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Abstract. The Turing machine is one of the simple abstract computational devices that can be used
to investigate the limits of computability. In this paper, they are considered from several points of
view that emphasize the importance and the relativity of mathematical languages used to describe
the Turing machines. A deep investigation is performed on the interrelations between mechanical
computations and their mathematical descriptions emerging when a human (the researcher) starts to
describe a Turing machine (the object of the study) by different mathematical languages (the instru-
ments of investigation). Together with traditional mathematical languages using such concepts as
‘enumerable sets’ and ‘continuum’ a new computational methodology allowing one to measure the
number of elements of different infinite sets is used in this paper. It is shown how mathematical lan-
guages used to describe the machines limit our possibilities to observe them. In particular, notions
of observable deterministic and non-deterministic Turing machines are introduced and conditions
ensuring that the latter can be simulated by the former are established.

Keywords: theory of automatic computations, observability of Turing machines, relativity of
mathematical languages, infinite sets, Sapir–Whorf thesis.

1. Introduction

The fundamental nature of the concept automatic computations attracted a great at-
tention of mathematicians (and later of computer scientists) since 1930’s (see Church,
1936; Kleene, 1952; Kolmogorov, 1953; Kolmogorov and Uspensky, 1958; Markov and
Nagorny, 1996; Mayberry, 2001; Post, 1936; Turing, 1936, 1937 and more recent mono-
graphs: Ausiello et al., 2006; Cooper, 2003; Davis, 1985; Hopcroft and Ullman, 1979).
At that time, this strong impetus for understanding what is computable was actively sup-
ported by David Hilbert who believed that all of Mathematics could be precisely ax-
iomatized. Several mathematicians from around the world proposed their independent
definitions of what it means to be computable and what it means an automatic com-
puting machine. In order to perform a rigorous study of sequential computations, they
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worked with different mathematical models of computing machines. Surprisingly, it has
been discovered that all of these models were equivalent, e.g., anything computable in
the λ-calculus is computable by a Turing machine; see detailed discussions on this topic
in, e.g., Ausiello et al. (2006), Cooper (2003), Davis (1985).

In spite of the fact that the famous results of Church, Gödel, and Turing have shown
that Hilbert’s programme cannot be realized, the idea of finding an adequate set of ax-
ioms for one or another field of Mathematics continues to be among the most attractive
goals for contemporary mathematicians as well. Usually, when it is necessary to define a
concept or an object, logicians try to introduce a number of axioms describing the object.
However, this way is fraught with danger because of the following reasons.

First, when we describe a mathematical object or concept we are limited by the expres-
sive capacity of the language we use to make this description. A richer language allows
us to say more about the object and a weaker language – less. Thus, development of the
mathematical (and not only mathematical) languages leads to a continuous necessity of
a transcription and specification of axiomatic systems. Second, there is no guarantee that
the chosen axiomatic system defines ‘sufficiently well’ the required concept and a contin-
uous comparison with practice is required in order to check the goodness of the accepted
set of axioms. However, there cannot be again any guarantee that the new version will be
the last and definitive one. Finally, the third limitation already mentioned above has been
discovered by Gödel in his two famous incompleteness theorems; see Godel (1931).

In linguistics, the relativity of the language with respect to the world around us has
been formulated in the form of the Sapir–Whorf thesis (Carroll (Ed.), 1956; Gumperz and
Levinson (Eds.), 1996; Lucy, 1992; Sapir, 1958) also known as the ‘linguistic relativity
thesis’; that has also interesting relations to the ideas of K.E. Iverson exposed in his
Turing lecture (Iverson, 1980). As becomes clear from its name, the thesis does not accept
the idea of the universality of language and postulates that the nature of a particular
language influences the thought of its speakers. The thesis challenges the possibility of
perfectly representing the world with language, because it implies that the mechanisms
of any language condition the thoughts of its speakers.

In this paper, we study the relativity of mathematical languages in situations where
they are used to observe and to describe automatic computations (we consider the tradi-
tional computational paradigm mainly following results of Turing (1936, 1937) whereas
emerging computational paradigms are not considered here; see, e.g., Adamatzky et al.
(2005), Nielsen and Chuang (2004), Walster (2000), Žilinskas (2010)). Let us illustrate
the concept of the relativity of mathematical languages by the following example. In his
study published in Science Gordon (2004) describes a primitive tribe living in Amazo-
nia – Pirahã – that uses a very simple numeral system1 for counting: one, two, ‘many’. For
Pirahã, all quantities larger than two are just ‘many’ and such operations as 2+2 and 2+1
give the same result, i.e., ‘many’. By using their weak numeral system Pirahã are not able

1We remind that numeral is a symbol or group of symbols that represents a number. The difference between
numerals and numbers is the same as the difference between words and the things they refer to. A number is
a concept that a numeral expresses. The same number can be represented by different numerals. For example,
the symbols ‘9’, ‘nine’, and ‘IX’ are different numerals, but they all represent the same number.
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to see, for instance, numbers 3, 4, and 5, to execute arithmetical operations with them,
and, in general, to say anything about these numbers because in their language there are
neither words nor concepts for that.

The numeral system of Pirahã has another interesting feature particularly interesting
in the context of the study presented in this paper:

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’,

‘many’ + ‘many’ = ‘many’. (1)

These relations are very familiar to us in the context of our views on infinity used in the
calculus

∞ + 1 = ∞, ∞ + 2 = ∞, ∞ + ∞ = ∞. (2)

Thus, the modern mathematical numeral systems allow us to distinguish a larger quantity
of finite numbers with respect to Pirahã but give similar results when we speak about
infinite numbers. Formulae (1) and (2) lead us to the following observation: Probably our
difficulty in working with infinity is not connected to the nature of infinity but is a result
of inadequate numeral systems used to express infinite numbers. Analogously, Pirahã do
not distinguish numbers 3 and 4 not due to the nature of these numbers but due to the
weakness of their numeral system.

This remark is important with respect to the computability context because of the
following reason. Investigations of traditional computational models (we do not discuss
emerging computational paradigms, see, e.g., Cantor (1955) executed so far used for
studying infinite computational processes mathematical instruments developed by Cantor
(1955) who has shown that there exist infinite sets having different number of elements.
In the theory of computations, two infinite sets – countable sets and continuum – are used
mainly. Cantor has proved, by using his famous diagonal argument, that the cardinality,
ℵ0, of the set, N, of natural numbers is less than the cardinality, C, of real numbers
x ∈ [0, 1].

Cantor has also developed an arithmetic for the infinite cardinal numbers. Some of
the operations of this arithmetic including ℵ0 and C are given below:

ℵ0 + 1 = ℵ0, ℵ0 + 2 = ℵ0, ℵ0 + ℵ0 = ℵ0,

C + 1 = C, C + 2 = C, C + C = C, C + ℵ0 = C.

Again, it is possible to see a clear similarity with the arithmetic operations used in the
numeral system of Pirahã.

Advanced contemporary numeral systems enable us to distinguish within ‘many’ var-
ious large finite numbers. As a result, we can use large finite numbers in computations
and construct mathematical models involving them. Analogously, if we were be able to
distinguish more infinite numbers probably we could understand better the nature of the
sequential automatic computations (remind the famous phrase of Ludwig Wittgenstein:
‘The limits of my language are the limits of my world.’).
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The goal of this paper is to study Turing machines using a new approach introduced
in Sergeyev (2003, 2004, 2008) and allowing one to write down different finite, infinite,
and infinitesimal numbers by a finite number of symbols as particular cases of a unique
framework. Its applications in several fields can be found in Sergeyev (2003, 2009b,
2009c, 2009d, 2010). It is worthy to mention also that the new computational method-
ology has given a possibility to introduce the Infinity Computer (see Sergeyev, 2004,
and the European patent: Sergeyev, 2009a) working numerically with finite, infinite, and
infinitesimal numbers (its software simulator has already been realized).

The rest of the paper is structured as follows. In Section 2, a brief introduction to the
new methodology is given. Due to a rather unconventional character of the new method-
ology, the authors kindly recommend the reader to study the survey (Sergeyev, 2008)
(downloadable from Sergeyev, 2004) before approaching Sections 3–5.

Section 3 presents some preliminary results regarding description of infinite se-
quences by using a new numeral system. Section 4 shows that the introduced method-
ology applied together with a new numeral system allows one to have a fresh look at
mathematical descriptions of Turing machines. A deep investigation is performed on
the interrelations between mechanical computations and their mathematical descriptions
emerging when a human (the researcher) starts to describe a Turing machine (the ob-
ject of the study) by different mathematical languages (the instruments of investigation).
Mathematical descriptions of automatic computations obtained by using the traditional
language and the new one are compared and discussed. An example of the comparative
usage of both languages is given in Section 5 where they are applied for descriptions of
deterministic and non-deterministic Turing machines. After all, Section 6 concludes the
paper.

2. Methodology and a New Numeral System

In this section, we give just a brief introduction to the methodology of the new approach
(Sergeyev, 2003, 2008) dwelling only on the issues directly related to the subject of the
paper. This methodology will be used in the subsequent sections to study Turing machines
and to obtain some more detailed results related to the further understanding of what is
effectively computable – the problem that was stated and widely discussed in Church
(1936), Turing (1936, 1937).

We start by introducing three postulates that will fix our methodological positions
(having a strong applied character) with respect to infinite and infinitesimal quantities
and Mathematics, in general.

Postulate 1. There exist infinite and infinitesimal objects but human beings and machines
are able to execute only a finite number of operations.

Postulate 2. We shall not tell what are the mathematical objects we deal with; we just
shall construct more powerful tools that will allow us to improve our capabilities to ob-
serve and to describe properties of mathematical objects.
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Postulate 3. The principle ‘The part is less than the whole’ is applied to all numbers
(finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite).

In Physics, researchers use tools to describe the object of their study and the used in-
strument influences results of observations and restricts possibilities of observation of the
object. Thus, there exists the philosophical triad – researcher, object of investigation, and
tools used to observe the object. Postulates 1–3 emphasize existence of this triad in Math-
ematics and Computer Science, as well. Mathematical languages (in particular, numeral
systems) are among the tools used by mathematicians to observe and to describe math-
ematical objects. As a consequence, very often difficulties that we find solving mathe-
matical problems are related not to their nature but to inadequate mathematical languages
used to solve them.

It is necessary to notice that due to the declared applied statement fixed by Postu-
lates 1–3, such concepts as bijection, numerable and continuum sets, cardinal and ordinal
numbers cannot be used in this paper because they belong to the theories working with
different assumptions. As a consequence, the new approach is different also with respect
to the non-standard analysis introduced in Robinson (1996) and built using Cantor’s ideas.
However, the approach used here does not contradict Cantor. In contrast, it evolves his
deep ideas regarding existence of different infinite numbers in a more applied way and
can be viewed as a more strong lens of our mathematical microscope that allows one,
e.g., not only to separate different classes of infinite sets but also to measure the number
of elements of some infinite sets.

By accepting Postulate 1 we admit that it is not possible to have a complete description
of infinite processes and sets due to our finite capabilities. For instance, we accept that
we are not able to observe all elements of an infinite set (this issue will be discussed in
detail hereinafter).

It is important to emphasize that our point of view on axiomatic systems is also more
applied than the traditional one. Due to Postulate 2, mathematical objects are not defined
by axiomatic systems that just determine formal rules for operating with certain numerals
reflecting some properties of the studied mathematical objects.

Due to Postulate 3, infinite and infinitesimal numbers should be managed in the same
manner as we are used to deal with finite ones. This Postulate in our opinion very well
reflects organization of the world around us but in many traditional infinity theories it is
true only for finite numbers. Due to Postulate 3, the traditional point of view on infinity
accepting such results as ∞ + 1 = ∞ should be substituted in a way ensuring that
∞ + 1 > ∞.

This methodological program has been realized in Sergeyev (2003, 2008) where a
new powerful numeral system has been developed. This system gives a possibility to
execute numerical computations not only with finite numbers but also with infinite and
infinitesimal ones in accordance with Postulates 1–3. The main idea consists of measuring
infinite and infinitesimal quantities by different (infinite, finite, and infinitesimal) units of
measure.

A new infinite unit of measure has been introduced for this purpose in Sergeyev (2003,
2008) in accordance with Postulates 1–3 as the number of elements of the set N of natural
numbers. It is expressed by a new numeral ① called grossone.



430 Y.D. Sergeyev, A. Garro

It is necessary to emphasize immediately that the infinite number ① is not either Can-
tor’s ℵ0 or ω. Particularly, it has both cardinal and ordinal properties as usual finite natural
numbers. Formally, grossone is introduced as a new number by describing its properties
postulated by the Infinite Unit Axiom (Sergeyev 2003, 2008). This axiom is added to ax-
ioms for real numbers similarly to addition of the axiom determining zero to axioms of
natural numbers when integer numbers are introduced. Again, we speak about axioms of
real numbers in sense of Postulate 2, i.e., axioms define formal rules of operations with
numerals in a given numeral system.

Inasmuch as it has been postulated that grossone is a number, all other axioms for
numbers hold for it, too. Particularly, associative and commutative properties of multi-
plication and addition, distributive property of multiplication over addition, existence of
inverse elements with respect to addition and multiplication hold for grossone as for finite
numbers. This means, for example, that the following relations hold for grossone, as for
any other number

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0. (3)

Let us comment upon the nature of grossone by some illustrative examples (see the
survey of Sergeyev, 2008, for a detailed discussion).

EXAMPLE 2.1. Infinite numbers constructed using grossone can be interpreted in terms
of the number of elements of infinite sets. For example, ① − 2 is the number of elements
of a set B = N\ {b1, b2} where b1, b2 ∈ N. Analogously, ①+1 is the number of elements
of a set A = N ∪ {a}, where a /∈ N. Due to Postulate 3, integer positive numbers that are
larger than grossone do not belong to N but also can be easily interpreted. For instance,
①3 is the number of elements of the set V , where

V = {(a1, a2, a3) : a1 ∈ N, a2 ∈ N, a3 ∈ N}. �

EXAMPLE 2.2. Grossone has been introduced as the quantity of natural numbers. Simi-
larly to the set

A = {1, 2, 3, 4, 5} (4)

having 5 elements where 5 is the largest number in A, ① is the largest infinite natural
number2 and ① ∈ N. As a consequence, the set, N, of natural numbers can be written in
the form

N = {1, 2, 3, . . . , ① − 2, ① − 1, ①}. (5)

Traditional numeral systems did not allow us to see infinite natural numbers . . . , ① −
2, ① − 1, ①. Similarly, the Pirahã are not able to see finite natural numbers greater than 2.

2This fact is one of the important methodological differences with respect to non-standard analysis theories
where it is supposed that infinite numbers do not belong to N.
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In spite of this fact, these numbers (e.g., 3 and 4) belong to N and are visible if one uses
a more powerful numeral system. Thus, we have the same object of observation – the
set N – that can be observed by different instruments – numeral systems – with different
accuracies (see Postulate 2). �

As it has been mentioned above, the introduction of the numeral ① allows us to in-
troduce various numerals that can be used to express integer positive numbers larger than
grossone such as ①2, ①3 − 4, and also 2①, 10① + 3, etc. (their meaning will be explained
soon). This leads us to the necessity to introduce the set of extended natural numbers
(including N as a proper subset) indicated as N̂ where

N̂ = {1, 2, . . . , ① − 1, ①, ① + 1, ① + 2, ① + 3, . . . , ①2 − 1, ①2, ①2+ 1, . . .}. (6)

It is useful to notice that, due to Postulates 1 and 2, the new numeral system cannot
give answers to all questions regarding infinite sets. A mathematical language can allow
one to formulate a question but not its answer. For instance, it is possible to formulate the
question: ‘What is the number of elements of the set N̂?’ but the answer to this question
cannot be expressed within a numeral system using only ①. It is necessary to introduce
in a reasonable way a more powerful numeral system by defining new numerals (for
instance, ②, ③, etc.).

EXAMPLE 2.3. Let us consider the set of even numbers, E, from the traditional point
of view. Cantor’s approach establishes the following one-to-one correspondence with the
set of all natural numbers, N, in spite of the fact that E is a part of N:

even numbers: 2, 4, 6, 8, 10, 12, . . .

� � � � � �
natural numbers: 1, 2, 3, 4 5, 6, . . .

(7)

This result can be viewed in the following way: traditional mathematical tools do not
allow us to distinguish inside the class of enumerable sets infinite sets having different
number of elements.

From the new point of view, the one-to-one correspondence cannot be used as a tool
for working with infinite sets because, due to Postulate 1, we are able to execute only a
finite number of operations and the sets E and N are infinite. However, analogously to
(5), the set, E, of even natural numbers can be written (see Sergeyev, 2008, for a detailed
discussion) in the form

E = {2, 4, 6, . . . , ① − 4, ① − 2, ①}, (8)

since ① is even and the number of elements of the set of even natural numbers is equal

to ①
2 . Note that the next even number is ① + 2 but it is not natural because ① + 2 > ①

(see (6)), it is extended natural. Thus, we can write down not only initial (as it is done
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traditionally) but also the final part of (7) as follows

2, 4, 6, 8, 10, 12, . . . , ① − 4, ① − 2, ①

� � � � � � � � �
1, 2, 3, 4 5, 6, . . . , ①

2 − 2, ①
2 − 1, ①

2

(9)

concluding so (7) in a complete accordance with Postulate 3. �

Note that record (9) does not affirm that we have established the one-to-one correspon-
dence among all even numbers and a half of natural ones. We cannot do this because, due
to Postulate 1, we can execute only a finite number of operations and the considered sets
are infinite. The symbols ‘. . .’ in (9) indicate that there are infinitely many numbers be-

tween 12 and ① − 4 in the first line and between 6 and ①
2 − 2 in the second line. The

record (9) affirms that for any even natural number expressible in the chosen numeral
system it is possible to indicate the corresponding natural number in the lower row of (9)
if it is also expressible in this numeral system.

We conclude the discussion upon Example 2.3 by the following remark. With respect
to our methodology, the mathematical results obtained by Cantor in (7) and our results
(9) do not contradict each other. They both are correct with respect to mathematical lan-
guages used to express them. This relativity is very important and it has been emphasized
in Postulate 2. The result (7) is correct in Cantor’s language and the more powerful lan-
guage developed in Sergeyev (2003, 2008) allows us to obtain a more precise result (9)
that is correct in the new language.

The choice of the mathematical language depends on the practical problem that is to
be solved and on the accuracy required for such a solution. The result (7) just means that
Cantor’s mathematical tools do not allow one to distinguish two observed mathematical
objects, namely, the number of elements of the sets E and N from the point of view of the
number of their elements. If one is satisfied with this accuracy, this answer can be used
(and was used since Cantor has published his results in 1870’s) in practice.

However, if one needs a more precise result, it is necessary to introduce a more pow-
erful mathematical language (a numeral system in this case) allowing one to express the
required answer in a more accurate way. Obviously, it is not possible to mix languages.
For instance, the question ‘what is the result of the operation ‘many’+4?’, where ‘many’
belongs to the numeral system of Pirahã, is nonsense.

3. Infinite Sequences

In the traditional definition of the Turing machine the notion of infinity is used in a strong
form; see Turing (1936, 1937) and, e.g., Davis (1985). First, the Turing machine has an
infinite one-dimensional tape divided into cells and its outputs are computable (infinite)
sequences of numerals. Second, an infinite sequence of operations can be executed by the
machine and it is supposed the availability of an infinite time for the computation. Turing
writes in pages 232 and 233 of Turing (1936, 1937):
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Computing machines
If an a-machine prints two kinds of symbols, of which the first kind (called
figures) consists entirely of 0 and 1 (the others being called symbols of the
second kind), then the machine will be called a computing machine. If the
machine is supplied with a blank tape and set in motion, starting from the
correct initial m-configuration, the subsequence of the symbols printed by
it which are of the first kind will be called the sequence computed by the
machine. The real number whose expression as a binary decimal is obtained
by prefacing this sequence by a decimal point is called the number computed
by the machine. [...]
Circular and circle-free machines
If a computing machine never writes down more than a finite number of sym-
bols of the first kind it will be called circular. Otherwise it is said to be circle-
free. [...]
Computable sequences and numbers
A sequence is said to be computable if it can be computed by a circle-free
machine.

It is clear that the notion of the infinite sequence becomes very important for our study
of the Turing machine. Thus, before considering the notion of the Turing machine from
the point of view of the new methodology, let us explain how the notion of the infinite
sequence can be viewed from the new positions.

Traditionally, an infinite sequence {an}, an ∈ A, n ∈ N, is defined as a function
having the set of natural numbers, N, as the domain and a set A as the codomain. A sub-
sequence {bn} is defined as a sequence {an} from which some of its elements have been
removed. In spite of the fact of the removal of the elements from {an}, the traditional
approach does not allow one to register, in the case where the obtained subsequence {bn}
is infinite, the fact that {bn} has less elements than the original infinite sequence {an}.

From the point of view of the new methodology, an infinite sequence can be con-
sidered in a dual way: either as an object of a mathematical study or as a mathematical
instrument developed by human beings to observe other objects and processes (see Pos-
tulate 2). First, let us consider it as a mathematical object and show that the definition
of infinite sequences should be done more precise within the new methodology. The fol-
lowing result (Sergeyev, 2003, 2008) holds. We reproduce here its proof for the sake of
completeness.

Theorem 3.1. The number of elements of any infinite sequence is less or equal to ①.

Proof. The new numeral system allows us to express the number of elements of the set
N as ①. Thus, due to the sequence definition given above, any sequence having N as the
domain has ① elements.

The notion of subsequence is introduced as a sequence from which some of its ele-
ments have been removed. Due to Postulate 3, this means that the resulting subsequence
will have less elements than the original sequence. Thus, we obtain infinite sequences
having the number of members less than grossone. �
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It becomes appropriate now to define the complete sequence as an infinite sequence
containing ① elements. For example, the sequence of natural numbers is complete, the

sequences of even and odd natural numbers are not complete because they have ①
2 el-

ements each (Sergeyev, 2003, 2008). Thus, the new approach imposes a more precise
description of infinite sequences than the traditional one.

To define a sequence {an} in the new language, it is not sufficient just to give a
formula for an, we should determine (as it happens for sequences having a finite number
of elements) its number of elements and/or the first and the last elements of the sequence.
If the number of the first element is equal to one, we can use the record {an : k} where
an is, as usual, the general element of the sequence and k is the number (that can be finite
or infinite) of members of the sequence.

In connection with this definition the following question arises inevitably. Suppose
that we have two sequences, for example, {bn : k1} and {cn : k2}, where both k1 and k2

are infinite numbers such that k1 < ① and k2 < ① but k1 + k2 > ①. Can we create a
new sequence, {dn : k}, composed from both of them, for instance, as it is shown below

b1, b2, . . . , bk1−2, bk1−1, bk1 , c1, c2, . . . , ck2−2, ck2−1, ck2

and which will be the value of the number of its elements k?
The answer to this question is ‘no’ because due to Theorem 3.1, a sequence cannot

have more than ① elements. Thus, the longest sequence is {dn : ①}. After arriving to the
last element d①, the sequence {dn : ①} will stop. However, the second sequence can then
be started.

EXAMPLE 3.1. Suppose that k1 = 2①
5 and k2 = 4①

5 . Then starting from the element
b1 we can arrive at maximum to the element c 3①

5
being the element d① in the sequence

{dn : ①} which we construct. Therefore, k = ① and

b1, . . . , b 2①
5

, c1, . . . , c 3①
5︸ ︷︷ ︸

① elements

, c 3①
5 +1, . . . , c 4①

5︸ ︷︷ ︸
①
5 elements

.

The remaining members c 3①
5 +1

, . . . , c 4①
5

of the sequence {cn : 4①
5 } will form the second

sequence, {gn : l} having l = 4①
5 − 3①

5 = ①
5 elements. Thus, we have formed two

sequences, the first of them is complete and the second is not. �

We have already seen the influence of Postulates 2 and 3 on the notion of the infi-
nite sequence. Let us study now what Postulate 1 gives us in this context. First, since
the object of the study – the sequence – has an infinite number of members, it follows
from Postulate 1 that we cannot observe all of them. We can observe only a finite num-
ber of its elements, precisely, those members of the sequence for which there exist the
corresponding numerals in the chosen numeral system.
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EXAMPLE 3.2. Let us consider the numeral system, P , of Pirahã able to express only
numbers 1 and 2. If we add to P the new numeral ①, we obtain a new numeral system
(we call it P̂ ). Let us consider now a sequence of natural numbers {n : ①}. It goes from 1
to ① (note that both numbers, 1 and ①, can be expressed by numerals from P̂ ). However,
the numeral system P̂ is very weak and it allows us to observe only ten numbers from the
sequence {n : ①} represented by the following numerals

1, 2︸︷︷︸
finite

, . . . ,
①

2
− 2,

①

2
− 1,

①

2
,

①

2
+ 1,

①

2
+ 2

︸ ︷︷ ︸
infinite

, . . . , ① − 2, ① − 1, ①︸ ︷︷ ︸
infinite

. (10)

The first two numerals in (10) represent finite numbers, the remaining eight numerals
express infinite numbers, and dots represent members of the sequence of natural numbers
that are not expressible in P̂ and, therefore, cannot be observed if one uses only this
numeral system for this purpose. �

Note that Pirahã are not able to see finite numbers larger than 2 using their weak nu-
meral system but these numbers are visible if one uses a more powerful numeral system.
In particular, this means that when we speak about sets (finite or infinite) it is necessary
to take care about tools used to describe a set. In order to introduce a set, it is necessary
to have a language (e.g., a numeral system) allowing us to describe both the form of its
elements in a way and the number of its elements. For instance, the set A from (4) cannot
be defined using the mathematical language of Pirahã.

Analogously, the words ‘the set of all finite numbers’ do not define a set from our
point of view. It is always necessary to specify which instruments are used to describe
(and to observe) the required set and, as a consequence, to speak about ‘the set of all finite
numbers expressible in a fixed numeral system’. For instance, for Pirahã ‘the set of all
finite numbers’ is the set {1, 2} and for another Amazonian tribe – Mundurukú3 – ‘the set
of all finite numbers’ is the set A from (4). As it happens in Physics, the instrument used
for an observation bounds the possibility of the observation and determines its accuracy.
It is not possible to say what we shall see during our observation if we have not clarified
which instruments will be used to execute the observation.

Let us consider now infinite sequences as one of the instruments used by mathemati-
cians to study the world around us and other mathematical objects and processes. The
first immediate consequence of Theorem 3.1 is that any sequential process can have at
maximum ① elements. This means that a process of sequential observations of any object
cannot contain more than ① steps4. Due to Postulate 1, we are not able to execute any in-

3Mundurukú (Pica, 2004) fail in exact arithmetic with numbers larger than 5 but are able to compare and
add large approximate numbers that are far beyond their naming range. Particularly, they use the words ‘some,
not many’ and ‘many, really many’ to distinguish two types of large numbers (in this connection think about
Cantor’s ℵ0 and ℵ1).

4It is worthy to notice a deep relation of this observation to the Axiom of Choice. Since Theorem 3.1 states
that any sequence can have at maximum ① elements, so this fact holds for the process of a sequential choice,
as well. As a consequence, it is not possible to choose sequentially more than ① elements from a set. This
observation also emphasizes the fact that the parallel computational paradigm is significantly different with
respect to the sequential one because p parallel processes can choose p · ① elements from a set.
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finite process physically but we assume the existence of such a process. Moreover, again
due to Postulate 1, only a finite number of observations of elements of the considered infi-
nite sequence can be executed by a human who is limited by the numeral system used for
observation. However, the researcher can choose how to organize the required sequence
of observations and which numeral system to use for it, defining so which elements of the
object he/she can observe. This situation is exactly the same as in natural sciences: before
starting to study a physical object, a scientist chooses an instrument and its accuracy for
the study.

EXAMPLE 3.3. Let us consider the set, N̂, of extended natural numbers from (6) as an
object of our observation. Suppose that we want to organize the process of the sequential
counting of its elements. Then, due to Theorem 3.1, starting from the number 1 this
process can arrive at maximum to ①. If we consider the complete counting sequence
{n : ①}, then we obtain

1, 2, 3, 4, . . . , ① − 2, ① − 1, ①, ① + 1, ① + 2, ① + 3, . . .

���� � � �

︸ ︷︷ ︸
① steps

(11)

In this formula, a more powerful (with respect to P̂ from (10)) numeral system, P̃ , is
used. It allows us to see also numbers three and four through the numerals 3 and 4 and, of

course, such numbers as ① − 4, ①
3 , ①

4 − 3, and other numbers that can be viewed through
numerals obtained as combinations of symbols ‘+’, ‘−’, and ‘/’ and numerals 1, 2, 3, 4,
and ① similarly to (10) (we assume that finite numbers larger than 4 are not expressible
in P̃ ). We omit them in the record (11) due to a straightforward similarity with (10).

Analogously, if we start the process of the sequential counting from 3, the process
arrives at maximum to ① + 2:

1, 2, 3, 4, . . . , ① − 2, ① − 1, ①, ① + 1, ① + 2, ① + 3, . . .

�� � � �� �

︸ ︷︷ ︸
① steps

The corresponding complete sequence used in this case is {n+2: ①}. We can also change
the length of the step in the counting sequence and consider, for instance, the complete
sequence {2n − 1 : ①}:

1, 2, 3, 4, . . . , ①−1, ①, ①+1, ①+2, . . . , 2①−3, 2①−2, 2①−1, 2①, 2①+1, . . .�� � � �� �

︸ ︷︷ ︸
① steps

If we use again the numeral system P̃ , then among finite numbers it allows us to see only
numbers 1 and 3 because already the next number in the sequence, 5, is not expressible
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in P̃ . The last two elements of the sequence are 2① − 3 and 2① − 1 and P̃ allows us to
observe them. �

The introduced definition of a sequence allows us to work not only with the first but
also with the last element of any sequence (if they are expressible in the chosen numeral
system) independently whether it has a finite or an infinite number of elements. Let us
use this new definition together with Postulate 2 for studying infinite sets of numerals,
in particular, for calculating the number of points at the interval [0, 1) (Sergeyev, 2003,
2008). To do this we need a definition of the term ‘point’ and mathematical tools to
indicate a point. Since this concept is one of the most fundamental, it is very difficult to
find an adequate definition. If we accept (as is usually done in modern Mathematics) that
a point A belonging to the interval [0, 1) is determined by a numeral x, x ∈ S, called
coordinate of the point A where S is a set of numerals, then we can indicate the point A

by its coordinate x and we are able to execute the required calculations.
It is worthwhile to emphasize that we have not postulated that x belongs to the set,

R, of real numbers as it is usually done, because we can express coordinates only by
numerals and different choices of numeral systems lead to various sets of numerals. This
situation is a direct consequence of Postulate 2 and is typical for natural sciences where
it is well known that instruments influence the results of observations. Remind again the
work with a microscope: we decide the level of the precision we need and obtain a result
which is dependent on the chosen level of accuracy. If we need a more precise or a more
rough answer, we change the lens of our microscope.

We should decide now which numerals we shall use to express coordinates of the
points. After this choice we can calculate the number of numerals expressible in this
system and, as a result, we obtain the number of points at the interval [0, 1). Different
variants (Sergeyev, 2003; Sergeyev, 2008) can be chosen depending on the precision level
we want to obtain. For instance, we can choose a positional numeral system with a finite
radix b that allows us to work with numerals

(0.a−1a−2, . . . , a−(①−1)a−①)b, a−i ∈ {0, 1, . . . , b − 2, b − 1}, 1 � i � ①. (12)

Then, the number of numerals (12) gives us the number of points within the interval [0, 1)
expressed by these numerals. Note that a number using the positional numeral system
(12) cannot have more than grossone digits (contrarily to sets discussed in Example 3.3)
because a numeral having g > ① digits would not be observable in a sequence. In this
case such a record becomes useless in sequential computations because it does not allow
one to identify numbers since g − ① numerals remain non observed.

Theorem 3.2. If coordinates of points x ∈ [0, 1) are expressed by numerals (12), then
the number of the points x over [0, 1) is equal to b①.

Proof. In the numerals (12) there is a sequence of digits, a−1a−2, . . . , a−(①−1)a−①, used
to express the fractional part of the number. Due to the definition of the sequence and
Theorem 3.1, any infinite sequence can have at maximum ① elements. As a result, there
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is ① positions on the right of the dot that can be filled in by one of the b digits from the
alphabet {0, 1, . . . , b − 1}. Thus, we have b① combinations to express the fractional part
of the number. Hence, the positional numeral system using the numerals of the form (12)
can express b① numbers. �

COROLLARY 3.1. The number of numerals

(a1a2a3, . . . , a①−2a①−1a①)b, ai ∈ {0, 1, . . . , b − 2, b − 1}, 1 � i � ①, (13)

expressing integer numbers in the positional system with a finite radix b in the alphabet
{0, 1, . . . , b − 2, b − 1} is equal to b①.

Proof. The proof is a straightforward consequence of Theorem 3.2 and is so omitted. �

COROLLARY 3.2. If coordinates of points x ∈ (0, 1) are expressed by numerals (12),
then the number of the points x over (0, 1) is equal to b① − 1.

Proof. The proof follows immediately from Theorem 3.2. �

Note that Corollary 3.2 shows that it becomes possible now to observe and to register
the difference of the number of elements of two infinite sets (the interval [0, 1) and the
interval (0, 1), respectively) even when only one element (the point 0) has been excluded
from the first set in order to obtain the second one.

4. The Turing Machines Viewed through the Lens of the New Methodology

In the previous section, we studied static infinite mathematical objects – sets – by using
infinite sequences as tools of the research. Let us establish now what can we say with
respect to physical and mathematical processes viewed as objects of observation having
in mind the triad ‘object, instrument, and researcher’ emphasized by Postulate 2. Our
main attention will be focused on processes related to the Turing machines and various
manifestations of infinity taking place during the work of the machines and during math-
ematical descriptions of the machines performed by researchers.

Remind that traditionally, a Turing machine can be defined as a 7-tuple; see, e.g.,
(Hopcroft and Ullman, 1979; Turing, 1936, 1937)

M =
〈
Q, Γ, b̄, Σ, q0, F, δ

〉
, (14)

where Q is a finite and not empty set of states; Γ is a finite set of symbols; b̄ ∈ Γ is a
symbol called blank; Σ ⊆ {Γ − b̄} is the set of input/output symbols; q0 ∈ Q is the initial
state; F ⊆ Q is the set of final states; δ : {Q − F } × Γ 	→ Q × Γ × {R, L, N } is a partial
function called the transition function, where L means left, R means right, and N means
no move.
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Specifically, the machine is supplied with: (i) a tape running through it which is di-
vided into cells each capable of containing a symbol γ ∈ Γ, where Γ is called the tape
alphabet, and b̄ ∈ Γ is the only symbol allowed to occur on the tape infinitely often; (ii)
an head that can read and write symbols on the tape and move the tape left and right one
and only one cell at a time. The behavior of the machine is specified by its transition
function δ and consists of a sequence of computational steps; in each step the machine
reads the symbol under the head and applies the transition function that, given the current
state of the machine and the symbol it is reading on the tape, specifies (if it is defined for
these inputs): (i) the symbol γ ∈ Γ to write on the cell of the tape under the head; (ii) the
move of the tape (L for one cell left, R for one cell right, N for no move); (iii) the next
state q ∈ Q of the machine.

Following Turing (1936, 1937), we consider machines that have finite input and out-
put alphabets, inputs of a finite length, a finite number of internal states but can work
an infinite time and are able to produce outputs of an infinite length. Hereinafter such
a machine is called an imaginary Turing machine, T I . In order to study the limitations
of practical automatic computations, we also consider machines, T P , that can be con-
structed physically. They are identical to T I but are able to work only a finite time and
can produce only finite outputs. We study both kinds of machines:

• from the point of view of their outputs called by Turing ‘computable numbers’ or
‘computable sequences’;

• from the point of view of algorithms that can be executed by a Turing machine.

4.1. Computable Sequences

Let us consider first a physical machine T P . We suppose that its output is written on the
tape using an alphabet Σ containing symbols {0, 1, . . . , b − 2, b − 1} where b is a finite
number (Turing, 1936, 1937, uses b = 10). Thus, the output consists of a sequence of
digits that can be viewed as a number in a positional system B with the radix b.

It follows from Postulate 1 (reflecting a fundamental law existing in the real world)
that T P should stop after a finite number of iterations. The magnitude of this value de-
pends on the physical construction of the machine, the way the notion ‘iteration’ has been
defined, etc., but in any case this number is finite. The machine stops in two cases: (i) it
has finished execution of its program and stops; (ii) it has not finished execution of the
program and stops just because of a breakage of some of its components. In both cases
the output sequence

(a1a2a3, . . . , ak−1, ak)b, ai ∈ {0, 1, . . . , b − 2, b − 1}, 1 � i � k, (15)

of T P has a finite length k. Suppose that the maximal length of the output sequence that
can be computed by T P is equal to a finite number KT P . Then it follows k � KT P . This
means that there exist problems that cannot be solved by T P if the length of the output
necessary to write down the solution outnumbers KT P . If a machine T P has stopped to
write the output after it has printed KT P symbols then it is not clear whether the obtained



440 Y.D. Sergeyev, A. Garro

output is a solution or just a result of the depletion of its computational resources. In
particular, with respect to the halting problem it follows that all algorithms stop on T P .

Let us call a person working with the machine and reading the output as a researcher
(or a user). Then, in order to be able to read and to understand the output, the researcher
should have his/her own positional numeral system U with an alphabet {0, 1, . . . , u − 2,

u − 1} where u � b from (15). Otherwise, the output cannot be understood and de-
coded by the user. Moreover, he/she should be able to read and to interpret output se-
quences of symbols with the length KU � KT P . If the situation KU < KT P holds,
then this means that the user is not able to interpret the obtained result. Thus, the number
K∗ = min{KU , KT P } defines the length of the outputs that can be computed and then
observed and interpreted by the user. As a consequence, algorithms producing outputs
having more than K∗ positions become less interesting from the practical point of view.

It is possible to make analogous considerations with respect to alphabets and numeral
systems used for input sequences restricting so again the number of algorithms useful
from the practical point of view. Finally, the algorithm should be written down someway.
This operation is executed by using an alphabet and a numeral system used for writing
down the algorithm introduces limitations to the algorithms that can be proposed for
executing them on a machine. These considerations are important because on the one
hand, they establish limits of practical automatic computations and on the other hand, they
emphasize the role of numeral systems in codifying algorithms and interpreting results of
computations.

Let us turn now to imaginary Turing machines T I . Such a machine can produce out-
puts (15) with an infinite number of symbols k. In order to be observable in a sequence, an
output should have k � ① (remind that the positional numeral system B includes numer-
als being a sequence of digits, in order to be a numeral, the output should have k � ①).
Outputs observable in a sequence play an important role in the further consideration.

Theorem 4.1. Let M be the number of all possible complete computable sequences that
can be produced by imaginary Turing machines using outputs (15) being numerals in the
positional numeral system B. Then it follows M � b①.

Proof. This result follows from the definitions of the complete sequence and the posi-
tional numeral system considered together with Theorem 3.2 and Corollary 3.1. �

COROLLARY 4.1. Let us consider an imaginary Turing machine T I working with the
alphabet {0, 1, 2} and computing the following complete computable sequence

0, 1, 2, 0, 1, 2, 0, 1, 2, . . . , 0, 1, 2, 0, 1, 2︸ ︷︷ ︸
① positions

. (16)

Then imaginary Turing machines working with the output alphabet {0, 1} cannot produce
observable in a sequence outputs that codify and compute (16).
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Proof. Since the numeral 2 does not belong to the alphabet {0, 1} it should be coded
by more than one symbol. One of the coding using the minimal number of symbols in
the alphabet {0, 1} necessary to code numbers 0, 1, 2 is {00, 01, 10}. Then the output
corresponding to (16) and computed in this codification should be

00, 01, 10, 00, 01, 10, 00, 01, 10, . . . , 00, 01, 10, 00, 01, 10. (17)

Since the output (16) contains grossone positions, the output (17) would contain 2① po-
sitions. However, in order to be observable in a sequence, (16) should not have more than
grossone positions. This fact completes the proof. �

At first glance results established by Theorem 4.1 and Corollary 4.1 sound quite un-
usual for a person who studied the behavior of Turing machines on infinite computable se-
quences using traditional mathematical tools. However, they do not contradict each other.
Theorem 4.1 and Corollary 4.1 do not speak about all Turing machines. They consider
only those machines that produce complete output sequences. If the object of observation
(in this case – the output) contains more than grossone elements, it cannot be observed
and, therefore, is less interesting from the point of view of practical computations.

It is important to emphasize that these results are in line with the situation that we have
in the real world with a finite number of positions in the output sequences. For instance,
suppose that a physical Turing machine T P has 6 positions at its output, the numeral
system {0, 1, 2}, and the sequence 0, 1, 2, 0, 1, 2 is computed. Then there does not exist
a Turing machine working with the output alphabet {0, 1} able to calculate the sequence
0, 1, 2, 0, 1, 2 using the output having 6 positions.

In order to understand Theorem 4.1 and Corollary 4.1 better, let us return to the Turing
machine as it has been described in Turing (1936, 1937) and comment upon connections
between the traditional results and the new ones. First, it is necessary to mention that
results of Turing and results of Theorems 3.2, 4.1, and Corollary 4.1 have been formulated
using different mathematical languages. The one used by Turing has been developed by
Cantor and did not allow Turing to distinguish within continuum various sets having
different number of elements. The new numeral system using grossone allows us to do
this.

Cantor has proved, by using his famous diagonal argument, that the number of ele-
ments of the set N is less than the number of real numbers at the interval [0, 1) without
calculating the latter. To do this, he expressed real numbers in a positional numeral sys-
tem. We have shown that this number will be different depending on the radix b used in
the positional system to express real numbers. However, all of the obtained numbers, b①,
are larger than the number of elements of the set of natural numbers, ①.

Thus, results presented in Theorem 4.1 and Corollary 4.1 should be considered just
as a more precise analysis of the situation related to the existence of different infinities
discovered by Cantor. The usage of a more powerful numeral system gives a possibility to
distinguish and to describe more mathematical objects within the continuum, in the same
way as the usage of a stronger lens in a microscope gives a possibility to distinguish more
objects within an object that seems to be indivisible when viewed by a weaker lens.
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As a consequence, the mathematical results obtained by Turing and those presented
in Theorems 3.2, 4.1, and Corollary 4.1 do not contradict each other. They are correct
with respect to mathematical languages used to express them and correspond to different
accuracies of the observation. Both mathematical languages observe and describe the
same object – computable sequences – but with different accuracies. This fact is one of
the manifestations of the relativity of mathematical results formulated by using different
mathematical languages.

Another manifestation of this relativity is obviously related to the concept of the uni-
versal Turing machine and to the process of establishing equivalence between machines.
Notice that Theorem 4.1 and Corollary 4.1 emphasize dependence of the outputs of Tur-
ing machines on a finite alphabet {0, 1, . . . , b−2, b−1} used for writing down computable
sequences. Therefore, when a researcher describes a Turing machine, there exists the de-
pendence of the description on the finite numeral system used by the researcher. First, the
description is limited by alphabets {0, 1, . . . , b − 2, b − 1} known to the humanity at the
present situation. Second, by the maximal length, KU , of the sequence of symbols written
in the fixed alphabet that the researcher is able to read, to write, and to understand.

It is not possible to describe a Turing machine (the object of the study) without the
usage of a numeral system (the instrument of the study). Our possibilities to observe and
to describe Turing machines and to count their number are limited by the numeral systems
known to the humanity at the moment. Again, as it happens in natural sciences, the tools
used in the study limit the researcher. As a result, it becomes not possible to speak about
an absolute number of all possible Turing machines T I . It is always necessary to speak
about the number of all possible Turing machines T I expressible in a fixed numeral
system (or in a group of them).

The same limitations play an important role in the process of simulating one machine
T I by another. In order to be able to execute this operation it is necessary to calculate
the respective description number (Turing, 1936, 1937) and this will be possible only
for description numbers expressible in the finite alphabets known at the current moment
to the researcher and the length of these numbers will be limited by the number KU .
A machine T I having the description number not satisfying these constraints cannot be
simulated because the instrument – a numeral system – required for such re-writing is not
powerful enough (as usual, devil is in the details).

Let us consider now from positions of the new numeral system including grossone the
situation related to the enumerability of machines T I studied by Turing.

Theorem 4.2. The maximal number of complete computable sequences produced by
imaginary Turing machines that can be enumerated in a sequence is equal to ①.

Proof. This result follows from the definition of a complete sequence. �

Let us consider the results of Theorems 4.1 and 4.2 together. Theorem 4.1 gives an
upper bound for the number of complete computable sequences that can be computed
using a fixed radix b. However, we do not know how many of b① sequences can be results
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of computations of a Turing machine. Turing establishes that their number is enumerable.
In order to obtain this result, he used the mathematical language developed by Cantor and
this language did not allow him to distinguish sets having different infinite numbers of
elements, e.g., in the traditional language that he used the sets of even, natural, and integer
numbers all are enumerable.

The introduction of grossone gives a possibility to execute a more precise analysis

and to determine that these sets have different numbers of elements: ①
2 , ①, and 2① + 1,

respectively. If the number of complete computable sequences, MT I , is larger than
grossone, then there can be different sequential enumerating processes that enumerate
complete computable sequences in different ways. Theorem 4.2 states that, in any case,
each of these enumerating sequential processes cannot contain more than grossone mem-
bers.

We conclude this subsection by noticing that the results presented in it establish limi-
tations for the number of computable sequences only from the point of view of the output
sequences and their alphabets. An analogous analysis can be done using limitations im-
posed by the number of states of Turing machines, their inputs, and the respective finite
alphabets, as well.

4.2. Processes of Automatic Computations and Their Descriptions

First, we take notice that if we want to observe a process of computations A performed by
a Turing machine (T P or T I ) while it executes an algorithm, then we do it by executing
observations of the machine in a sequence of moments. In fact, it is not possible to or-
ganize a continuous observation of the machine. Any instrument used for an observation
has its accuracy and there will always be a minimal period of time related to this instru-
ment allowing one to distinguish two different moments of time and, as a consequence,
to observe (and to register) the states of the object in these two moments. In the period of
time passing between these two moments the object remains unobservable.

Hence, the observations are made in a sequence (that is an instrument of the research)
and the process of computations A is the object of the study. In the simplest case we
observe A only two times: at the starting point when we supply the input data and at
the ending point of the process of computation when we read the results. In alternative,
observations are made to look at intermediate results or even at particular moves of the
parts of the machine (e.g., reading a symbol, writing a symbol, etc.).

On the one hand, since our observations are made in a sequence, it follows from The-
orem 3.1 that the process of observations can have at maximum ① elements. This means
that inside a computational process it is possible to fix more than grossone steps (defined
someway) but it is not possible to count them one by one in a sequence containing more
than grossone elements. For instance, in a time interval [0, 1), numerals (12) can be used
to identify moments of time but not more than grossone of them can be observed in a
sequence.

On the other hand, it is important to stress that any process itself, considered indepen-
dently on the researcher, is not subdivided in iterations, intermediate results, moments
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of observations, etc. This is a direct consequence of Postulate 2, the consequence that
is also in line with the Sapir–Whorf thesis, particularly, with results of Whorf (Carroll
(Ed.), 1956) related to his analysis of the differences between Western languages and the
Hopi language (a Uto-Aztecan language spoken by the Hopi people of northeastern Ari-
zona, USA). Analyzing the relationship between language, thought, and reality in these
two types of languages (see also recent experimental data and the relative discussion in a
barrier between them.

Western languages tend to analyze reality as objects in space. There exist other lan-
guages, including many Native American languages, that are oriented towards processes.
To monolingual speakers of such languages, the constructions of Western languages re-
lated to objects and separate events may make little sense. On the other hand, due to
Whorf, the relativistic physics – a subject being very hard for understanding for a West-
ern language speaker – a Hopi speaker would find fundamentally easier to grasp. Whorf
writes:

We dissect nature along lines laid down by our native language. The categories
and types that we isolate from the world of phenomena we do not find there
because they stare every observer in the face; on the contrary, the world is
presented in a kaleidoscope flux of impressions which has to be organized by
our minds – and this means largely by the linguistic systems of our minds. We
cut nature up, organize it into concepts, and ascribe significances as we do,
largely because we are parties to an agreement to organize it in this way – an
agreement that holds throughout our speech community and is codified in the
patterns of our language [. . .]

The Sapir–Whorf thesis is interesting for us because, in a complete accordance with
our methodological positions, it separates the object of observations from its represen-
tation by one or another language. In particular, with respect to automatic computations
we emphasize that a machine (a physical or an imaginary one) executing a computation
does not distinguish an importance of one moment during the execution of an action with
respect to another and does not count them. Certain milestones inside a process (compu-
tational steps defined someway, operations, iterations, etc.) are introduced from outside of
the studied process by the researcher because these specific points are interesting for the
observer for some reasons and can be expressed in his language. The notion ‘sequence’
is a tool invented by human beings, it is a part of the modern mathematical languages
(developed mainly in the frame of Western languages dissecting processes in separate
events), it does not take part of the object of the study.

When we speak about a computer executing iterations of a certain algorithm, we sub-
divide the process of computations on iterations and we count them. As a result, it is
necessary to speak about the computational power of computers (in particular, of Turing
machines) coupled with our possibilities to use them, to follow computational processes,
to be able to provide input data, and to read results of computations. The understanding of
the fact that computations executed by a computer and our observations and descriptions
of these computations are different processes lead to the necessity to rethink such notions
as iteration and algorithm.



Observability of Turing Machines: A Refinement of the Theory of Computation 445

At the moment when we decide what is an iteration of our algorithm, we are choosing
the instrument of our investigation and the further results will depend on the chosen
accuracy (or granularity) of observations. For instance, with respect to Turing machines
an iteration can be a single operation of the machine such as reading a symbol from the
tape, or moving the tape, etc. Another possible example of such a choice (that is usually
used in the Computer Science literature) is to observe the machine when its configuration
has been changed. All these choices produce different sequences of observations that
form an algorithm if we add to them an input and an output being the symbols present on
the tape of T I at the first and at the last observation, respectively.

In order to conclude our discussion on the notion of the algorithm it is necessary to
remind that any sequence cannot contain more then grossone steps. Thus, after we have
chosen what is the iteration of our algorithm, the maximal number of these iterations
cannot outnumber ①. As usual, the choice of the numeral system used to describe iter-
ations and their results determines what will be observable for the researcher. Similarly,
the choice of the numeral system (and, in general, of the mathematical language) used to
describe the algorithm will limit the type of the algorithms that can be described.

The notion of the result of a computation on T I has the same sense as it was for T P .
If T I has not stopped after ① observations, then this means that we have finished our
possibilities of observations and we cannot say whether the symbols present at the tape
during this observation are effectively the solution to the problem. By a complete analogy
with T P , computations finish either because the machine T I stops or because we are not
any more able to observe computations (since T I is an imaginary one, the possibility of
its breakage is not taken into consideration). In particular, this means that with respect to
the halting problem all algorithms stop but this does not mean that the obtained result is
a solution.

The analysis given above shows us that it is not possible to speak about the com-
putational power of a Turing machine without taking into consideration a number of
limitations introduced by the languages. Among them there are at least the following: the
language used to describe the algorithm and iterations it consists of; the language used to
describe the process of computations; and the language used to describe the Turing ma-
chine itself (its input and output alphabets, its states, etc.). Notice that this situation with
a description of automatic computations is just a particular case of the situation empha-
sized by Postulate 2: when we study an object it is necessary to be aware of the accuracy
and the capability of instruments used for the study.

The obtained picture of the computability is significantly richer and complex with re-
spect to traditional views (Church, 1936; Cooper, 2003; Davis, 1985; Kleene, 1952; Kol-
mogorov, 1953; Kolmogorov and Uspensky, 1958; Markov and Nagorny, 1996; Post,
1936; Turing, 1936, 1937). The classic Turing theory contains a number of theoretical re-
sults showing the same computational power of different variants of Turing machines and
establishing that the differences among machines T I

1 and T I
2 result only in the different

number of steps that will be necessary to each machine for computing the required output.
Some of the limitations on this point of view have been already discussed in Section 4.1.
In this section, we have emphasized a number of additional limitations. Again, as it was
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in Section 4.1, the difference with the traditional results is not a contradiction. These dif-
ferences arise because the mathematical language used for these traditional studies did
not allow people to see the differences among various models of computations.

5. Usage of Traditional and New Languages for Comparing Deterministic
and Non-Deterministic Turing Machines

In order to illustrate the new way of reasoning, let us discuss the traditional and new
results regarding the computational power of deterministic and non-deterministic Tur-
ing machines. For simplicity, we do not take into consideration limitations described in
Section 4.1. Let us first remind the traditional point of view.

A non-deterministic Turing machine (Hopcroft and Ullman, 1979) can be defined (cf.
(14)) as a 7-tuple

MN =
〈
Q, Γ, b̄, Σ, q0, F, δN

〉
, (18)

where Q is a finite and not empty set of states; Γ is a finite set of symbols; b̄ ∈ Γ is a
symbol called blank; Σ ⊆ {Γ − b̄} is the set of input/output symbols; q0 ∈ Q is the initial
state; F ⊆ Q is the set of final states; δN : {Q − F } × Γ 	→ P (Q × Γ × {R, L, N }) is a
partial function called the transition function, where L means left, R means right, and N

means no move.
As for a deterministic Turing machine (see (14)), the behavior of MN is specified

by its transition function δN and consists of a sequence of computational steps. In each
step, given the current state of the machine and the symbol it is reading on the tape,
the transition function δN returns (if it is defined for these inputs) a set of triplets each
of which specifies: (i) a symbol γ ∈ Γ to write on the cell of the tape under the head;
(ii) the move of the tape (L for one cell left, R for one cell right, N for no move);
(iii) the next state q ∈ Q of the Machine. Thus, in each computational step, the machine
can non-deterministically execute different computations, one for each triple returned by
the transition function.

An important characteristic of a non-deterministic Turing machine is its non-
deterministic degree; see, e.g., Ausiello et al. (2006)

d = ν(MN ) = max
q∈Q−F,γ∈Γ

|δN (q, γ)|

defined as the maximal number of different configurations reachable in a single compu-
tational step starting from a given configuration. The behavior of the machine can be then
represented as a tree whose branches are the computations that the machine can execute
starting from the initial configuration represented by the node 0 and nodes of the tree at
the levels 1, 2, etc. represent subsequent configurations of the machine.

Let us consider an example shown in Fig. 1 where a non-deterministic machine MN

having the non-deterministic degree d = 3 is presented. The depth of the computational
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Fig. 1. The computational tree of a non-deterministic Turing machine MN having the non-deterministic degree
d = 3.

tree is equal to k. In this example, it is supposed that the computational tree of MN is
complete (i.e., each node has exactly d children). Then, obviously, the computational tree
of MN has dk = 3k leaf nodes.

An important result for the classic theory on Turing machines is that for any non-
deterministic Turing machine MN there exists an equivalent deterministic Turing ma-
chine MD; see, e.g., Ausiello et al. (2006). Moreover, if the depth of the computational
tree generated by MN is equal to k, then for simulating MN , the deterministic machine
MD will execute at most

KMD
=

k∑
j=0

jdj = O(kdk)

computational steps.
Intuitively, for simulating MN , the deterministic Turing machine MD executes a

breadth-first visit of the computational tree of MN . If we consider the example from
Fig. 1 with k = 3, then the computational tree of MN has dk = 27 leaf nodes and
dk = 27 computational paths consisting of k = 3 branches (i.e., computational steps).
Then, the tree contains dk−1 = 9 computational paths consisting of k − 1 = 2 branches
and dk−2 = 3 computational paths consisting of k −2 = 1 branches. Thus, for simulating
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all the possible computations of MN , i.e., for complete visiting the computational tree
of MN and considering all the possible computational paths of j computational steps
for each 0 � j � k, the deterministic Turing machine MD will execute KMD

steps. In
particular, if MN reaches a final configuration (e.g., it accepts a string) in k � 0 steps and
if MD could consider only the dk computational paths which consist of k computational
steps, it will executes at most kdk steps for reaching this configuration.

These results show an exponential growth of the time required for reaching a final
configuration by the deterministic Turing machine MD with respect to the time required
by the non-deterministic Turing machine MN , assuming that the time required for both
machines for a single step is the same. However, in the classic theory on Turing ma-
chines it is not known if there is a more efficient simulation of MN . In other words, it
is an important and open problem of Computer Science theory to demonstrate that it is
not possible to simulate a non-deterministic Turing machine by a deterministic Turing
machine with a sub-exponential numbers of steps.

Let us now return to the new mathematical language. Since the main interest to ma-
chines (18) is related to their theoretical properties, hereinafter we start by a comparison
of imaginary deterministic Turing machines, T I , with imaginary machines MN from
(18) denoted as T I N . Physical machines T P and T P N are considered at the end of this
section.

Due to the analysis made in Section 4.2, we should choose the accuracy (granularity)
of processes of observation of both machines, T I and T I N . In order to be close as much
as possible to the traditional results, we consider an application of the transition function
of the machine as our observation granularity. With respect to T I N this means that the
nodes of the computational tree are observed. With respect to T I we consider sequences
of such nodes. For both cases the initial configuration is not observed, i.e., we start our
observations from level 1 of the computational tree.

This choice of the observation granularity is particularly attractive due to its accor-
dance with the traditional definitions of Turing machines (see definitions (14) and (18)).
A more fine granularity of observations allowing us to follow internal operations of the
machines can be also chosen but is not so convenient. In fact, such an accuracy would
mix internal operations of the machines with operations of the algorithm that is executed.
A coarser granularity could be considered, as well. For instance, we could define as a
computational step two consecutive applications of the transition function of the ma-
chine. However, in this case we do not observe all the nodes of the computational tree.
As a consequence, we could miss some results of the computation as the machine could
reach a final configuration before completing an observed computational step and we are
not able to observe when and on which configuration the machine stopped. Then, fixed
the chosen level of granularity the following result holds immediately.

Theorem 5.1. (i) With the chosen level of granularity no more than ① computational
steps of the machine T I can be observed in a sequence. (ii) In order to give possibility
to observe at least one computational path of the computational tree of T I N from the
level 1 to the level k, the depth, k � 1, of the computational tree cannot be larger than
grossone, i.e., k � ①.
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Proof. Both results follow from the analysis made in Section 4.2 and Theorem 3.1. �

COROLLARY 5.1. Suppose that d is the non-deterministic degree of T I N and S is the
number of leaf nodes of the computational tree with a depth k representing the possible
results of the computation of T I N . Then it is not possible to observe all S possible results
of the computation of T I N if the computational tree of T I N is complete and dk > ①.

Proof. For the number of leaf nodes of the tree, S, of a generic non-deterministic Turing
machine T I N the estimate S � dk holds. In particular, S = dk if the computational tree
is complete, that is our case. On the other hand, it follows from Theorem 3.1 that any
sequence of observations cannot have more than grossone elements. As a consequence,
the same limitation holds for the sequence of observations of the leaf nodes of the com-
putational tree. This means that we are not able to observe all the possible results of the
computation of our non-deterministic Turing machine T I N if dk > ①. �

COROLLARY 5.2. Any sequence of observations of the nodes of the computational tree
of a non-deterministic Turing machine T I N cannot observe all the nodes of the tree if
the number of nodes N is such that N > ①.

Proof. The corollary follows from Theorems 3.1, 5.1, and Corollary 5.1. �

These results lead to the following theorem again under the same assumption about
the chosen level of granularity of observations, i.e., the nodes of the computational tree
of T I N representing configurations of the machine are observed.

Theorem 5.2. Given a non-deterministic Turing machine T I N with a depth, k, of the
computational tree and with a non-deterministic degree d such that

d(kdk+1 − (k + 1)dk + 1)
(d − 1)2

� ①, (19)

then there exists an equivalent deterministic Turing machine T I which is able to simulate
T I N and can be observed.

Proof. For simulating T I N , the deterministic machine T I executes a breadth-first visit
of the computational tree of T I N . In this computational tree, whose depth is 1 � k � ①,
each node has, by definition, a number of children c where 0 � c � d. Let us suppose that
the tree is complete, i.e., each node has c = d children. In this case the tree has dk leaf
nodes and dj computational paths of length j for each 1 � j � k. Thus, for simulating all
the possible computations of T I N , i.e., for a complete visiting the computational tree of
T I N and considering all the possible computational paths consisting of j computational
steps for each 1 � j � k, the deterministic machine T I will execute

KT I =
k∑

j=1

jdj (20)
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steps (note that if the computational tree of T I N is not complete, T I will execute less
than KT I ). Due to Theorems 3.1 and 5.1, and Corollary 5.2, it follows that in order to
prove the theorem it is sufficient to show that under conditions of the theorem it follows
that

KT I � ①. (21)

To do this let us use the well known formula

k∑
j=0

dj =
dk+1 − 1

d − 1
, (22)

and derive both parts of (22) with respect to d. As the result we obtain

k∑
j=1

jdj−1 =
kdk+1 − (k + 1)dk + 1

(d − 1)2
. (23)

Notice now that by using (20) it becomes possible to represent the number KT I as

KT I =
k∑

j=1

jdj = d
k∑

j=1

jdj−1.

This representation together with (23) allow us to write

KT I =
d(kdk+1 − (k + 1)dk + 1)

(d − 1)2
. (24)

Due to assumption (19), it follows that (21) holds. This fact concludes the proof of the
theorem. �

COROLLARY 5.3. Suppose that the length of the input sequence of symbols of a non-
deterministic Turing machine T I N is equal to a number n and T I N has a complete
computational tree with the depth k such that k = nl, i.e., polynomially depends on the
length n. Then, if the values d, n, and l satisfy the following condition

d(nldnl+1 − (nl + 1)dnl

+ 1)
(d − 1)2

� ①, (25)

then: (i) there exists a deterministic Turing machine T I that can be observed and able to
simulate T I N ; (ii) the number, KT I , of computational steps required to a deterministic
Turing machine T I to simulate T I N for reaching a final configuration exponentially
depends on n.
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Proof. The first assertion follows immediately from theorem 5.2. Let us prove the second
assertion. Since the computational tree of T I N is complete and has the depth k, the
corresponding deterministic Turing machine T I for simulating T I N will execute KT I

steps where KT I is from (21). Since condition (25) is satisfied for T I N , we can substitute
k = nl in (24). As the result of this substitution and (25) we obtain that

KT I =
d(nldnl+1 − (nl + 1)dnl

+ 1)
(d − 1)2

� ①, (26)

i.e., the number of computational steps required to the deterministic Turing machine T I

to simulate the non-deterministic Turing machine T I N for reaching a final configuration
is KT I � ① and this number exponentially depends on the length of the sequence of
symbols provided as input to T I N . �

Results described in this section show that the introduction of the new mathematical
language including grossone allows us to perform a more subtle analysis with respect to
traditional languages and to introduce in the process of this analysis the figure of the re-
searcher using this language (more precisely, to emphasize the presence of the researcher
in the process of the description of automatic computations). These results show that
there exist limitations for simulating non-deterministic Turing machines by deterministic
ones. These limitations can be viewed now thanks to the possibility (given because of the
introduction of the new numeral ①) to observe final points of sequential processes for
both cases of finite and infinite processes.

Theorems 5.1, 5.2, and their corollaries show that the discovered limitations and re-
lations between deterministic and non-deterministic Turing machines have strong links
with our mathematical abilities to describe automatic computations and to construct mod-
els for such descriptions. Again, as it was in the previous cases studied in this paper, there
is no contradiction with the traditional results because both approaches give results that
are correct with respect to the languages used for the respective descriptions of automatic
computations.

We conclude this section by the note that analogous results can be obtained for physi-
cal machines T P and T P N , as well. In the case of imaginary machines, the possibility of
observations was limited by the mathematical languages. In the case of physical machines
they are limited also by technical factors (we remind again the analogy: the possibilities
of observations of physicists are limited by their instruments). In any given moment of
time the maximal number of iterations, Kmax, that can be executed by physical Turing
machines can be determined. It depends on the speed of the fastest machine T P available
at the current level of development of the humanity, on the capacity of its memory, on
the time available for simulating a non-deterministic machine, on the numeral systems
known to human beings, etc. Together with the development of technology this number
will increase but it will remain finite and fixed in any given moment of time. As a result,
theorems presented in this section can be re-written for T P and T P N by substituting
grossone with Kmax in them.
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6. Conclusion

The problem of mathematical descriptions of automatic computations (the concept of the
Turing machine has been used as a model of a device executing such computations) has
been considered in this paper from several points of view. First, the problem has been
studied using a new methodology emphasizing in a strong form the presence in the pro-
cess of the description of automatic computations of the researcher who describes a com-
putational device and its properties. The role of the philosophical triad – the researcher,
the object of investigation, and tools used to observe the object – has been emphasized
in the study. A deep investigation has been performed on the interrelations that arise be-
tween mechanical computations themselves and their mathematical descriptions when a
human (the researcher) starts to describe a Turing machine (the object of the study) by
different mathematical languages (the instruments of investigation).

Along with traditional mathematical languages using such concepts as ‘enumerable
sets’ and ‘continuum’ to describe the potential of automatic computations, a language
introduced recently and the corresponding computational methodology allowing one to
measure the number of elements of different infinite sets have been used in this paper.
It has been emphasized that mathematical descriptions obtained by using different lan-
guages depict the object of the study – the Turing machine – in different ways. It has been
established that the obtained descriptions, even though in certain cases they give different
answers to the same questions, do not contradict each other. All of them are correct with
respect to the language used for the observation and the description of the machines.

It has been established that there exists the relativity of mathematical descriptions of
the object and there cannot be ever any assurance that a language chosen for the cur-
rent description expresses the object in an absolutely correct and complete way. A richer
language allows the researcher to reflect better the properties of the studied object and
a weaker language does this worse (however, this fact can be noticed only if a richer
language is already known to the researcher). This situation is similar to the work with
a microscope where, when we need a more precise or a more rough answer, we change
the lens of our microscope. For instance, suppose that by using a weak lens A we see
the object of observation as one black dot while by using a stronger lens B we see that
the object of observation consists of two (smaller) black dots. Thus, we have two differ-
ent answers: (i) the object consists of one dot; (ii) the object consists of two dots. Both
answers are correct with respect to the lens used for the observation.

The new mathematical language applied in this study has allowed the authors to es-
tablish a number of results regarding sequential computations executed by the Turing
machine and results regarding computable sequences produced by the machine. Deter-
ministic and non-deterministic machines have been studied using both the traditional and
the new languages. The obtained results have been compared and discussed.

It has been emphasized that all mathematical (and not only mathematical) languages
(including the new one used in this study) have limited expressibilities. This fact leads
to several important reflections. First, for any fixed language there always exist prob-
lems that cannot be formulated using it (these problems often can be seen when a new,
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sufficiently powerful for this purpose language is invented). Second, there always exist
problems such that questions regarding these problems can be formulated in a language
but this language is too weak to express the desired answer or the accuracy of the ob-
tained answer is insufficient for the practical needs. Finally, in any given moment of time
for each concrete problem there exists a finite number of languages that can be used to
attack the problem. Then, the most powerful language among them defines computa-
tional bounds for the problem that exist both for physical and imaginary Turing machines
(i.e., in both cases when a maximal finite or a maximal infinite number of iterations is
considered).
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Tiuringo mašin ↪u stebimumas: skaičiavim ↪u teorijos papildymas

Yaroslav D. SERGEYEV, Alfredo GARRO

Tiuringo mašina yra paprastas abstraktus skaičiavim ↪u modelis naudojamas apskaičiuoja-
mumo tyrimams. Šiame straipsnyje keliais aspektais nagrinėjamos matematinės kalbos, skir-
tos Tiuringo mašinai aprašyti. Giliau nagrinėjamas santykis tarp mechanini ↪u skaičiavim ↪u ir j ↪u
matematinio aprašymo, kurio prireikia kai žmogus (tyrėjas) pradeda aprašinėti Tiuringo mašin ↪a

↪ivairiomis matematinėmis kalbomis. Kartu su tradicinėmis matematinėmis kalbomis, pagr↪istomis
tokiomis koncepcijomis kaip „numeruojamos aibės“ ir „kontinuumas“, naudojama nauja skaičiavi-
m ↪u metodologija, ↪igalinanti matuoti ↪ivairi ↪u begalini ↪u aibi ↪u dyd↪i. Parodyta, kaip naudojamos kalbos
mašinai aprašyti riboja m ↪us ↪u galimybes j ↪a stebėti. ↪Ivedamos stebim ↪u deterministini ↪u ir nedetermi-
nistini ↪u Tiuringo mašin ↪u s ↪avokos ir suformuluotos s ↪alygos, kada pastarosios gali būti modeliuo-
jamos pirmosiomis.


