level, and collecting all the results to yield the final
answer.

Solving Q-SAT with a single machine. A Q-SAT formula is coded
by signals and is propagated along the tree. Variables are representated by
a set of signals so that at the ith level, the variable xi splits into two signals:
a true signal going right and a false signal.

At the final stage, in each box (corresponding to each possible assignment
of variables), there is no more variable but only true and false signals and signals coding boolean connectives. The
unquantified formula is then evaluated in each case, and the results are aggregated with respect to the quantifiers
of the input formula. The final answer—either the quantified formula is true or false—is given by the last signal
going left at the top of the whole construction, which can be seen in Fig. 4.

We already provided geometrical algorithms in [Duchier and al.2010] and in [Duchier and al.2011b] to solve
respectively SAT and Q-SAT, but in both cases, the machines were dependent on the input formula: a signal
machine was generated in polynomial time for each boolean formula.

We present here a single signal machine solving Q-SAT for any instance coded in the initial configuration.
We also provide a structure (the fractal cloud) and a modular approach (the tree, the propagation, the evalua-
tion. . . can be programmed independently) permitting to solve easily other satisfiablity problems such as #SAT
or MAX-SAT.

As all these constructions, bounded by the infinite binary tree, are made in constant width and time indepen-
dently of the size of the formula, space and time are no longer appropriate complexity measures. We define a new
measure for time complexity, better suited to the massive parallelism of signal machines: the collision depth. It
is defined as the maximal number of consecutive collisions when we follow an ascending path through the whole
diagram. Whereas the instance-specific constructions were in quadratic collision depth, the generic one is in cubic
collision depth. This gives us an idea of the cost of genericity.
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