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Abstract.
The Turing machine is one of the simple abstract computational devices that can be used to investigate the

limits of computability. In this talk, they are considered from several points of view that emphasize the impor-
tance and the relativity of mathematical languages used to describe the Turing machines. A deep investigation is
performed on the interrelations between mechanical computations and their mathematical descriptions emerging
when a human (the researcher) starts to describe a Turing machine (the object of the study) by different math-
ematical languages (the instruments of investigation). Together with traditional mathematical languages using
such concepts as ‘enumerable sets’ and ‘continuum’ a new computational methodology allowing one to measure
the number of elements of different infinite sets is used in this paper. It is shown how mathematical languages used
to describe the machines limit our possibilities to observe them. In particular, notions of observable deterministic
and non-deterministic Turing machines are introduced and conditions ensuring that the latter can be simulated
by the former are established.
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